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Section I. Stratix II Device
Family Data Sheet

This section provides the data sheet specifications for Stratix® II devices. 
This section contains feature definitions of the internal architecture, 
configuration and JTAG boundary-scan testing information, DC 
operating conditions, AC timing parameters, a reference to power 
consumption, and ordering information for Stratix II devices. 

This section contains the following chapters:

■ Chapter 1, Introduction

■ Chapter 2, Stratix II Architecture

■ Chapter 3, Configuration & Testing

■ Chapter 4, Hot Socketing & Power-On Reset

■ Chapter 5, DC & Switching Characteristics

■ Chapter 6, Reference & Ordering Information

Revision History Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the full handbook.
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Introduction

Stratix II devices are available in space-saving FineLine BGA® packages 
(see Tables 1–2 and 1–3). 

All Stratix II devices support vertical migration within the same package 
(for example, you can migrate between the EP2S15, EP2S30, and EP2S60 
devices in the 672-pin FineLine BGA package). Vertical migration means 
that you can migrate to devices whose dedicated pins, configuration pins, 
and power pins are the same for a given package across device densities. 

To ensure that a board layout supports migratable densities within one 
package offering, enable the applicable vertical migration path within the 
Quartus II software (Assignments menu > Device > Migration Devices). 

Table 1–2.  Stratix II Package Options & I/O Pin Counts Notes (1), (2)

Device 484-Pin 
FineLine BGA

484-Pin 
Hybrid 

FineLine 
BGA

672-Pin 
FineLine 

BGA

780-Pin 
FineLine 

BGA

1,020-Pin 
FineLine BGA

1,508-Pin 
FineLine BGA

EP2S15 342 366

EP2S30 342 500

EP2S60 (3) 334 492 718

EP2S90 (3) 308 534 758 902

EP2S130 (3) 534 742 1,126

EP2S180 (3) 742 1,170

Notes to Table 1–2:
(1) All I/O pin counts include eight dedicated clock input pins (clk1p, clk1n, clk3p, clk3n, clk9p, clk9n, 

clk11p, and clk11n) that can be used for data inputs.
(2) The Quartus II software I/O pin counts include one additional pin, PLL_ENA, which is not available as general-

purpose I/O pins. The PLL_ENA pin can only be used to enable the PLLs within the device.
(3) The I/O pin counts for the EP2S60, EP2S90, EP2S130, and EP2S180 devices in the 1020-pin and 1508-pin packages 

include eight dedicated fast PLL clock inputs (FPLL7CLKp/n, FPLL8CLKp/n, FPLL9CLKp/n, and 
FPLL10CLKp/n) that can be used for data inputs.

Table 1–3.  Stratix II FineLine BGA Package Sizes

Dimension 484 Pin 484-Pin 
Hybrid 672 Pin 780 Pin 1,020 Pin 1,508 Pin

Pitch (mm) 1.00 1.00 1.00 1.00 1.00 1.00

Area (mm2) 529 729 729 841 1,089 1,600

Length × width 
(mm × mm)

23 × 23 27 × 27 27 × 27 29 × 29 33 × 33 40 × 40
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Adaptive Logic Modules

signal with asynchronous load data input tied high. When the 
asynchronous load/preset signal is used, the labclkena0 signal is no 
longer available.

The LAB row clocks [5..0] and LAB local interconnect generate the 
LAB-wide control signals. The MultiTrackTM interconnect's inherent low 
skew allows clock and control signal distribution in addition to data. 
Figure 2–4 shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals
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The basic building block of logic in the Stratix II architecture, the adaptive 
logic module (ALM), provides advanced features with efficient logic 
utilization. Each ALM contains a variety of look-up table (LUT)-based 
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One ALM contains two programmable registers. Each register has data, 
clock, clock enable, synchronous and asynchronous clear, asynchronous 
load data, and synchronous and asynchronous load/preset inputs. 
Global signals, general-purpose I/O pins, or any internal logic can drive 
the register's clock and clear control signals. Either general-purpose I/O 
pins or internal logic can drive the clock enable, preset, asynchronous 
load, and asynchronous load data. The asynchronous load data input 
comes from the datae or dataf input of the ALM, which are the same 
inputs that can be used for register packing. For combinational functions, 
the register is bypassed and the output of the LUT drives directly to the 
outputs of the ALM.

