Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 4548 | | Number of Logic Elements/Cells | 90960 | | Total RAM Bits | 4520488 | | Number of I/O | 758 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s90f1020c3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong iν | Open-Drain Output | 2–84 | |---|------| | Bus Hold | | | Programmable Pull-Up Resistor | | | Advanced I/O Standard Support | | | On-Chip Termination | | | MultiVolt I/O Interface | | | High-Speed Differential I/O with DPA Support | | | Dedicated Circuitry with DPA Support | | | Fast PLL & Channel Layout | | | Document Revision History | | | Chapter 3. Configuration & Testing | | | IEEE Std. 1149.1 JTAG Boundary-Scan Support | 3_1 | | SignalTap II Embedded Logic Analyzer | | | Configuration | | | Operating Modes | | | Configuration Schemes | | | Configuring Stratix II FPGAs with JRunner | | | Programming Serial Configuration Devices with SRunner | 3_10 | | Configuring Stratix II FPGAs with the MicroBlaster Driver | | | PLL Reconfiguration | | | Temperature Sensing Diode (TSD) | | | Automated Single Event Upset (SEU) Detection | 3_13 | | Custom-Built Circuitry | | | Software Interface | | | Document Revision History | | | Document Revision History | 0 14 | | Chapter 4. Hot Socketing & Power-On Reset | | | Stratix II | | | Hot-Socketing Specifications | 4–1 | | Devices Can Be Driven Before Power-Up | | | I/O Pins Remain Tri-Stated During Power-Up | | | Signal Pins Do Not Drive the V _{CCIO} , V _{CCINT} or V _{CCPD} Power Supplies | | | Hot Socketing Feature Implementation in Stratix II Devices | | | Power-On Reset Circuitry | | | Document Revision History | | | Chapter 5. DC & Switching Characteristics | | | Operating Conditions | 5.1 | | Absolute Maximum Ratings | | | | | | Recommended Operating Conditions | | | | | | I/O Standard Specifications | | | Bus Hold Specifications On-Chip Termination Specifications | | | * | | | Pin Capacitance | | | Power Consumption | 5–20 | | Timing Model | 5–20 | |---|------| | Preliminary & Final Timing | 5–20 | | I/O Timing Measurement Methodology | | | Performance | | | Internal Timing Parameters | 5–34 | | Stratix II Clock Timing Parameters | 5–41 | | Clock Network Skew Adders | 5–50 | | IOE Programmable Delay | 5–51 | | Default Capacitive Loading of Different I/O Standards | 5–52 | | I/O Delays | | | Maximum Input & Output Clock Toggle Rate | 5–66 | | Duty Cycle Distortion | 5–77 | | DCD Measurement Techniques | 5–78 | | High-Speed I/O Specifications | 5–87 | | PLL Timing Specifications | 5–91 | | External Memory Interface Specifications | 5–94 | | JTAG Timing Specifications | 5–96 | | Document Revision History | 5–97 | | Chapter 6. Reference & Ordering Information | | | Software | | | Device Pin-Outs | | | Ordering Information | | | Document Revision History | 6–2 | # Section I. Stratix II Device Family Data Sheet This section provides the data sheet specifications for Stratix[®] II devices. This section contains feature definitions of the internal architecture, configuration and JTAG boundary-scan testing information, DC operating conditions, AC timing parameters, a reference to power consumption, and ordering information for Stratix II devices. This section contains the following chapters: - Chapter 1, Introduction - Chapter 2, Stratix II Architecture - Chapter 3, Configuration & Testing - Chapter 4, Hot Socketing & Power-On Reset - Chapter 5, DC & Switching Characteristics - Chapter 6, Reference & Ordering Information ### **Revision History** Refer to each chapter for its own specific revision history. For information on when each chapter was updated, refer to the Chapter Revision Dates section, which appears in the full handbook. Altera Corporation Section I–1 Stratix II devices are available in up to three speed grades, -3, -4, and -5, with -3 being the fastest. Table 1-5 shows Stratix II device speed-grade offerings. | Table 1-5 | Table 1–5. Stratix II Device Speed Grades | | | | | | | | | | |-----------|---|----------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------|------------------------------|--|--|--| | Device | Temperature
