Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 4548 | | Number of Logic Elements/Cells | 90960 | | Total RAM Bits | 4520488 | | Number of I/O | 758 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1020-BBGA | | Supplier Device Package | 1020-FBGA (33x33) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s90f1020i4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong vi Altera Corporation The direct link interconnect allows an LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself. This provides fast communication between adjacent LABs and/or blocks without using row interconnect resources. The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2-16 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by DSP blocks and RAM blocks and row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects. Figure 2–16. R4 Interconnect Connections Notes (1), (2), (3) ## *Notes to Figure 2–16:* - (1) C4 and C16 interconnects can drive R4 interconnects. - (2) This pattern is repeated for every LAB in the LAB row. - (3) The LABs in Figure 2–16 show the 16 possible logical outputs per LAB. Figure 2–41. Global & Regional Clock Connections from Center Clock Pins & Fast PLL Outputs Note (1) ## Notes to Figure 2-41: - (1) EP2S15 and EP2S30 devices only have four fast PLLs (1, 2, 3, and 4), but the connectivity from these four PLLs to the global and regional clock networks remains the same as shown. - (2) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock control block, provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL. There are 32 control and data signals that feed each row or column I/O block. These control and data signals are driven from the logic array. The row or column IOE clocks, io_clk [7..0], provide a dedicated routing resource for low-skew, high-speed clocks. I/O clocks are generated from global or regional clocks (see the "PLLs & Clock Networks" section). Figure 2–49 illustrates the signal paths through the I/O block. Figure 2-49. Signal Path through the I/O Block Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/apreset, sclr/spreset, clk_in, and clk_out. Figure 2–50 illustrates the control signal selection. Figure 2-57. Stratix II I/O Banks Notes (1), (2), (3), (4) #### *Notes to Figure 2–57:* - (1) Figure 2–57 is a top view of the silicon die that corresponds to a reverse view for flip-chip packages. It is a graphical representation only. - (2) Depending on the size of the device, different device members have different numbers of V_{REF} groups. Refer to the pin list and the Quartus II software for exact locations. - (3) Banks 9 through 12 are enhanced PLL external clock output banks. These PLL banks utilize the adjacent V_{REF} group when voltage-referenced standards are implemented. For example, if an SSTL input is implemented in PLL bank 10, the voltage level at VREFB7 is the reference voltage level for the SSTL input. - (4) Horizontal I/O banks feature SERDES and DPA circuitry for high speed differential I/O standards. See the *High Speed Differential I/O Interfaces in Stratix II & Stratix II GX Devices* chapter of the *Stratix II Device Handbook, Volume 2* or the *Stratix II GX Device Handbook, Volume 2* for more information on differential I/O standards. ## Differential On-Chip Termination Stratix II devices support internal differential termination with a nominal resistance value of $100~\Omega$ for LVDS or HyperTransport technology input receiver buffers. LVPECL input signals (supported on clock pins only) require an external termination resistor. Differential on-chip termination is supported across the full range of supported differential data rates as shown in the DC & Switching Characteristics chapter in volume 1 of the Stratix II Device Handbook. For more information on differential on-chip termination, refer to the *High-Speed Differential I/O Interfaces with DPA in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. For more information on tolerance specifications for differential on-chip