Each ALM has two sets of outputs that drive the local, row, and column 
routing resources. The LUT, adder, or register output can drive these 
output drivers independently (see Figure 2–6). For each set of output 
drivers, two ALM outputs can drive column, row, or direct link routing 
connections, and one of these ALM outputs can also drive local 
interconnect resources. This allows the LUT or adder to drive one output 
while the register drives another output. This feature, called register 
packing, improves device utilization because the device can use the 
register and the combinational logic for unrelated functions. Another 
special packing mode allows the register output to feed back into the LUT 
of the same ALM so that the register is packed with its own fan-out LUT. 
This provides another mechanism for improved fitting. The ALM can also 
drive out registered and unregistered versions of the LUT or adder 
output.

f See the Performance & Logic Efficiency Analysis of Stratix II Devices White 
Paper for more information on the efficiencies of the Stratix II ALM and 
comparisons with previous architectures.

ALM Operating Modes

The Stratix II ALM can operate in one of the following modes:

■ Normal mode
■ Extended LUT mode
■ Arithmetic mode
■ Shared arithmetic mode

Each mode uses ALM resources differently. In each mode, eleven 
available inputs to the ALM--the eight data inputs from the LAB local 
interconnect; carry-in from the previous ALM or LAB; the shared 
arithmetic chain connection from the previous ALM or LAB; and the 
register chain connection--are directed to different destinations to 
implement the desired logic function. LAB-wide signals provide clock, 
asynchronous clear, asynchronous preset/load, synchronous clear, 
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The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 (8 ALMs in 
arithmetic or shared arithmetic mode) by linking LABs together 
automatically. For enhanced fitting, a long carry chain runs vertically 
allowing fast horizontal connections to TriMatrix memory and DSP 
blocks. A carry chain can continue as far as a full column.

To avoid routing congestion in one small area of the device when a high 
fan-in arithmetic function is implemented, the LAB can support carry 
chains that only utilize either the top half or the bottom half of the LAB 
before connecting to the next LAB. This leaves the other half of the ALMs 
in the LAB available for implementing narrower fan-in functions in 
normal mode. Carry chains that use the top four ALMs in the first LAB 
carry into the top half of the ALMs in the next LAB within the column. 
Carry chains that use the bottom four ALMs in the first LAB carry into the 
bottom half of the ALMs in the next LAB within the column. Every other 
column of LABs is top-half bypassable, while the other LAB columns are 
bottom-half bypassable.

See the “MultiTrack Interconnect” on page 2–22 section for more 
information on carry chain interconnect.

Shared Arithmetic Mode

In shared arithmetic mode, the ALM can implement a three-input add. In 
this mode, the ALM is configured with four 4-input LUTs. Each LUT 
either computes the sum of three inputs or the carry of three inputs. The 
output of the carry computation is fed to the next adder (either to adder1 
in the same ALM or to adder0 of the next ALM in the LAB) via a 
dedicated connection called the shared arithmetic chain. This shared 
arithmetic chain can significantly improve the performance of an adder 
tree by reducing the number of summation stages required to implement 
an adder tree. Figure 2–13 shows the ALM in shared arithmetic mode.
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The M4K RAM blocks allow for different clocks on their inputs and 
outputs. Either of the two clocks feeding the block can clock M4K RAM 
block registers (renwe, address, byte enable, datain, and output registers). 
Only the output register can be bypassed. The six labclk signals or local 
interconnects can drive the control signals for the A and B ports of the 
M4K RAM block. ALMs can also control the clock_a, clock_b, 
renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b 
signals, as shown in Figure 2–21.

