Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 4548 | | Number of Logic Elements/Cells | 90960 | | Total RAM Bits | 4520488 | | Number of I/O | 758 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s90f1020c5n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Contents** | Chapter Revision Dates | vii | |---|-------------| | About this Handbook | i | | How to Contact Altera | | | Typographic Conventions | | | 2) Pographic controllerimination | | | Section I. Stratix II Device Family Data Shee | | | Revision History | Section I–1 | | Chapter 1. Introduction | | | Introduction | 1_1 | | Features | | | Document Revision History | | | , | | | Chapter 2. Stratix II Architecture | | | Functional Description | 2–1 | | Logic Array Blocks | | | LAB Interconnects | | | LAB Control Signals | | | Adaptive Logic Modules | | | ALM Operating Modes | | | Register Chain | | | Clear & Preset Logic Control | | | MultiTrack Interconnect | | | TriMatrix Memory | 2–28 | | Memory Block Size | | | Digital Signal Processing Block | | | Modes of Operation | | | DSP Block Interface | 2–44 | | PLLs & Clock Networks | | | Global & Hierarchical Clocking | | | Enhanced & Fast PLLs | | | Enhanced PLLs | | | Fast PLLs | | | I/O Structure | 2–69 | | Double Data Rate I/O Pins | | | External RAM Interfacing | | | Programmable Drive Strength | | synchronous load, and clock enable control for the register. These LAB-wide signals are available in all ALM modes. See the "LAB Control Signals" section for more information on the LAB-wide control signals. The Quartus II software and supported third-party synthesis tools, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically choose the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which ALM operating mode to use for optimal performance. ### Normal Mode The normal mode is suitable for general logic applications and combinational functions. In this mode, up to eight data inputs from the LAB local interconnect are inputs to the combinational logic. The normal mode allows two functions to be implemented in one Stratix II ALM, or an ALM to implement a single function of up to six inputs. The ALM can support certain combinations of completely independent functions and various combinations of functions which have common inputs. Figure 2–7 shows the supported LUT combinations in normal mode. Figure 2-22. M4K RAM Block LAB Row Interface ### M-RAM Block The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes: - True dual-port RAM - Simple dual-port RAM - Single-port RAM - FIFO You cannot use an initialization file to initialize the contents of an M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed. global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–31 shows the 16 dedicated CLK pins driving global clock networks. Figure 2-31. Global Clocking ## Regional Clock Network There are eight regional clock networks RCLK [7..0] in each quadrant of the Stratix II device that are driven by the dedicated CLK [15..0] input pins, by PLL outputs, or by internal logic. The regional clock networks provide the lowest clock delay and skew for logic contained in a single quadrant. The CLK clock pins symmetrically drive the RCLK networks in a particular quadrant, as shown in Figure 2–32. Figure 2-32. Regional Clocks ## Dual-Regional Clock Network A single source (CLK pin or PLL output) can generate a dual-regional clock by driving two regional clock network lines in adjacent quadrants (one from each quadrant). This allows logic that spans multiple quadrants to utilize the same low skew clock. The routing of this clock signal on an entire side has approximately the same