termination, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. ## On-Chip Series Termination Without Calibration Stratix II devices support driver impedance matching to provide the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, reflections can be significantly reduced. Stratix II devices support on-chip series termination for single-ended I/O standards with typical $R_{\rm S}$ values of 25 and 50 Ω Once matching impedance is selected, current drive strength is no longer selectable. Table 2–17 shows the list of output standards that support on-chip series termination without calibration. ## On-Chip Series Termination with Calibration Stratix II devices support on-chip series termination with calibration in column I/O pins in top and bottom banks. There is one calibration circuit for the top I/O banks and one circuit for the bottom I/O banks. Each on-chip series termination calibration circuit compares the total impedance of each I/O buffer to the external 25- or $50-\Omega$ resistors connected to the RUP and RDN pins, and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. Once the calibration circuit finds the correct impedance, it powers down and stops changing the characteristics of the drivers. For more information on series on-chip termination supported by Stratix II devices, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. For more information on tolerance specifications for on-chip termination with calibration, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. ## On-Chip Parallel Termination with Calibration Stratix II devices support on-chip parallel termination with calibration for column I/O pins only. There is one calibration circuit for the top I/O banks and one circuit for the bottom I/O banks. Each on-chip parallel termination calibration circuit compares the total impedance of each I/O buffer to the external 50- Ω resistors connected to the RUP and RDN pins and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. Once the calibration circuit finds the correct impedance, it powers down and stops changing the characteristics of the drivers. On-chip parallel termination with calibration is only supported for input pins. For more information on on-chip termination supported by Stratix II devices, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. For more information on tolerance specifications for on-chip termination with calibration, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. ## MultiVolt I/O Interface The Stratix II architecture supports the MultiVolt I/O interface feature that allows Stratix II devices in all packages to interface with systems of different supply voltages. The Stratix II VCCINT pins must always be connected to a 1.2-V power supply. With a 1.2-V V $_{\rm CCINT}$ level, input pins are 1.5-, 1.8-, 2.5-, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-, 1.8-, 2.5-, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (for example, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). The Stratix II VCCPD power pins must be connected to a 3.3-V power supply. These power pins are used to supply the pre-driver power to the output buffers, which increases the performance of the output pins. The VCCPD pins also power configuration input pins and JTAG input pins. device, PLL 1 can drive a maximum of 10 transmitter channels in I/O bank 1 or a maximum of 19 transmitter channels in I/O banks 1 and 2. The Quartus II software may also merge receiver and transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels. | Table 2–21. EP2\$15 Det | Table 2–21. EP2S15 Device Differential Channels Note (1) | | | | | | | | | | |-------------------------|--|----------|-------|-------|-------|-------|--|--|--|--| | Paskana | Transmitter/ | Total | | | | | | | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | | | | | | 484-pin FineLine BGA | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | | | | | | | | (3) | 19 | 19 | 19 | 19 | | | | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | | | | | | | | (3) | 21 | 21 | 21 | 21 | | | | | | 672-pin FineLine BGA | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | | | | | | | | (3) | 19 | 19 | 19 | 19 | | | | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | | | | | | | | (3) | 21 | 21 | 21 | 21 | | | | | | Table 2–22. EP2\$30 Det | vice Differential Ch | nannels Note | e (1) | | | | | |-------------------------|----------------------|--------------|-------|------------------|-------|-------|--| | Dookono | Transmitter/ | Total | | Center Fast PLLs | | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | | | 484-pin FineLine BGA | Transmitter | 38 (2) | 10 | 9 | 9 | 10 | | | | | (3) | 19 | 19 | 19 | 19 | | | | Receiver | 42 (2) | 11 | 10 | 10 | 11 | | | | | (3) | 21 | 21 | 21 | 21 | | | 672-pin FineLine BGA | Transmitter | 58 (2) | 16 | 13 | 13 | 16 | | | | | (3) | 29 | 29 | 29 | 29 | | | | Receiver | 62 (2) | 17 | 14 | 14 | 17 | | | | | (3) | 31 | 31 | 31 | 31 | | | Table 2-25. E | P2\$130 Differe | ential Chan | nels | Note (1) | | | | | | | | |---------------|-----------------|-------------------|-------|----------|------------------|-------|-------|-------|----------------------|--------|--| | Dookono | Transmitter/ | ransmitter/ Total | | | Center Fast PLLs | | | | Corner Fast PLLs (4) | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | PLL 7 | PLL 8 | PLL 9 | PLL 10 | | | 780-pin | Transmitter | 64 (2) | 16 | 16 | 16 | 16 | - | - | - | | | | FineLine BGA | | (3) | 32 | 32 | 32 | 32 | - | - | - | - | | | | Receiver | 68 (2) | 17 | 17 | 17 | 17 | - | - | - | - | | | | | (3) | 34 | 34 | 34 | 34 | - | - | - | | | | 1,020-pin | Transmitter | 88 (2) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | | FineLine BGA | | (3) | 44 | 44 | 44 | 44 | - | - | - | - | | | | Receiver | 92 (2) | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | | | | | (3) | 46 | 46 | 46 | 46 | - | - | - | - | | | 1,508-pin | Transmitter | 156 <i>(2)</i> | 37 | 41 | 41 | 37 | 37 | 41 | 41 | 37 | | | FineLine BGA | | (3) | 78 | 78 | 78 | 78 | - | - | - | - | | | | Receiver | 156 <i>(2)</i> | 37 | 41 | 41 | 37 | 37 | 41 | 41 | 37 | | | | | (3) | 78 | 78 | 78 | 78 | - | - | - | - | | | Table 2–26. E | Table 2–26. EP2S180 Differential Channels Note (1) | | | | | | | | | | | |---------------|--|----------------|------------------|-------|-------|-------|----------------------|-------|------------|--------|--| | Dookogo | Transmitter/ | Total | Center Fast PLLs | | | | Corner Fast PLLs (4) | | | | | | Package | Receiver | Channels | PLL 1 | PLL 2 | PLL 3 | PLL 4 | PLL 7 | PLL 8 | LL 8 PLL 9 | PLL 10 | | | 1,020-pin | Transmitter | 88 (2) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | | FineLine BGA | | (3) | 44 | 44 | 44 | 44 | - | - | - | - | | | | Receiver | 92 (2) | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | | | | | (3) | 46 | 46 | 46 | 46 | - | = | - | - | | | 1,508-pin | Transmitter | 156 <i>(2)</i> | 37 | 41 | 41 | 37 | 37 | 41 | 41 | 37 | | | FineLine BGA | | (3) | 78 | 78 | 78 | 78 | - | = | - | - | | | | Receiver | 156 <i>(2)</i> | 37 | 41 | 41 | 37 | 37 | 41 | 41 | 37 | | | | | (3) | 78 | 78 | 78 | 78 | - | - | - | - | | Notes to Tables 2-21 to 2-26: - (1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used as data channels. - (2) This is the maximum number of channels the PLLs can directly drive. - (3) This is the maximum number of channels if the device uses cross bank channels from the adjacent center PLL. - (4) The channels accessible by the center fast PLL overlap with the channels accessible by the corner fast PLL. Therefore, the total number of channels is not the addition of the number of channels accessible by PLLs 1, 2, 3, and 4 with the number of channels accessible by PLLs 7, 8, 9, and 10. you need to support configuration input voltages of 1.8 V/1.5 V, you should set the VCCSEL to a logic high and the V_{CCIO} of the bank that contains the configuration inputs to 1.8 V/1.5 V. For more information on multi-volt support, including information on using TDO and nCEO in multi-volt systems, refer to