The R4, C4, and direct link interconnects from adjacent LABs drive the 
M4K RAM block local interconnect. The M4K RAM blocks can 
communicate with LABs on either the left or right side through these row 
resources or with LAB columns on either the right or left with the column 
resources. Up to 16 direct link input connections to the M4K RAM Block 
are possible from the left adjacent LABs and another 16 possible from the 
right adjacent LAB. M4K RAM block outputs can also connect to left and 
right LABs through direct link interconnect. Figure 2–22 shows the M4K 
RAM block to logic array interface.

Figure 2–21. M4K RAM Block Control Signals
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Digital Signal Processing Block

Digital Signal 
Processing 
Block

The most commonly used DSP functions are FIR filters, complex FIR 
filters, IIR filters, fast Fourier transform (FFT) functions, direct cosine 
transform (DCT) functions, and correlators. All of these use the multiplier 
as the fundamental building block. Additionally, some applications need 
specialized operations such as multiply-add and multiply-accumulate 
operations. Stratix II devices provide DSP blocks to meet the arithmetic 
requirements of these functions.

Each Stratix II device has from two to four columns of DSP blocks to 
efficiently implement DSP functions faster than ALM-based 
implementations. Stratix II devices have up to 24 DSP blocks per column 
(see Table 2–5). Each DSP block can be configured to support up to:

■ Eight 9 × 9-bit multipliers
■ Four 18 × 18-bit multipliers
■ One 36 × 36-bit multiplier

As indicated, the Stratix II DSP block can support one 36 × 36-bit 
multiplier in a single DSP block. This is true for any combination of 
signed, unsigned, or mixed sign multiplications.

1 This list only shows functions that can fit into a single DSP block. 
Multiple DSP blocks can support larger multiplication 
functions.



Altera Corporation 2–45
May 2007 Stratix II Device Handbook, Volume 1

Stratix II Architecture

The DSP block is divided into four block units that interface with four 
LAB rows on the left and right. Each block unit can be considered one 
complete 18 × 18-bit multiplier with 36 inputs and 36 outputs. A local 
interconnect region is associated with each DSP block. Like an LAB, this 
interconnect region can be fed with 16 direct link interconnects from the 
LAB to the left or right of the DSP block in the same row. R4 and C4 
routing resources can access the DSP block's local interconnect region. 
The outputs also work similarly to LAB outputs as well. Eighteen outputs 
from the DSP block can drive to the left LAB through direct link 
interconnects and eighteen can drive to the right LAB though direct link 
interconnects. All 36 outputs can drive to R4 and C4 routing 
interconnects. Outputs can drive right- or left-column routing. 
Figures 2–29 and 2–30 show the DSP block interfaces to LAB rows. 

Figure 2–29. DSP Block Interconnect Interface
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PLLs & Clock Networks

Figure 2–32. Regional Clocks

Dual-Regional Clock Network

A single source (CLK pin or PLL output) can generate a dual-regional 
clock by driving two regional clock network lines in adjacent quadrants 
(one from each quadrant). This allows logic that spans multiple 
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quadrant. Internal logic-array routing can also drive a dual-regional 
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The Quartus II software enables the PLLs and their features without 
requiring any external devices. Table 2–9 shows the PLLs available for 
each Stratix II device and their type.

Table 2–9. Stratix II Device PLL Availability

Device
Fast PLLs Enhanced PLLs

1 2 3 4 7 8 9 10 5 6 11 12

EP2S15 v v v v v v
EP2S30 v v v v v v
EP2S60 (1) v v v v v v v v v v v v
EP2S90 (2) v v v v v v v v v v v v
EP2S130 (3) v v v v v v v v v v v v
EP2S180 v v v v v v v v v v v v
Notes to Table 2–9:
(1) EP2S60 devices in the 1020-pin package contain 12 PLLs. EP2S60 devices in the 484-pin and 672-pin packages 

contain fast PLLs 1–4 and enhanced PLLs 5 and 6.
(2) EP2S90 devices in the 1020-pin and 1508-pin packages contain 12 PLLs. EP2S90 devices in the 484-pin and 780-pin 

packages contain fast PLLS 1–4 and enhanced PLLs 5 and 6.
(3) EP2S130 devices in the 1020-pin and 1508-pin packages contain 12PLLs. The EP2S130 device in the 780-pin package 

contains fast PLLs 1–4 and enhanced PLLs 5 and 6.
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I/O Structure