speed but slightly higher clock skew when compared with a clock signal that drives a single quadrant. Internal logic-array routing can also drive a dual-regional clock. Clock pins and enhanced PLL outputs on the top and bottom can drive horizontal dual-regional clocks. Clock pins and fast PLL outputs on the left and right can drive vertical dual-regional clocks, as shown in Figure 2–33. Corner PLLs cannot drive dual-regional clocks. Figure 2–51 shows the IOE in bidirectional configuration. Figure 2–51. Stratix II IOE in Bidirectional I/O Configuration Notes to Figure 2-51: - (1) All input signals to the IOE can be inverted at the IOE. - (2) The optional PCI clamp is only available on column I/O pins. Table 2–15 shows the possible settings for the I/O standards with drive strength control. | Table 2–15. Programmable Drive Strength Note (1) | | | | | | |--|---|--|--|--|--| | I/O Standard | I _{OH} / I _{OL} Current Strength
Setting (mA) for Column
I/O Pins | I _{OH} / I _{OL} Current Strength
Setting (mA) for Row I/O
Pins | | | | | 3.3-V LVTTL | 24, 20, 16, 12, 8, 4 | 12, 8, 4 | | | | | 3.3-V LVCMOS | 24, 20, 16, 12, 8, 4 | 8, 4 | | | | | 2.5-V LVTTL/LVCMOS | 16, 12, 8, 4 | 12, 8, 4 | | | | | 1.8-V LVTTL/LVCMOS | 12, 10, 8, 6, 4, 2 | 8, 6, 4, 2 | | | | | 1.5-V LVCMOS | 8, 6, 4, 2 | 4, 2 | | | | | SSTL-2 Class I | 12, 8 | 12, 8 | | | | | SSTL-2 Class II | 24, 20, 16 | 16 | | | | | SSTL-18 Class I | 12, 10, 8, 6, 4 | 10, 8, 6, 4 | | | | | SSTL-18 Class II | 20, 18, 16, 8 | - | | | | | HSTL-18 Class I | 12, 10, 8, 6, 4 | 12, 10, 8, 6, 4 | | | | | HSTL-18 Class II | 20, 18, 16 | - | | | | | HSTL-15 Class I | 12, 10, 8, 6, 4 | 8, 6, 4 | | | | | HSTL-15 Class II | 20, 18, 16 | - | | | | *Note to Table 2–15:* # **Open-Drain Output** Stratix II devices provide an optional open-drain (equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write-enable signals) that can be asserted by any of several devices. ### **Bus Hold** Each Stratix II device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can weakly hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, you do not need an external pull-up or pull-down resistor to hold a signal level when the bus is tri-stated. The Quartus II software default current setting is the maximum setting for each I/O standard. | Table 2–16. Stratix II Supported I/O Standards (Part 2 of 2) | | | | | | |--|--------------------|--|---|--|--| | I/O Standard | Туре | Input Reference
Voltage (V _{REF}) (V) | Output Supply
Voltage (V _{CCIO}) (V) | Board Termination Voltage (V_{TT}) (V) | | | SSTL-2 Class I and II | Voltage-referenced | 1.25 | 2.5 | 1.25 | | #### Notes to Table 2–16: - (1) This I/O standard is only available on input and output column clock pins. - (2) This I/O standard is only available on input clock pins and DQS pins in I/O banks 3, 4, 7, and 8, and output clock pins in I/O banks 9,10, 11, and 12. - (3) V_{CCIO} is 3.3 V when using this I/O standard in input and output column clock pins (in I/O banks 9, 10, 11, and 12). The clock input pins supporting LVDS on banks 3, 4, 7, and 8 use V_{CCINT} for LVDS input operations and have no dependency on the V_{CCIO} level of the bank. - (4) 1.2-V HSTL is only supported in I/O banks 4,7, and 8. For more information on I/O standards supported by Stratix II I/O banks, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. Stratix II devices contain eight I/O banks and four enhanced PLL external clock output banks, as shown in Figure 2–57. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS and HyperTransport inputs and outputs. These banks support all Stratix II I/O standards except PCI or PCI-X I/O pins, and SSTL-18 Class II and HSTL outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, enhanced PLL external clock output banks allow clock output capabilities such as differential support for SSTL and HSTL. | Table 2–19. Board Design Recommendations for nCEO | | | | | | | | |--|---|---------------------------|---------------------------|---------------------------|---------------------------|--|--| | nCF Innut Buffer Bower in I/O | Stratix II nCEO V _{CCIO} Voltage Level in I/O Bank 7 | | | | | | | | nCE Input Buffer Power in I/O