the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. ## **Configuration Schemes** You can load the configuration data for a Stratix II device with one of five configuration schemes (see Table 3–5), chosen on the basis of the target application. You can use a configuration device, intelligent controller, or the JTAG port to configure a Stratix II device. A configuration device can automatically configure a Stratix II device at system power-up. You can configure multiple Stratix II devices in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Stratix II FPGAs offer the following: - Configuration data decompression to reduce configuration file storage - Design security using configuration data encryption to protect your designs - Remote system upgrades for remotely updating your Stratix II designs Table 3–5 summarizes which configuration features can be used in each configuration scheme. | Configuration Scheme | Configuration Method | Design Security | Decompression | Remote System
Upgrade | |----------------------|--|-----------------|---------------|--------------------------| | FPP | MAX II device or microprocessor and flash device | √ (1) | √ (1) | ✓ | | | Enhanced configuration device | | √ (2) | ~ | | AS | Serial configuration device | ✓ | ✓ | √ (3) | | PS | MAX II device or microprocessor and flash device | ✓ | ~ | ✓ | | | Enhanced configuration device | ✓ | ✓ | ✓ | | | Download cable (4) | ✓ | ✓ | | | Table 3–5. Stratix II Configuration Features (Part 2 of 2) | | | | | | | | |--|--|-----------------|---------------|--------------------------|--|--|--| | Configuration
Scheme | Configuration Method | Design Security | Decompression | Remote System
Upgrade | | | | | PPA | MAX II device or microprocessor and flash device | | | ✓ | | | | | JTAG | Download cable (4) | | | | | | | | | MAX II device or microprocessor and flash device | | | | | | | #### *Notes for Table 3–5:* - (1) In these modes, the host system must send a DCLK that is $4\times$ the data rate. - (2) The enhanced configuration device decompression feature is available, while the Stratix II decompression feature is not available. - (3) Only remote update mode is supported when using the AS configuration scheme. Local update mode is not supported. - (4) The supported download cables include the Altera USB Blaster universal serial bus (USB) port download cable, MasterBlaster serial/USB communications cable, ByteBlaster II parallel port download cable, and the ByteBlasterMV parallel port download cable. See the *Configuring Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook* for more information about configuration schemes in Stratix II and Stratix II GX devices. ## Device Security Using Configuration Bitstream Encryption Stratix II FPGAs are the industry's first FPGAs with the ability to decrypt a configuration bitstream using the Advanced Encryption Standard (AES) algorithm. When using the design security feature, a 128-bit security key is stored in the Stratix II FPGA. To successfully configure a Stratix II FPGA that has the design security feature enabled, it must be configured with a configuration file that was encrypted using the same 128-bit security key. The security key can be stored in non-volatile memory inside the Stratix II device. This non-volatile memory does not require any external devices, such as a battery back-up, for storage. | Table 5- | 4. Stratix II Device DC Op | erating Conditions | (Part 2 of 2) | Note (1) | | | | |-----------------------|--|-----------------------------------|---------------|----------|---------|--|------| | Symbol | Parameter | Conditio | ns | Minimum | Typical | Maximum | Unit | | I _{CCI00} | V _{CCIO} supply current | V_I = ground, no | EP2S15 | | 4.0 | (3) | mA | | | (standby) | load, no toggling inputs | EP2S30 | | 4.0 | (3) | mA | | | | T _J = 25° C | EP2S60 | | 4.0 | (3) (3) (1) (3) (1) (3) (1) (3) (1) (3) (1) (50 (70 (100 (100 (100 (100 (100 (100 (100 | mA | | | | | EP2S90 | | 4.0 | | mA | | | | | EP2S130 | | 4.0 | (3) | mA | | | | | EP2S180 | | 