Grade | 484-Pin
FineLine
BGA | 484-Pin
Hybrid
FineLine
BGA | 672-Pin
FineLine
BGA | 780-Pin
FineLine
BGA | 1,020-Pin
FineLine
BGA | 1,508-Pin
FineLine
BGA | | | | | EP2S15 | Commercial | -3, -4, -5 | | -3, -4, -5 | | | | | | | | | Industrial | -4 | | -4 | | | | | | | | EP2S30 | Commercial | -3, -4, -5 | | -3, -4, -5 | | | | | | | | | Industrial | -4 | | -4 | | | | | | | | EP2S60 | Commercial | -3, -4, -5 | | -3, -4, -5 | | -3, -4, -5 | | | | | | | Industrial | -4 | | -4 | | -4 | | | | | | EP2S90 | Commercial | | -4, -5 | | -4, -5 | -3, -4, -5 | -3, -4, -5 | | | | | | Industrial | | | | | -4 | -4 | | | | | EP2S130 | Commercial | | | | -4, -5 | -3, -4, -5 | -3, -4, -5 | | | | | | Industrial | | | | | -4 | -4 | | | | | EP2S180 | Commercial | | | | _ | -3, -4, -5 | -3, -4, -5 | | | | | | Industrial | | | | | -4 | -4 | | | | ## 2. Stratix II Architecture SII51002-4.3 ## Functional Description Stratix[®] II devices contain a two-dimensional row- and column-based architecture to implement custom logic. A series of column and row interconnects of varying length and speed provides signal interconnects between logic array blocks (LABs), memory block structures (M512 RAM, M4K RAM, and M-RAM blocks), and digital signal processing (DSP) blocks. Each LAB consists of eight adaptive logic modules (ALMs). An ALM is the Stratix II device family's basic building block of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 500 MHz. M512 blocks are grouped into columns across the device in between certain LABs. M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 550 MHz. These blocks are grouped into columns across the device in between certain LABs. M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 420 MHz. Several M-RAM blocks are located individually in the device's logic array. DSP blocks can implement up to either eight full-precision 9×9 -bit multipliers, four full-precision 18×18 -bit multipliers, or one full-precision 36×36 -bit multiplier with add or subtract features. The DSP blocks support Q1.15 format rounding and saturation in the multiplier and accumulator stages. These blocks also contain shift registers for digital signal processing applications, including finite impulse response (FIR) and infinite impulse response (IIR) filters. DSP blocks are grouped into columns across the device and operate at up to 450 MHz. Figure 2-6. Stratix II ALM Details For the packing of two five-input functions into one ALM, the functions must have at least two common inputs. The common inputs are dataa and datab. The combination of a four-input function with a five-input function requires one common input (either dataa or datab). In the case of implementing two six-input functions in one ALM, four inputs must be shared and the combinational function must be the same. For example, a 4×2 crossbar switch (two 4-to-1 multiplexers with common inputs and unique select lines) can be implemented in one ALM, as shown in Figure 2–8. The shared inputs are dataa, datab, datac, and datad, while the unique select lines are datae0 and dataf0 for function0, and datae1 and dataf1 for function1. This crossbar switch consumes four LUTs in a four-input LUT-based architecture. Figure 2-8. 