Bank 3 | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CC10} = 1.8 V | V _{CC10} = 1.5 V | V _{CCIO} = 1.2 V | | | | VCCSEL high (V _{CCIO} Bank 3 = 1.5 V) | √ (1), (2) | ✓ (3), (4) | √ (5) | ✓ | ✓ | | | | VCCSEL high (V _{CCIO} Bank 3 = 1.8 V) | √ (1), (2) | ✓ (3), (4) | ✓ | ✓ | Level shifter required | | | | VCCSEL low (nCE Powered by V _{CCPD} = 3.3V) | √ | √ (4) | √ (6) | Level shifter required | Level shifter required | | | #### Notes to Table 2-19: - (1) Input buffer is 3.3-V tolerant. - (2) The nCEO output buffer meets V_{OH} (MIN) = 2.4 V. - (3) Input buffer is 2.5-V tolerant. - (4) The nCEO output buffer meets V_{OH} (MIN) = 2.0 V. - (5) Input buffer is 1.8-V tolerant. - (6) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal. For JTAG chains, the TDO pin of the first device drives the TDI pin of the second device in the chain. The V_{CCSEL} input on JTAG input I/O cells (TCK, TMS, TDI, and TRST) is internally hardwired to GND selecting the 3.3-V/2.5-V input buffer powered by V_{CCPD} . The ideal case is to have the V_{CCIO} of the TDO bank from the first device to match the V_{CCSEL} settings for TDI on the second device, but that may not be possible depending on the application. Table 2–20 contains board design recommendations to ensure proper JTAG chain operation. | Table 2–20. Supported TDO/TDI Voltage Combinations (Part 1 of 2) | | | | | | | |--|------------------------------------|--|---------------------------|---------------------------|---------------------------|---------------------------| | Dovino | TDI Input | Stratix II TDO V _{CC10} Voltage Level in I/O Bank 4 | | | | | | Device | Buffer Power | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CC10} = 1.8 V | V _{CC10} = 1.5 V | V _{CC10} = 1.2 V | | Stratix II | Always
V _{CCPD} (3.3V) | √ (1) | √ (2) | √ (3) | Level shifter required | Level shifter required | | Davies | TDI Input | Stratix II TDO V _{CC10} Voltage Level in I/O Bank 4 | | | | | |----------------|--------------|--|---------------------------|---------------------------|---------------------------|---------------------------| | Device | Buffer Power | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CCIO} = 1.8 V | V _{CC10} = 1.5 V | V _{CCIO} = 1.2 V | | Non-Stratix II | VCC = 3.3 V | √ (1) | √ (2) | √ (3) | Level shifter required | Level shifter required | | | VCC = 2.5 V | ✓ (1), (4) | √ (2) | √ (3) | Level shifter required | Level shifter required | | | VCC = 1.8 V | ✓ (1), (4) | ✓ (2), (5) | ~ | Level shifter required | Level shifter required | | | VCC = 1.5 V | √ (1), (4) | √ (2), (5) | √ (6) | ✓ | ✓ | Notes to Table 2-20: - (1) The TDO output buffer meets V_{OH} (MIN) = 2.4 V. - (2) The TDO output buffer meets V_{OH} (MIN) = 2.0 V. - (3) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal. - (4) Input buffer must be 3.3-V tolerant. - (5) Input buffer must be 2.5-V tolerant. - (6) Input buffer must be 1.8-V tolerant. # High-Speed Differential I/O with DPA Support Stratix II devices contain dedicated circuitry for supporting differential standards at speeds up to 1 Gbps. The LVDS and