4.0 | (3) | mA | | R _{CONF} (4) | Value of I/O pin pull-up | Vi = 0; V _{CCIO} = 3.3 V | 10 | 25 | 50 | kΩ | | | | resistor before and during configuration | Vi = 0; V _{CCIO} = 2.5 V | | 15 | 35 | 70 | kΩ | | | | Vi = 0; V _{CCIO} = 1.8 V | / | 30 | 50 | 100 | kΩ | | | | Vi = 0; V _{CCIO} = 1.5 V | / | 40 | 75 | 150 | kΩ | | | | Vi = 0; V _{CCIO} = 1.2 V | / | 50 | 90 | 170 | kΩ | | | Recommended value of I/O pin external pull-down resistor before and during configuration | | | | 1 | 2 | kΩ | ## Notes to Table 5-4: - (1) Typical values are for T_A = 25°C, V_{CCINT} = 1.2 V, and V_{CCIO} = 1.5 V, 1.8 V, 2.5 V, and 3.3 V. - (2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V_{CCIO} settings (3.3, 2.5, 1.8, and 1.5 V). - (3) Maximum values depend on the actual T_J and design utilization. See the Excel-based PowerPlay Early Power Estimator (available at www.altera.com) or the Quartus II PowerPlay Power Analyzer feature for maximum values. See the section "Power Consumption" on page 5–20 for more information. - (4) Pin pull-up resistance values are lower if an external source drives the pin higher than V_{CCIO}. ## I/O Standard Specifications Tables 5–5 through 5–32 show the Stratix II device family I/O standard specifications. | Table 5–5. | Table 5–5. LVTTL Specifications (Part 1 of 2) | | | | | | | | | |-----------------------|---|-----------------------------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V _{CCIO} (1) | Output supply voltage | | 3.135 | 3.465 | V | | | | | | V _{IH} | High-level input voltage | | 1.7 | 4.0 | V | | | | | | V _{IL} | Low-level input voltage | | -0.3 | 0.8 | V | | | | | | V _{OH} | High-level output voltage | I _{OH} = -4 mA (2) | 2.4 | | V | | | | | | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |-------------------|--|------------------------|---------|---------|---------|------| | V _{CCIO} | I/O supply voltage for left and right I/O banks (1, 2, 5, and 6) | | 2.375 | 2.500 | 2.625 | V | | V _{ID} | Input differential voltage swing (single-ended) | | 100 | 350 | 900 | mV | | V _{ICM} | Input common mode voltage | | 200 | 1,250 | 1,800 | mV | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 250 | | 450 | mV | | V _{OCM} | Output common mode voltage | R _L = 100 Ω | 1.125 | | 1.375 | V | | R _L | Receiver differential input discrete resistor (external to Stratix II devices) | | 90 | 100 | 110 | Ω | | Table 5–1 | 1. 3.3-V LVDS I/O Specification | ons | | | | | |-----------------------|--|------------------------|---------|---------|---------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} (1) | I/O supply voltage for top
and bottom PLL banks (9,
10, 11, and 12) | | 3.135 | 3.300 | 3.465 | V | | V _{ID} | Input differential voltage swing (single-ended) | | 100 | 350 | 900 | mV | | V _{ICM} | Input common mode voltage | | 200 | 1,250 | 1,800 | mV | | V _{OD} | Output differential voltage (single-ended) | R _L = 100 Ω | 250 | | 710 | mV | | V _{OCM} | Output common mode voltage | R _L = 100 Ω | 840 | | 1,570 | mV | | R _L | Receiver differential input
discrete resistor (external to
Stratix II devices) | | 90 | 100 | 110 | Ω | ## Note to Table 5-11: ⁽¹⁾ The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by V_{CCINT} not V_{CCIO} . The PLL clock output/feedback differential buffers are powered by $V_{CC}_{PLL}_{OUT}$. For differential clock output/feedback operation, $V_{CC}_{PLL}_{OUT}$ should be connected to 3.3 V. | Table 5 | -21. SSTL-2 Class I & II Diff | erential Spec | eifications | | | | |-------------------------|---|---------------|------------------------------|-------------------------|----------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V_{CCIO} | Output supply voltage | | 2.375 | 2.500 | 2.625 | V | | V _{SWING} (DC) | DC differential input voltage | | 0.36 | | | V | | V _X (AC) | AC differential input cross point voltage | | $(V_{CCIO}/2) - 0.2$ | | $(V_{CCIO}/2) + 0.2$ | V | | V _{SWING} (AC) | AC differential input voltage | | 0.7 | | | V | | V _{ISO} | Input clock signal offset voltage | | | 0.5 × V _{CCIO} | | V | | ΔV_{ISO} | Input clock signal offset voltage variation | | | ±200 | | mV | | V _{OX} (AC) | AC differential output cross point voltage | | (V _{CCIO} /2) - 0.2 | | $(V_{CCIO}/2) + 0.2$ | V | | Table 5- | Table 5–22. 