4 × 2 Crossbar Switch Example In a sparsely used device, functions that could be placed into one ALM may be implemented in separate ALMs. The Quartus II Compiler spreads a design out to achieve the best possible performance. As a device begins to fill up, the Quartus II software automatically utilizes the full potential of the Stratix II ALM. The Quartus II Compiler automatically searches for functions of common inputs or completely independent functions to be placed into one ALM and to make efficient use of the device resources. In addition, you can manually control resource usage by setting location assignments. Any six-input function can be implemented utilizing inputs dataa, datab, datac, datad, and either datae0 and dataf0 or datae1 and dataf1. If datae0 and dataf0 are utilized, the output is driven to register0, and/or register0 is bypassed and the data drives out to the interconnect using the top set of output drivers (see Figure 2–9). If | Memory Feature | M512 RAM Block
(32 × 18 Bits) | M4K RAM Block
(128 × 36 Bits) | M-RAM Block
(4K × 144 Bits) | | |---|---|--|--|--| | Simple dual-port memory mixed width support | ✓ | ✓ | ✓ | | | True dual-port memory mixed width support | | ~ | ✓ | | | Power-up conditions | Outputs cleared | Outputs cleared | Outputs unknown | | | Register clears Output registers | | Output registers | Output registers | | | Mixed-port read-during-write | Unknown output/old data | Unknown output/old data | Unknown output | | | Configurations | 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18 | 4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36 | 64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144 | | #### Notes to Table 2-3: ### **Memory Block Size** TriMatrix memory provides three different memory sizes for efficient application support. The Quartus II software automatically partitions the user-defined memory into the embedded memory blocks using the most efficient size combinations. You can also manually assign the memory to a specific block size or a mixture of block sizes. When applied to input registers, the asynchronous clear signal for the TriMatrix embedded memory immediately clears the input registers. However, the output of the memory block does not show the effects until the next clock edge. When applied to output registers, the asynchronous clear signal clears the output registers and the effects are seen immediately. ⁽¹⁾ The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM function using a dual-port RAM bock. The Stratix II device must write to the dual-port memory once and then disable the write-enable ports afterwards. Figure 2-20. M512 RAM Block LAB Row Interface #### M4K RAM Blocks The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes: - True dual-port RAM - Simple dual-port RAM - Single-port RAM - FIFO - ROM - Shift register When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents. #### **Modes of Operation** The adder, subtractor, and accumulate functions of a DSP block have four modes of operation: - Simple multiplier - Multiply-accumulator - Two-multipliers adder - Four-multipliers adder Table 2–6 shows the different number of multipliers possible in each DSP block mode according to size. These modes allow the DSP blocks to implement numerous applications for DSP including FFTs, complex FIR, FIR, and 2D FIR filters, equalizers, IIR, correlators, matrix multiplication and many other functions. The DSP blocks also support mixed modes and mixed multiplier sizes in the same block. For example, half of one DSP block can implement one 18×18 -bit multiplier in multiply-accumulator mode, while the other half of the DSP block implements four 9×9 -bit multipliers in simple multiplier mode. | Table 2–6. Multiplier Size & Configurations per DSP Block | | | | | | | | |---|--|---|--|--|--|--|--| | DSP Block Mode | 9 × 9 | 18 × 18 | 36 × 36 | | | | | | Multiplier | Eight multipliers with eight product outputs | Four multipliers with four product outputs | One multiplier with one product output | | | | | | Multiply-accumulator | - | Two 52-bit multiply-