HyperTransport differential I/O standards are supported in the Stratix II device. In addition, the LVPECL I/O standard is supported on input and output clock pins on the top and bottom I/O banks. The high-speed differential I/O circuitry supports the following high speed I/O interconnect standards and applications: - SPI-4 Phase 2 (POS-PHY Level 4) - SFI-4 - Parallel RapidIO - HyperTransport technology There are four dedicated high-speed PLLs in the EP2S15 to EP2S30 devices and eight dedicated high-speed PLLs in the EP2S60 to EP2S180 devices to multiply reference clocks and drive high-speed differential SERDES channels. Tables 2–21 through 2–26 show the number of channels that each fast PLL can clock in each of the Stratix II devices. In Tables 2–21 through 2–26 the first row for each transmitter or receiver provides the number of channels driven directly by the PLL. The second row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center PLL. For example, in the 484-pin FineLine BGA EP2S15 device, PLL 1 can drive a maximum of 10 transmitter channels in I/O bank 1 or a maximum of 19 transmitter channels in I/O banks 1 and 2. The Quartus II software may also merge receiver and transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels. | Table 2–21. EP2S15 Device Differential Channels Note (1) | | | | | | | | |--|--------------|----------|-------|------------------|-------|-------|--| | Dookogo | Transmitter/ | Total | | Center Fast PLLs | | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | | | 484-pin FineLine BGA | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | | | | | (3) | 19 | 19 | 19 | 19 | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | | | | | (3) | 21 | 21 | 21 | 21 | | | 672-pin FineLine BGA | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | | | | | (3) | 19 | 19 | 19 | 19 | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | | | | | (3) | 21 | 21 | 21 | 21 | | | Table 2–22. EP2S30 Device Differential Channels Note (1) | | | | | | | | |--|--------------|----------|-------|------------------|-------|-------|--| | Dookogo | Transmitter/ | Total | | Center Fast PLLs | | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | | | 484-pin FineLine BGA | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | | | | | (3) | 19 | 19 | 19 | 19 | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | | | | | (3) | 21 | 21 | 21 | 21 | | | 672-pin FineLine BGA | Transmitter | 58 (2) | 16 | 13 | 13 | 16 | | | | | (3) | 29 | 29 | 29 | 29 | | | | Receiver | 62 (2) | 17 | 14 | 14 | 17 | | | | | (3) | 31 | 31 | 31 | 31 | | The PLL_ENA pin and the configuration input pins (Table 3–4) have a dual buffer design: a 3.3-V/2.5-V input buffer and a 1.8-V/1.5-V input buffer. The VCCSEL input pin selects which input buffer is used. The 3.3-V/2.5-V input buffer is powered by $V_{CCPD_{\rm c}}$ while the 1.8-V/1.5-V input buffer is powered by $V_{\rm CCIO}$. Table 3–4 shows the pins affected by VCCSEL. | Table 3–4. Pins Ai | fected by the Voltage Level a | t VCCSEL | |-----------------------------------|--|---| | Pin | VCCSEL = LOW (connected to GND) | | | nSTATUS (when used as an input) | | | | nCONFIG | | | | CONF_DONE (when used as an input) | | | | DATA[70] | | | | nCE | | | | DCLK (when used as an input) | 3.3/2.5-V input buffer is | 1.8/1.5-V input buffer is selected. Input buffer is | | CS | selected. Input buffer is powered by V _{CCPD} . | powered by V _{CCIO} of the I/O | | nWS | , 5015 | bank. | | nRS | | | | nCS | | | | CLKUSR | | | | DEV_OE | | | | DEV_CLRn | | | | RUnLU | | | | PLL_ENA | | | VCCSEL is sampled during power-up. Therefore, the VCCSEL setting cannot change on