1.2-V HSTL Specifications | | | | | | | | | | | |----------------------|---------------------------------------|--------------------------|--------------------------|------------------------|--------------------------|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | | | V _{CCIO} | Output supply voltage | | 1.14 | 1.20 | 1.26 | V | | | | | | | V _{REF} | Reference voltage | | 0.48 × V _{CCIO} | $0.50 \times V_{CCIO}$ | 0.52 × V _{CCIO} | ٧ | | | | | | | V _{IH} (DC) | High-level DC input voltage | | V _{REF} + 0.08 | | V _{CCIO} + 0.15 | ٧ | | | | | | | V _{IL} (DC) | Low-level DC input voltage | | -0.15 | | $V_{REF} - 0.08$ | V | | | | | | | V _{IH} (AC) | High-level AC input voltage | | V _{REF} + 0.15 | | V _{CCIO} + 0.24 | ٧ | | | | | | | V _{IL} (AC) | Low-level AC input voltage | | -0.24 | | $V_{REF} - 0.15$ | V | | | | | | | V _{OH} | High-level output voltage | I _{OH} = 8 mA | V _{REF} + 0.15 | | V _{CCIO} + 0.15 | V | | | | | | | V _{OL} | Low-level output voltage | $I_{OH} = -8 \text{ mA}$ | -0.15 | | $V_{REF} - 0.15$ | ٧ | | | | | | | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |----------------------|-----------------------------|-------------------------------|-------------------------|---------|------------------------|------| | V _{CCIO} | Output supply voltage | | 1.425 | 1.500 | 1.575 | V | | V _{REF} | Input reference voltage | | 0.713 | 0.750 | 0.788 | V | | V _{TT} | Termination voltage | | 0.713 | 0.750 | 0.788 | V | | V _{IH} (DC) | DC high-level input voltage | | V _{REF} + 0.1 | | | V | | V _{IL} (DC) | DC low-level input voltage | | -0.3 | | V _{REF} - 0.1 | V | | V _{IH} (AC) | AC high-level input voltage | | V _{REF} + 0.2 | | | V | | V _{IL} (AC) | AC low-level input voltage | | | | V _{REF} - 0.2 | V | | V _{OH} | High-level output voltage | I _{OH} = 8 mA (1) | V _{CCIO} - 0.4 | | | ٧ | | V _{OL} | Low-level output voltage | $I_{OH} = -8 \text{ mA } (1)$ | | | 0.4 | V | ## Note to Table 5-23: ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5-2 | 4. 1.5-V HSTL Class II Specif | ications | | | | | |----------------------|-------------------------------|------------------------------|-------------------------|---------|------------------------|------| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | V _{CCIO} | Output supply voltage | | 1.425 | 1.500 | 1.575 | V | | V_{REF} | Input reference voltage | | 0.713 | 0.750 | 0.788 | ٧ | | V _{TT} | Termination voltage | | 0.713 | 0.750 | 0.788 | ٧ | | V _{IH} (DC) | DC high-level input voltage | | V _{REF} + 0.1 | | | ٧ | | V _{IL} (DC) | DC low-level input voltage | | -0.3 | | V _{REF} - 0.1 | V | | V _{IH} (AC) | AC high-level input voltage | | V _{REF} + 0.2 | | | ٧ | | V _{IL} (AC) | AC low-level input voltage | | | | V _{REF} – 0.2 | V | | V _{OH} | High-level output voltage | I _{OH} = 16 mA (1) | V _{CCIO} - 0.4 | | | V | | V _{OL} | Low-level output voltage | I _{OH} = -16 mA (1) | | | 0.4 | V | ## Note to Table 5-24: ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. Figure 5–5. Measurement Setup for t_{xz} Note (1) ## t_{XZ}, Driving High to Tristate ## $t_{\chi\chi}$, Driving Low to Tristate *Note to Figure 5–5:* (1) V_{CCINT} is 1.12 V for this measurement. | Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 2 of 3) | | | | | | | | | | | | |--|--------------------|------------|------------|-------------------|-------------------|----------|----------|-------|--|--|--| | I/O Standard | Parameter | Minimu | m Timing | -3 Speed
Grade | -3 Speed