■ Output drive strength control
■ Tri-state buffers
■ Bus-hold circuitry
■ Programmable pull-up resistors
■ Programmable input and output delays
■ Open-drain outputs
■ DQ and DQS I/O pins
■ Double data rate (DDR) registers

The IOE in Stratix II devices contains a bidirectional I/O buffer, six 
registers, and a latch for a complete embedded bidirectional single data 
rate or DDR transfer. Figure 2–46 shows the Stratix II IOE structure. The 
IOE contains two input registers (plus a latch), two output registers, and 
two output enable registers. The design can use both input registers and 
the latch to capture DDR input and both output registers to drive DDR 
outputs. Additionally, the design can use the output enable (OE) register 
for fast clock-to-output enable timing. The negative edge-clocked OE 
register is used for DDR SDRAM interfacing. The Quartus II software 
automatically duplicates a single OE register that controls multiple 
output or bidirectional pins.
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Each I/O bank has its own VCCIO pins. A single device can support 
1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different 
VCCIO level independently. Each bank also has dedicated VREF pins to 
support the voltage-referenced standards (such as SSTL-2). The PLL 
banks utilize the adjacent VREF group when voltage-referenced 
standards are implemented. For example, if an SSTL input is 
implemented in PLL bank 10, the voltage level at VREFB7 is the reference 
voltage level for the SSTL input.

I/O pins that reside in PLL banks 9 through 12 are powered by the 
VCC_PLL<5, 6, 11, or 12>_OUT pins, respectively. The EP2S60F484, 
EP2S60F780, EP2S90H484, EP2S90F780, and EP2S130F780 devices do not 
support PLLs 11 and 12. Therefore, any I/O pins that reside in bank 11 are 
powered by the VCCIO3 pin, and any I/O pins that reside in bank 12 are 
powered by the VCCIO8 pin.

Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. Each bank can support one VREF voltage level. For 
example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, and 
3.3-V PCI for inputs and outputs.

On-Chip Termination

Stratix II devices provide differential (for the LVDS or HyperTransport 
technology I/O standard), series, and parallel on-chip termination to 
reduce reflections and maintain signal integrity. On-chip termination 
simplifies board design by minimizing the number of external 
termination resistors required. Termination can be placed inside the 
package, eliminating small stubs that can still lead to reflections.

Stratix II devices provide four types of termination:

■ Differential termination (RD)
■ Series termination (RS) without calibration
■ Series termination (RS) with calibration
■ Parallel termination (RT) with calibration
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January 2005, 
v2.0

● Updated the “MultiVolt I/O Interface” and “TriMatrix Memory” 
sections.

● Updated Tables 2–3, 2–17, and 2–19.

—

October 2004, 
v1.2

● Updated Tables 2–9, 2–16, 2–26, and 2–27. —

July 2004, v1.1 ● Updated note to Tables 2–9 and 2–16.
● Updated Tables 2–16, 2–17, 2–18, 2–19, and 2–20.
● Updated Figures 2–41, 2–42, and 2–57.
● Removed 3 from list of SERDES factor J.
● Updated “High-Speed Differential I/O with DPA Support” 

section.
● In “Dedicated Circuitry with DPA Support” section, removed 

XSBI and changed RapidIO to Parallel RapidIO.