the fly or during a reconfiguration. The VCCSEL input buffer is powered by V_{CCINT} and must be hardwired to V_{CCPD} or ground. A logic high VCCSEL connection selects the 1.8-V/1.5-V input buffer, and a logic low selects the 3.3-V/2.5-V input buffer. VCCSEL should be set to comply with the logic levels driven out of the configuration device or MAX^{\otimes} II/microprocessor. If you need to support configuration input voltages of 3.3 V/2.5 V, you should set the VCCSEL to a logic low; you can set the V_{CCIO} of the I/O bank that contains the configuration inputs to any supported voltage. If | Table 5–5. LVTTL Specifications (Part 2 of 2) | | | | | | | | |---|--------------------------|----------------------------|---------|---------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | V_{OL} | Low-level output voltage | I _{OL} = 4 mA (2) | | 0.45 | V | | | #### Notes to Tables 5-5: - Stratix II devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B. - (2) This specification is supported across all the programmable drive strength settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–6. LVCMOS Specifications | | | | | | | | | |----------------------------------|---------------------------|--|-------------------------|---------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V _{CCIO} (1) | Output supply voltage | | 3.135 | 3.465 | V | | | | | V _{IH} | High-level input voltage | | 1.7 | 4.0 | ٧ | | | | | V _{IL} | Low-level input voltage | | -0.3 | 0.8 | V | | | | | V _{OH} | High-level output voltage | $V_{CCIO} = 3.0,$ $I_{OH} = -0.1 \text{ mA } (2)$ | V _{CCIO} - 0.2 | | ٧ | | | | | V _{OL} | Low-level output voltage | V _{CCIO} = 3.0,
I _{OL} = 0.1 mA (2) | | 0.2 | ٧ | | | | #### Notes to Table 5-6: - (1) Stratix II devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B. - (2) This specification is supported across all the programmable drive strength available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–7. 2.5-V I/O Specifications | | | | | | | | | | |-------------------------------------|---------------------------|----------------------------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V _{CCIO} (1) | Output supply voltage | | 2.375 | 2.625 | V | | | | | | V _{IH} | High-level input voltage | | 1.7 | 4.0 | ٧ | | | | | | V _{IL} | Low-level input voltage | | -0.3 | 0.7 | V | | | | | | V _{OH} | High-level output voltage | I _{OH} = -1mA (2) | 2.0 | | V | | | | | | V _{OL} | Low-level output voltage | I _{OL} = 1 mA (2) | | 0.4 | V | | | | | #### *Notes to Table 5–7:* - (1) Stratix II devices V_{CCIO} voltage level support of $2.5 \pm .5\%$ is narrower than defined in the Normal Range of the EIA/JEDEC standard. - (2) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |----------------------|-----------------------------|--------------------------------|-------------------------|---------|------------------------|------| | V _{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | V | | V_{REF} | Input reference voltage | | 0.85 | 0.90 | 0.95 | ٧ | | V_{TT} | Termination voltage | | 0.85 | 0.90 | 0.95 | V | | V _{IH} (DC) | DC high-level input voltage | | V _{REF} + 0.1 | | | V | | V _{IL} (DC) | DC low-level input voltage | | -0.3 | | V _{REF} - 0.1 | V | | V _{IH} (AC) | AC high-level input voltage | | V _{REF} + 0.2 | | | V | | V _{IL} (AC) | AC low-level input voltage | | | | V _{REF} - 0.2 | V | | V _{OH} | High-level output voltage | I _{OH} = 16 mA (1) | V _{CCIO} - 0.4 | | | V | | V _{OL} | Low-level output voltage | $I_{OH} = -16 \text{ mA } (1)$ | | | 0.4 | ٧ | #### Note to Table 5-27: ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–28. 