accumulate blocks | - | | | | | | Two-multipliers adder | Four two-multiplier adder (two 9 × 9 complex multiply) | Two two-multiplier adder (one 18 × 18 complex multiply) | - | | | | | | Four-multipliers adder | Two four-multiplier adder | One four-multiplier adder | - | | | | | #### **DSP Block Interface** Stratix II device DSP block input registers can generate a shift register that can cascade down in the same DSP block column. Dedicated connections between DSP blocks provide fast connections between the shift register inputs to cascade the shift register chains. You can cascade registers within multiple DSP blocks for 9 \times 9- or 18 \times 18-bit FIR filters larger than four taps, with additional adder stages implemented in ALMs. If the DSP block is configured as 36 \times 36 bits, the adder, subtractor, or accumulator stages are implemented in ALMs. Each DSP block can route the shift register chain out of the block to cascade multiple columns of DSP blocks. The DSP block is divided into four block units that interface with four LAB rows on the left and right. Each block unit can be considered one complete 18×18 -bit multiplier with 36 inputs and 36 outputs. A local interconnect region is associated with each DSP block. Like an LAB, this interconnect region can be fed with 16 direct link interconnects from the LAB to the left or right of the DSP block in the same row. R4 and C4 routing resources can access the DSP block's local interconnect region. The outputs also work similarly to LAB outputs as well. Eighteen outputs from the DSP block can drive to the left LAB through direct link interconnects and eighteen can drive to the right LAB though direct link interconnects. All 36 outputs can drive to R4 and C4 routing interconnects. Outputs can drive right- or left-column routing. Figures 2–29 and 2–30 show the DSP block interfaces to LAB rows. DSP Block OA[17..0] R4, C4 & Direct R4, C4 & Direct OB[17..0] Link Interconnects \(\) Link Interconnects A1[17..0] B1[17..0] OC[17..0] OD[17..0] A2[17..0] B2[17..0] OE[17..0] OF[17..0] A3[17..0] B3[17..0] OG[17..0] OH[17..0] A4[17..0] B4[17..0] Figure 2-29. DSP Block Interconnect Interface global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–31 shows the 16 dedicated CLK pins driving global clock networks. Figure 2-31. Global Clocking #### Regional Clock Network There are eight regional clock networks RCLK [7..0] in each quadrant of the Stratix II device that are driven by the dedicated CLK [15..0] input pins, by PLL outputs, or by internal logic. The regional clock networks provide the lowest clock delay and skew for logic contained in a single quadrant. The CLK clock pins symmetrically drive the RCLK networks in a particular quadrant, as shown in Figure 2–32. There are 32 control and data signals that feed each row or column I/O block. These control and data signals are driven from the logic array. The row or column IOE clocks, io_clk [7..0], provide a dedicated routing resource for low-skew, high-speed clocks. I/O clocks are generated from global or regional clocks (see the "PLLs & Clock Networks" section). Figure 2–49 illustrates the signal paths through the I/O block. Figure 2-49. Signal Path through the I/O Block Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/apreset, sclr/spreset, clk_in, and clk_out. Figure 2–50 illustrates the control signal selection. For high-speed source synchronous interfaces such as POS-PHY 4, Parallel RapidIO, and HyperTransport, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix II device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for user-controlled byte boundary shifting. This simplifies designs while saving ALM resources. You can use an ALM-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment. ### **Fast