—

February 2004, 
v1.0

Added document to the Stratix II Device Handbook. —

Table 2–27. Document Revision History (Part 2 of 2)

Date and 
Document 
Version

Changes Made Summary of Changes
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Configuration & Testing

you need to support configuration input voltages of 1.8 V/1.5 V, you 
should set the VCCSEL to a logic high and the VCCIO of the bank that 
contains the configuration inputs to 1.8 V/1.5 V.

f For more information on multi-volt support, including information on 
using TDO and nCEO in multi-volt systems, refer to the Stratix II 
Architecture chapter in volume 1 of the Stratix II Device Handbook.

Configuration Schemes

You can load the configuration data for a Stratix II device with one of five 
configuration schemes (see Table 3–5), chosen on the basis of the target 
application. You can use a configuration device, intelligent controller, or 
the JTAG port to configure a Stratix II device. A configuration device can 
automatically configure a Stratix II device at system power-up.

You can configure multiple Stratix II devices in any of the five 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Stratix II FPGAs offer the following:

■ Configuration data decompression to reduce configuration file 
storage

■ Design security using configuration data encryption to protect your 
designs

■ Remote system upgrades for remotely updating your Stratix II 
designs

Table 3–5 summarizes which configuration features can be used in each 
configuration scheme.

Table 3–5. Stratix II Configuration Features (Part 1 of 2)

Configuration 
Scheme Configuration Method Design Security Decompression Remote System 

Upgrade

FPP MAX II device or microprocessor and 
flash device

v (1) v (1) v

Enhanced configuration device v (2) v
AS Serial configuration device v v v (3)

PS MAX II device or microprocessor and 
flash device

v v v

Enhanced configuration device v v v
Download cable (4) v v
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IIOPIN is the current at any user I/O pin on the device. This specification 
takes into account the pin capacitance, but not board trace and external 
loading capacitance. Additional capacitance for trace, connector, and 
loading needs must be considered separately. For the AC specification, 
the peak current duration is 10 ns or less because of power-up transients. 
For more information, refer to the Hot-Socketing & Power-Sequencing 
Feature & Testing for Altera Devices white paper.

A possible concern regarding hot-socketing is the potential for latch-up. 
Latch-up can occur when electrical subsystems are hot-socketed into an 
active system. During hot-socketing, the signal pins may be connected 
and driven by the active system before the power supply can provide 
current to the device's VCC and ground planes. This condition can lead to 
latch-up and cause a low-impedance path from VCC to ground within the 
device. As a result, the device extends a large amount of current, possibly 
causing electrical damage. Nevertheless, Stratix II devices are immune to 
latch-up when hot-socketing.

Hot Socketing 
Feature 
Implementation 
in Stratix II 
Devices

The hot socketing feature turns off the output buffer during the power-up 
event (either VCCINT, VCCIO, or VCCPD supplies) or power down. The hot-
socket circuit will generate an internal HOTSCKT signal when either 
VCCINT, VCCIO, or VCCPD is below threshold voltage. The HOTSCKT signal 
will cut off the output buffer to make sure that no DC current (except for 
weak pull up leaking) leaks through the pin. When VCC ramps up very 
slowly, VCC is still relatively low even after the POR signal is released and 
the configuration is finished. The CONF_DONE, nCEO, and nSTATUS pins 
fail to respond, as the output buffer can not flip from the state set by the 
hot socketing circuit at this low VCC voltage. Therefore, the hot socketing 
circuit has been removed on these configuration pins to make sure that 
they are able to operate during configuration. It is expected behavior for 
these pins to drive out during power-up and power-down sequences.

Each I/O pin has the following circuitry shown in Figure 4–1. 
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Default Capacitive Loading of Different I/O Standards

See Table 5–71 for default capacitive loading of different I/O standards.