1.8-V HSTL Class I & II Differential Specifications | | | | | | | | | | |---|-------------------------------------|------------|---------|---------|---------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | V _{CCIO} | I/O supply voltage | | 1.71 | 1.80 | 1.89 | V | | | | | V _{DIF} (DC) | DC input differential voltage | | 0.2 | | V _{CCIO} + 0.6 V | V | | | | | V _{CM} (DC) | DC common mode input voltage | | 0.78 | | 1.12 | V | | | | | V _{DIF} (AC) | AC differential input voltage | | 0.4 | | V _{CCIO} + 0.6 V | V | | | | | V _{OX} (AC) | AC differential cross point voltage | | 0.68 | | 0.90 | V | | | | Figure 5–3. Input Register Setup & Hold Timing Diagram For output timing, different I/O standards require different baseline loading techniques for reporting timing delays. Altera characterizes timing delays with the required termination for each I/O standard and with 0 pF (except for PCI and PCI-X which use 10 pF) loading and the timing is specified up to the output pin of the FPGA device. The Quartus II software calculates the I/O timing for each I/O standard with a default baseline loading as specified by the I/O standards. The following measurements are made during device characterization. Altera measures clock-to-output delays (t_{CO}) at worst-case process, minimum voltage, and maximum temperature (PVT) for default loading conditions shown in Table 5–34. Use the following equations to calculate clock pin to output pin timing for Stratix II devices. t_{CO} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay t_{xz}/t_{zx} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay + output enable pin delay Simulation using IBIS models is required to determine the delays on the PCB traces in addition to the output pin delay timing reported by the Quartus II software and the timing model in the device handbook. - 1. Simulate the output driver of choice into the generalized test setup, using values from Table 5–34. - 2. Record the time to V_{MEAS} . - 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. | Table 5–50. EP2S30 Row Pins Regional Clock Timing Parameters | | | | | | | | | |--|--------------------------|--------|----------|----------|----------|------|--|--| | Downwater | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | rarameter | Parameter Industrial Cor | | Grade | Grade | Grade | UIII | | | | t _{CIN} | 1.304 | 1.184 | 1.966 | 2.251 | 2.616 | ns | | | | t _{COUT} | 1.309 | 1.189 | 1.962 | 2.247 | 2.611 | ns | | | | t _{PLLCIN} | -0.135 | -0.158 | -0.208 | -0.254 | -0.302 | ns | | | | t _{PLLCOUT} | -0.13 | -0.153 | -0.212 | -0.258 | -0.307 | ns | | | | Table 5–51. EP2S30 Row Pins Global Clock Timing Parameters | | | | | | | | | |--|----------------|------------|----------|----------|----------|------|--|--| | Downston | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIII | | | | t _{CIN} | 1.289 | 1.352 | 2.238 | 2.567 | 2.990 | ns | | | | t _{COUT} | 1.294 | 1.357 | 2.234 | 2.563 | 2.985 | ns | | | | t _{PLLCIN} | -0.14 | -0.154 | -0.169 | -0.205 | -0.254 | ns | | | | t _{PLLCOUT} | -0.135 | -0.149 | -0.173 | -0.209 | -0.259 | ns | | | # EP2S60 Clock Timing Parameters Tables 5–52 through 5–55 show the maximum clock timing parameters for EP2S60 devices. | Table 5–52. EP2S60 Column Pins Regional Clock Timing Parameters | | | | | | | | | | |---|----------------|------------|----------|----------|----------|-------|--|--|--| | Downston | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | Ullit | | | | | t _{CIN} | 1.681 | 1.762 | 2.945 | 3.381 | 3.931 | ns | | | | | t _{COUT} | 1.524 | 1.597 | 2.703 | 3.103 | 3.607 | ns | | | | | t _{PLLCIN} | 0.066 | 0.064 | 0.279 | 0.311 | 0.348 | ns | | | | | t _{PLLCOUT} | -0.091 | -0.101 | 0.037 | 0.033 | 0.024 | ns | | | | | Table 5–75. Sti | | | | • | ,