PLL & Channel Layout** The receiver and transmitter channels are interleaved such that each I/O bank on the left and right side of the device has one receiver channel and one transmitter channel per LAB row. Figure 2–60 shows the fast PLL and channel layout in the EP2S15 and EP2S30 devices. Figure 2–61 shows the fast PLL and channel layout in the EP2S60 to EP2S180 devices. LVDS DPA DΡΔ LVDS Clock Clock Clock Clock Quadrant Quadrant 2 Fast Fast PLL 1 PLL 4 Fast Fast PLL 3 PLL 2 2 Quadrant Quadrant LVDS DPA DΡΔ LVDS Clock Clock Clock Clock Figure 2–60. Fast PLL & Channel Layout in the EP2S15 & EP2S30 Devices Note (1) *Note to Figure 2–60:* (1) See Table 2–21 for the number of channels each device supports. the Device & Pin Options dialog box in the Quartus II software uses a 32-bit CRC circuit to ensure data reliability and is one of the best options for mitigating SEU. You can implement the error detection CRC feature with existing circuitry in Stratix II devices, eliminating the need for external logic. For Stratix II devices, CRC is computed by the device during configuration and checked against an automatically computed CRC during normal operation. The CRC_ERROR pin reports a soft error when configuration SRAM data is corrupted, triggering device reconfiguration. #### **Custom-Built Circuitry** Dedicated circuitry is built in the Stratix II devices to perform error detection automatically. This error detection circuitry in Stratix II devices constantly checks for errors in the configuration SRAM cells while the device is in user mode. You can monitor one external pin for the error and use it to trigger a re-configuration cycle. You can select the desired time between checks by adjusting a built-in clock divider. #### **Software Interface** In the Quartus II software version 4.1 and later, you can turn on the automated error detection CRC feature in the Device & Pin Options dialog box. This dialog box allows you to enable the feature and set the internal frequency of the CRC between 400 kHz to 50 MHz. This controls the rate that the CRC circuitry verifies the internal configuration SRAM bits in the FPGA device. For more information on CRC, refer to AN 357: Error Detection Using CRC in Altera FPGA Devices. ## Document Revision History Table 3–7 shows the revision history for this chapter. | Table 3–7. Document Revision History (Part 1 of 2) | | | | | | | |--|--|--------------------|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | May 2007, v4.2 | Moved Document Revision History section to the end of the chapter. | _ | | | | | | | Updated the "Temperature Sensing Diode (TSD)" section. | _ | | | | | | Table 5- | 4. Stratix II Device DC Op | erating Conditions | (Part 2 of 2) | Note (1) | | | | |-----------------------|--|-----------------------------------|---------------|----------|---------|------|----| | Symbol | Parameter | Conditio | Minimum | Typical | Maximum | Unit | | | I _{CCI00} | V _{CCIO} supply current | V_I = ground, no | EP2S15 | | 4.0 | (3) | mA | | | (standby) | load, no toggling inputs | EP2S30 | | 4.0 | (3) | mA | | | | T _J = 25° C | EP2S60 | | 4.0 | (3) | mA | | | | | EP2S90 | | 4.0 | (3) | mA | | | | | EP2S130 | | 4.0 | (3) | mA | | | | | EP2S180 | | 4.0 | (3) | mA | | R _{CONF} (4) | Value of I/O pin pull-up | Vi = 0; V _{CCIO} = 3.3 V | 10 | 25 | 50 | kΩ | | | | resistor before and during configuration | Vi = 0; V _{CCIO} = 2.5 V | | 15 | 35 | 70 | kΩ | | | | Vi = 0; V _{CCIO} = 1.8 V | | 30 | 50 | 100 | kΩ | | | | Vi = 0; V _{CCIO} = 1.5 V | | 40 | 75 | 150 | kΩ | | | | Vi = 0; V _{CCIO} = 1.2 V | 50 | 90 | 170 | kΩ | | | | Recommended value of I/O pin external pull-down resistor before and during configuration | | | | 1 | 2 | kΩ | #### Notes to Table 5-4: - (1) Typical values are for T_A = 25°C, V_{CCINT} = 