Table 5–70. Stratix II IOE Programmable Delay on Row Pins Note (1)

Parameter Paths Affected Available 
Settings

Minimum 
Timing (2)

-3 Speed 
Grade (3)

-4 Speed 
Grade

-5 Speed 
Grade

Min 
Offset 
(ps)

Max 
Offset 
(ps)

Min 
Offset 
(ps)

Max 
Offset 
(ps)

Min 
Offset 
(ps)

Max 
Offset 
(ps)

Min 
Offset 
(ps)

Max 
Offset 
(ps)

Input delay from 
pin to internal 
cells 

Pad to I/O 
dataout to logic 
array

8 0
0

1,697
1,782

0
0

2,876
3,020

0 3,308 0 3,853

Input delay from 
pin to input 
register 

Pad to I/O input 
register 

64 0
0

1,956
2,054

0
0

3,270
3,434

0 3,761 0 4,381 

Delay from 
output register 
to output pin 

I/O output 
register to pad 

2 0
0

316
332

0
0

525
525

0 575 0 670 

Output enable 
pin delay 

tX Z , tZ X  2 0
0

305
320

0
0

507
507

0 556 0 647

Notes to Table 5–70:
(1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the 

latest version of the Quartus II software.
(2) The first number is the minimum timing parameter for industrial devices. The second number is the minimum 

timing parameter for commercial devices.
(3) The first number applies to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. The second number 

applies to -3 speed grade EP2S130 and EP2S180 devices.

Table 5–71. Default Loading of Different I/O Standards for Stratix II (Part 1 
of 2)

I/O Standard Capacitive Load Unit 

LVTTL 0 pF 

LVCMOS 0 pF 

2.5 V 0 pF 

1.8 V 0 pF 

1.5 V 0 pF 

PCI 10 pF 

PCI-X 10 pF 

SSTL-2 Class I 0 pF 
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SSTL-18 Class I 4 mA 200 150 150 200 150 150 200 150 150

6 mA 350 250 200 350 250 200 350 250 200

8 mA 450 300 300 450 300 300 450 300 300

10 mA 500 400 400 500 400 400 500 400 400

12 mA 700 550 400 - - - 650 550 400

SSTL-18 Class II 8 mA 200 200 150 - - - 200 200 150

16 mA 400 350 350 - - - 400 350 350

18 mA 450 400 400 - - - 450 400 400

20 mA 550 500 450 - - - 550 500 450

1.8-V HSTL 
Class I

4 mA 300 300 300 300 300 300 300 300 300

6 mA 500 450 450 500 450 450 500 450 450

8 mA 650 600 600 650 600 600 650 600 600

10 mA 700 650 600 700 650 600 700 650 600

12 mA 700 700 650 700 700 650 700 700 650

1.8-V HSTL 
Class II

16 mA 500 500 450 - - - 500 500 450

18 mA 550 500 500 - - - 550 500 500

20 mA 650 550 550 - - - 550 550 550

1.5-V HSTL 
Class I

4 mA 350 300 300 350 300 300 350 300 300

6 mA 500 500 450 500 500 450 500 500 450

8 mA 700 650 600 700 650 600 700 650 600

10 mA 700 700 650 - - - 700 700 650

12 mA 700 700 700 - - - 700 700 700

1.5-V HSTL 
Class II

16 mA 600 600 550 - - - 600 600 550

18 mA 650 600 600 - - - 650 600 600

20 mA 700 650 600 - - - 700 650 600

Differential 
SSTL-2 Class I (3)

8 mA 400 300 300 400 300 300 400 300 300

12 mA 400 400 350 400 400 350 400 400 350

Differential 
SSTL-2 Class II 
(3)

16 mA 350 350 300 350 350 300 350 350 300

20 mA 400 350 350 350 350 297 400 350 350

24 mA 400 400 350 - - - 400 400 350

Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 2 of 5)  Note (1)

I/O Standard Drive 
Strength

Column I/O Pins (MHz) Row I/O Pins (MHz) Clock Outputs (MHz)

-3 -4 -5 -3 -4 -5 -3 -4 -5
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Duty Cycle 
Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a 
clock is off from its ideal position. The ideal position is when both the 
clock high time (CLKH) and the clock low time (CLKL) equal half of the 
clock period (T), as shown in Figure 5–7. DCD is the deviation of the 
non-ideal falling edge from the ideal falling edge, such as D1 for the 
falling edge A and D2 for the falling edge B (Figure 5–7). The maximum 
DCD for a clock is the larger value of D1 and D2.