 | _ | | | | |-----------------|-------------------|------------------|------------|------------------------|----------------------|-----------------------------|----------------------|----------------------|------| | I/O Standard | Drive
Strength | Parameter | Industrial | m Timing
Commercial | -3
Speed
Grade | -3
Speed
Grade
(4) | -4
Speed
Grade | -5
Speed
Grade | Unit | | 1.8 V | 2 mA | t _{OP} | 1042 | 1093 | 2904 | 3048 | 3338 | 3472 | ps | | | | t _{DIP} | 1062 | 1115 | 2970 | 3118 | 3414 | 3562 | ps | | | 4 mA | t _{OP} | 1047 | 1098 | 2248 | 2359 | 2584 | 2698 | ps | | | | t _{DIP} | 1067 | 1120 | 2314 | 2429 | 2660 | 2788 | ps | | | 6 mA | t _{OP} | 974 | 1022 | 2024 | 2124 | 2326 | 2434 | ps | | | | t _{DIP} | 994 | 1044 | 2090 | 2194 | 2402 | 2524 | ps | | | 8 mA | t _{OP} | 976 | 1024 | 1947 | 2043 | 2238 | 2343 | ps | | | | t _{DIP} | 996 | 1046 | 2013 | 2113 | 2314 | 2433 | ps | | | 10 mA | t _{OP} | 933 | 978 | 1882 | 1975 | 2163 | 2266 | ps | | | | t _{DIP} | 953 | 1000 | 1948 | 2045 | 2239 | 2356 | ps | | | 12 mA | t _{OP} | 934 | 979 | 1833 | 1923 | 2107 | 2209 | ps | | | (1) | t _{DIP} | 954 | 1001 | 1899 | 1993 | 2183 | 2299 | ps | | 1.5 V | 2 mA | t _{OP} | 1023 | 1073 | 2505 | 2629 | 2879 | 3002 | ps | | | | t _{DIP} | 1043 | 1095 | 2571 | 2699 | 2955 | 3092 | ps | | | 4 mA | t _{OP} | 963 | 1009 | 2023 | 2123 | 2325 | 2433 | ps | | | | t _{DIP} | 983 | 1031 | 2089 | 2193 | 2401 | 2523 | ps | | | 6 mA | t _{OP} | 966 | 1012 | 1923 | 2018 | 2210 | 2315 | ps | | | | t _{DIP} | 986 | 1034 | 1989 | 2088 | 2286 | 2405 | ps | | | 8 mA (1) | t _{OP} | 926 | 971 | 1878 | 1970 | 2158 | 2262 | ps | | | | t _{DIP} | 946 | 993 | 1944 | 2040 | 2234 | 2352 | ps | | SSTL-2 Class I | 8 mA | t _{OP} | 913 | 957 | 1715 | 1799 | 1971 | 2041 | ps | | | | t _{DIP} | 933 | 979 | 1781 | 1869 | 2047 | 2131 | ps | | | 12 mA | t _{OP} | 896 | 940 | 1672 | 1754 | 1921 | 1991 | ps | | | (1) | t _{DIP} | 916 | 962 | 1738 | 1824 | 1997 | 2081 | ps | | SSTL-2 Class II | 16 mA | t _{OP} | 876 | 918 | 1609 | 1688 | 1849 | 1918 | ps | | | | t _{DIP} | 896 | 940 | 1675 | 1758 | 1925 | 2008 | ps | | | 20 mA | t _{OP} | 877 | 919 | 1598 | 1676 | 1836 | 1905 | ps | | | | t _{DIP} | 897 | 941 | 1664 | 1746 | 1912 | 1995 | ps | | | 24 mA | t _{OP} | 872 | 915 | 1596 | 1674 | 1834 | 1903 | ps | | | (1) | t _{DIP} | 892 | 937 | 1662 | 1744 | 1910 | 1993 | ps | | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 4 of 5) Note (1) | | | | | | | | | | | |---|-----------------|-----------------------|-----|-------|--------------------|-----|-----|---------------------|-----|-----| | 1/0 0444 | Drive | Column I/O Pins (MHz) | | (MHz) | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | 1.8-V LVTTL | OCT 50 Ω | 700 | 550 | 450 | 700 | 550 | 450 | 700 | 550 | 450 | | 3.3-V LVCMOS | OCT 50 Ω | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | 1.5-V LVCMOS | OCT 50 Ω | 550 | 450 | 400 | 550 | 450 | 400 | 550 | 450 | 400 | | SSTL-2 Class I | OCT 50 Ω | 600 | 500 | 500 | 600 | 500 | 500 | 600 | 500 | 500 | | SSTL-2 Class II | OCT 25 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | | SSTL-18 Class I | OCT 50 Ω | 560 | 400 | 350 | 590 | 400 | 350 | 450 | 400 | 350 | | SSTL-18 Class II | OCT 25 Ω | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.2-V HSTL (2) | OCT 50 Ω | 280 | - | - | - | - | - | 280 | - | - | | 1.5-V HSTL
Class I | OCT 50 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | | 1.8-V HSTL