1.2 V, and V_{CCIO} = 1.5 V, 1.8 V, 2.5 V, and 3.3 V. - (2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{CCIO} settings (3.3, 2.5, 1.8, and 1.5 V). - (3) Maximum values depend on the actual T_J and design utilization. See the Excel-based PowerPlay Early Power Estimator (available at www.altera.com) or the Quartus II PowerPlay Power Analyzer feature for maximum values. See the section "Power Consumption" on page 5–20 for more information. - (4) Pin pull-up resistance values are lower if an external source drives the pin higher than V_{CCIO}. ## I/O Standard Specifications Tables 5–5 through 5–32 show the Stratix II device family I/O standard specifications. | Table 5–5. LVTTL Specifications (Part 1 of 2) | | | | | | | | | | |---|---------------------------|-----------------------------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V _{CCIO} (1) | Output supply voltage | | 3.135 | 3.465 | V | | | | | | V _{IH} | High-level input voltage | | 1.7 | 4.0 | V | | | | | | V _{IL} | Low-level input voltage | | -0.3 | 0.8 | V | | | | | | V _{OH} | High-level output voltage | I _{OH} = -4 mA (2) | 2.4 | | V | | | | | | Table 5-1 | 9. SSTL-2 Class I Specification | ons | | | | | |----------------------|---------------------------------|---------------------------------|-------------------------|-----------|-------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | ٧ | | V_{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | V | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | 3.00 | V | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} - 0.18 | ٧ | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | V | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | V _{OH} | High-level output voltage | $I_{OH} = -8.1 \text{ mA } (1)$ | V _{TT} + 0.57 | | | V | | V _{OL} | Low-level output voltage | I _{OL} = 8.1 mA (1) | | | V _{TT} – 0.57 | ٧ | #### Note to Table 5-19: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5-2 | Table 5–20. SSTL-2 Class II Specifications | | | | | | | | | | | |----------------------|--|----------------------------------|-------------------------|-----------|--------------------------|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | | V _{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | V | | | | | | | V _{TT} | Termination voltage | | V _{REF} - 0.04 | V_{REF} | V _{REF} + 0.04 | ٧ | | | | | | | V _{REF} | Reference voltage | | 1.188 | 1.250 | 1.313 | ٧ | | | | | | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.18 | | V _{CCIO} + 0.30 | ٧ | | | | | | | V _{IL} (DC) | Low-level DC input voltage | | -0.30 | | V _{REF} – 0.18 | ٧ | | | | | | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.35 | | | ٧ | | | | | | | V _{IL} (AC) | Low-level AC input voltage | | | | V _{REF} - 0.35 | ٧ | | | | | | | V _{OH} | High-level output voltage | $I_{OH} = -16.4 \text{ mA } (1)$ | V _{TT} + 0.76 | | | ٧ | | | | | | | V _{OL} | Low-level output voltage | I _{OL} = 16.4 mA (1) | | | V _{TT} – 0.76 | V | | | | | | #### Note to Table 5-20: (1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–41. M | 4K Block Internal Timing | Micropa | <i>iramete</i> | rs (Pari | t 2 of 2) | Note | (1) | | | | |-----------------------------|---|-----------------------|----------------|-----------------------|-----------|-------------------|-------|-------------------|-------|------| | Cumbal | | -3 Speed
Grade (2) | | -3 Speed
Grade (3) | | -4 Speed
Grade | | -5 Speed
Grade | | | | Symbol | Parameter | Min (4) | Max | Min (4) | Max | Min (5) | Max | Min (4) | Max | Unit | | t _{M4KDATAASU} | A port data setup time before clock | 22 | | 23 | | 25
25 | | 29 | | ps | | t _{M4KDATAAH} | A port data hold time after clock | 203 | | 213 | | 233
233 | | 272 | | ps | | t _{M4KADDRASU} | A port address setup time before clock | 22 | | 23 | | 25