3.3-V LVTTL OCT 
50 Ω

133 152 152 133 152 152 147 152 152

2.5-V LVTTL OCT 
50 Ω

207 274 274 207 274 274 235 274 274

1.8-V LVTTL OCT 
50 Ω

151 165 165 151 165 165 153 165 165

3.3-V LVCMOS OCT 
50 Ω

300 316 316 300 316 316 263 316 316

1.5-V LVCMOS OCT 
50 Ω

157 171 171 157 171 171 174 171 171

SSTL-2 Class I OCT 
50 Ω

121 134 134 121 134 134 77 134 134

SSTL-2 Class II OCT 
25 Ω

56 101 101 56 101 101 58 101 101

SSTL-18 Class I OCT 
50 Ω

100 123 123 100 123 123 106 123 123

SSTL-18 Class II OCT 
25 Ω

61 110 110 - - - 59 110 110

1.2-V HSTL (2) OCT 
50 Ω

95 - - - - - - - 95

Notes to Table 5–79:
(1) For LVDS and HyperTransport technology output on row I/O pins, the toggle rate derating factors apply to loads 

larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result. 
For a load less than or equal to 5 pF, refer to Table 5–78 for output toggle rates.

(2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4,7, and 8.
(3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.
(4) LVPECL is only supported on column clock outputs.

Table 5–79. Maximum Output Clock Toggle Rate Derating Factors (Part 5 of 5)

I/O Standard Drive 
Strength

Maximum Output Clock Toggle Rate Derating Factors (ps/pF)

Column I/O Pins Row I/O Pins Dedicated Clock Outputs

-3 -4 -5 -3 -4 -5 -3 -4 -5
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Figure 5–7. Duty Cycle Distortion

DCD expressed in absolution derivation, for example, D1 or D2 in 
Figure 5–7, is clock-period independent. DCD can also be expressed as a 
percentage, and the percentage number is clock-period dependent. DCD 
as a percentage is defined as

 (T/2 – D1) / T (the low percentage boundary) 

 (T/2 + D2) / T (the high percentage boundary)

DCD Measurement Techniques

DCD is measured at an FPGA output pin driven by registers inside the 
corresponding I/O element (IOE) block. When the output is a single data 
rate signal (non-DDIO), only one edge of the register input clock (positive 
or negative) triggers output transitions (Figure 5–8). Therefore, any DCD 
present on the input clock signal or caused by the clock input buffer or 
different input I/O standard does not transfer to the output signal.

Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs

CLKH = T/2 CLKL = T/2
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JTAG Timing 
Specifications

Figure 5–10 shows the timing requirements for the JTAG signals.

Figure 5–10. Stratix II JTAG Waveforms

Table 5–100. DQS Phase Offset Delay Per Stage Notes (1), (2), (3)

Speed Grade Min Max Unit

-3 9 14 ps

-4 9 14 ps

-5 9 15 ps

Notes to Table 5–100:
(1) The delay settings are linear.
(2) The valid settings for phase offset are -64 to +63 for frequency mode 0 and -32 to 

+31 for frequency modes 1, 2, and 3.
(3) The typical value equals the average of the minimum and maximum values.

Table 5–101. DDIO Outputs Half-Period Jitter Notes (1), (2)

Name Description Max Unit

tO U T H A L F J I T T E R Half-period jitter (PLL driving DDIO outputs) 200 ps

Notes to Table 5–101:
(1) The worst-case half period is equal to the ideal half period subtracted by the DCD 

and half-period jitter values.
(2) The half-period jitter was characterized using a PLL driving DDIO outputs.
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