Class I | OCT 50 Ω | 650 | 600 | 600 | 650 | 600 | 600 | 650 | 600 | 600 | | 1.8-V HSTL
Class II | OCT 25 Ω | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | Differential
SSTL-2 Class I | OCT 50 Ω | 600 | 500 | 500 | 600 | 500 | 500 | 600 | 500 | 500 | | Differential
SSTL-2 Class II | OCT 25 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | | Differential
SSTL-18 Class I | OCT 50 Ω | 560 | 400 | 350 | 590 | 400 | 350 | 560 | 400 | 350 | | Differential
SSTL-18 Class II | OCT 25 Ω | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.8-V Differential
HSTL Class I | OCT 50 Ω | 650 | 600 | 600 | 650 | 600 | 600 | 650 | 600 | 600 | | 1.8-V Differential
HSTL Class II | OCT 25 Ω | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | 1.5-V Differential
HSTL Class I | OCT 50 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | Figure 5-7. Duty Cycle Distortion DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5–7, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as (T/2 - D1) / T (the low percentage boundary) (T/2 + D2) / T (the high percentage boundary) ## **DCD Measurement Techniques** DCD is measured at an FPGA output pin driven by registers inside the corresponding I/O element (IOE) block. When the output is a single data rate signal (non-DDIO), only one edge of the register input clock (positive or negative) triggers output transitions (Figure 5–8). Therefore, any DCD present on the input clock signal or caused by the clock input buffer or different input I/O standard does not transfer to the output signal. Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs | Table 5-103. Do | ocument Revision History (Part 2 of 3) | | |---------------------------------|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | August, 2006,
v4.2 | Updated Table 5–73, Table 5–75, Table 5–77, Table 5–78, Table 5–79, Table 5–81, Table 5–85, and Table 5–87. | _ | | April 2006, v4.1 | Updated Table 5–3. Updated Table 5–11. Updated Figures 5–8 and 5–9. Added parallel on-chip termination information to "On-Chip Termination Specifications" section. Updated Tables 5–28, 5–30,5–31, and 5–34. Updated Table 5–78, Tables 5–81 through 5–90, and Tables 5–92, 5–93, and 5–98. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. Added Tables 5–95 and 5–101. Updated "JTAG Timing Specifications" section, including Figure 5–10 and Table 5–102. | Changed 0.2 MHz to 2 MHz in Table 5–93. Added new spec for half period jitter (Table 5–101). Added support for PLL clock switchover for industrial temperature range. Changed f_{INPFD} (min) spec from 4 MHz to 2 MHz in Table 5–92. Fixed typo in t_{OUTJITTER} specification in Table 5–92. Updated V_{DIF} AC & DC max specifications in Table 5–28. Updated minimum values for t_{JCH}, t_{JCL}, and t_{JPSU} in Table 5–102. Update maximum values for t_{JPCO}, t_{JPZX}, and t_{JPXZ} in Table 5–102. | | December 2005,
v4.0 | Updated "External Memory Interface
Specifications" section. Updated timing numbers throughout chapter. | _ | | July 2005, v3.1 | Updated HyperTransport technology information in Table 5–13. Updated "Timing Model" section. Updated "PLL Timing Specifications" section. Updated "External Memory Interface Specifications" section. | _ | | May 2005, v3.0 | Updated tables throughout chapter. Updated "Power Consumption" section. Added various tables. Replaced "Maximum Input & Output Clock Rate" section with "Maximum Input & Output Clock Toggle Rate" section. Added "Duty Cycle Distortion" section. Added "External Memory Interface Specifications" section. | _ | | March 2005,
v2.2 | Updated tables in "Internal Timing Parameters" section. | _ | | January 2005,
v2.1 | Updated input rise and fall time. | _ |