25 | | 29 | | ps | | t _{M4KADDRAH} | A port address hold time after clock | 203 | | 213 | | 233
233 | | 272 | | ps | | t _{M4KDATABSU} | B port data setup time before clock | 22 | | 23 | | 25
25 | | 29 | | ps | | t _{M4KDATABH} | B port data hold time after clock | 203 | | 213 | | 233
233 | | 272 | | ps | | t _{M4KRADDRBSU} | B port address setup time before clock | 22 | | 23 | | 25
25 | | 29 | | ps | | t _{M4KRADDRBH} | B port address hold time after clock | 203 | | 213 | | 233
233 | | 272 | | ps | | t _{M4KDATACO1} | Clock-to-output delay when using output registers | 334 | 524 | 334 | 549 | 319
334 | 601 | 334 | 701 | ps | | t _{M4KDATACO2} (6) | Clock-to-output delay without output registers | 1,616 | 2,453 | 1,616 | 2,574 | 1,540
1,616 | 2,820 | 1,616 | 3,286 | ps | | t _{M4KCLKH} | Minimum clock high time | 1,250 | | 1,312 | | 1,437
1,437 | | 1,675 | | ps | | t _{M4KCLKL} | Minimum clock low time | 1,250 | | 1,312 | | 1,437
1,437 | | 1,675 | | ps | | t _{M4KCLR} | Minimum clear pulse width | 144 | | 151 | | 165
165 | | 192 | | ps | #### *Notes to Table 5–41:* - (1) F_{MAX} of M4K Block obtained using the Quartus II software does not necessarily equal to 1/TM4KRC. - (2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. - (3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. - (4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade. - (5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices. - (6) Numbers apply to unpacked memory modes, true dual-port memory modes, and simple dual-port memory modes that use locally routed or non-identical sources for the A and B port registers. | Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 7 of 8) | | | | | | | | | | |---|-------------------|------------------|----------------|------------|-----------------------|-----------------------|----------------|----------------|------| | I/O Standard | Drive
Strength | Parameter | Minimum Timing | | -3 | -3 | -4 | -5 | | | | | | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | 1.8-V
Differential
HSTL Class I | 4 mA | t _{OP} | 912 | 956 | 1608 | 1687 | 1848 | 1943 | ps | | | | t _{DIP} | 932 | 978 | 1674 | 1757 | 1924 | 2033 | ps | | | 6 mA | t _{OP} | 917 | 962 | 1595 | 1673 | 1833 | 1928 | ps | | | | t _{DIP} | 937 | 984 | 1661 | 1743 | 1909 | 2018 | ps | | | 8 mA | t _{OP} | 896 | 940 | 1586 | 1664 | 1823 | 1917 | ps | | | | t _{DIP} | 916 | 962 | 1652 | 1734 | 1899 | 2007 | ps | | | 10 mA | t _{OP} | 900 | 944 | 1591 | 1669 | 1828 | 1923 | ps | | | | t _{DIP} | 920 | 966 | 1657 | 1739 | 1904 | 2013 | ps | | | 12 mA | t _{OP} | 892 | 936 | 1585 | 1663 | 1821 | 1916 | ps | | | | t _{DIP} | 912 | 958 | 1651 | 1733 | 1897 | 2006 | ps | | 1.8-V
Differential
HSTL Class II | 16 mA | t _{OP} | 877 | 919 | 1385 | 1453 | 1591 | 1680 | ps | | | | t _{DIP} | 897 | 941 | 1451 | 1523 | 1667 | 1770 | ps | | | 18 mA | t _{OP} | 879 | 921 | 1394 | 1462 | 1602 | 1691 | ps | | | | t _{DIP} | 899 | 943 | 1460 | 1532 | 1678 | 1781 | ps | | | 20 mA | t _{OP} | 879 | 921 | 1402 | 1471 | 1611 | 1700 | ps | | | | t _{DIP} | 899 | 943 | 1468 | 1541 | 1687 | 1790 | ps | | 1.5-V
Differential
HSTL Class I | 4 mA | t _{OP} | 912 | 956 | 1607 | 1686 | 1847 | 1942 | ps | | | | t _{DIP} | 932 | 978 | 1673 | 1756 | 1923 | 2032 | ps | | | 6 mA | t _{OP} | 917 | 961 | 1588 | 1666 | 1825 | 1920 | ps | | | | t _{DIP} | 937 | 983 | 1654 | 1736 | 1901 | 2010 | ps | | | 8 mA | t _{OP} | 899 | 943 | 1590 | 1668 | 1827 | 1922 | ps | | | | t _{DIP} | 919 | 965 | 1656 | 1738 | 1903 | 2012 | ps | | | 10 mA | t _{OP} | 900 | 943 | 1592 | 1670 | 1829 | 1924 | ps | | | | t _{DIP} | 920 | 965 | 1658 | 1740 | 1905 | 2014 | ps | | | 12 mA | t _{OP} | 893 | 937 | 1590 | 1668 | 1827 | 1922 | | | | | t _{DIP} | 913 | 959 | 1656 | 1738 | 1903 | 2012 | |