Grade | -4 Speed | -5 Speed | Unit | | | | | i/O Stailualu | raiailietei | Industrial | Commercial | (2) | (3) | Grade | Grade | Oiiit | | | | | 1.5-V HSTL | t _{Pl} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | | | | Class II | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | | | | 1.8-V HSTL | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | | | Class I | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | | | | 1.8-V HSTL | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | | | Class II | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | | | | PCI | t _{Pl} | 679 | 712 | 1214 | 1273 | 1395 | 1625 | ps | | | | | | t _{PCOUT} | 413 | 433 | 778 | 816 | 894 | 1042 | ps | | | | | PCI-X | t _{Pl} | 679 | 712 | 1214 | 1273 | 1395 | 1625 | ps | | | | | | t _{PCOUT} | 413 | 433 | 778 | 816 | 894 | 1042 | ps | | | | | Differential | t _{Pl} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | | | | SSTL-2 Class I | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | | | | Differential | t _{Pl} | 507 | 530 | 818 | 857 | 939 | 1094 | ps | | | | | SSTL-2 Class II | t _{PCOUT} | 241 | 251 | 382 | 400 | 438 | 511 | ps | | | | | Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | | | SSTL-18 Class I | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | | | | Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | | | SSTL-18 Class II | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | | | | 1.8-V Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | | | HSTL Class I (1) | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | | | | 1.8-V Differential | t _{Pl} | 543 | 569 | 898 | 941 | 1031 | 1201 | ps | | | | | HSTL Class II (1) | t _{PCOUT} | 277 | 290 | 462 | 484 | 530 | 618 | ps | | | | | 1.5-V Differential | t _{P1} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | | | | HSTL Class I (1) | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | | | | 1.5-V Differential | t _{P1} | 560 | 587 | 993 | 1041 | 1141 | 1329 | ps | | | | | HSTL Class II (1) | t _{PCOUT} | 294 | 308 | 557 | 584 | 640 | 746 | ps | | | | | 1/0 04 | Drive | Column I/O Pins (MHz) | | | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | |--------------------|----------|-----------------------|-----|-----|--------------------|-----|-----|---------------------|-----|-----| | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | SSTL-18 Class I | 4 mA | 200 | 150 | 150 | 200 | 150 | 150 | 200 | 150 | 150 | | | 6 mA | 350 | 250 | 200 | 350 | 250 | 200 | 350 | 250 | 200 | | | 8 mA | 450 | 300 | 300 | 450 | 300 | 300 | 450 | 300 | 300 | | | 10 mA | 500 | 400 | 400 | 500 | 400 | 400 | 500 | 400 | 400 | | | 12 mA | 700 | 550 | 400 | - | - | - | 650 | 550 | 400 | | SSTL-18 Class II | 8 mA | 200 | 200 | 150 | - | - | - | 200 | 200 | 150 | | | 16 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | | 18 mA | 450 | 400 | 400 | - | - | - | 450 | 400 | 400 | | | 20 mA | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.8-V HSTL | 4 mA | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | | Class I | 6 mA | 500 | 450 | 450 | 500 | 450 | 450 | 500 | 450 | 450 | | | 8 mA | 650 | 600 | 600 | 650 | 600 | 600 | 650 | 600 | 600 | | | 10 mA | 700 | 650 | 600 | 700 | 650 | 600 | 700 | 650 | 600 | | | 12 mA | 700 | 700 | 650 | 700 | 700 | 650 | 700 | 700 | 650 | | 1.8-V HSTL | 16 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | Class II | 18 mA | 550 | 500 | 500 | - | - | - | 550 | 500 | 500 | | | 20 mA | 650 | 550 | 550 | - | - | - | 550 | 550 | 550 | | 1.5-V HSTL | 4 mA | 350 | 300 | 300 | 350 | 300 | 300 | 350 | 300 | 300 | | Class I | 6 mA | 500 | 500 | 450 | 500 | 500 | 450 | 500 | 500 | 450 | | | 8 mA | 700 | 650 | 600 | 700 | 650 | 600 | 700 | 650 | 600 | | | 10 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | 12 mA | 700 | 700 | 700 | - | - | - | 700 | 700 | 700 | | 1.5-V HSTL | 16 mA | 600 | 600 | 550 | - | - | - | 600 | 600 | 550 | | Class II | 18 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | 20 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | Differential | 8 mA | 400 | 300 | 300 | 400 | 300 | 300 | 400 | 300 | 300 | | SSTL-2 Class I (3) | 12 mA | 400 | 400 | 350 | 400 | 400 | 350 | 400 | 400 | 350 | | Differential | 16 mA | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | SSTL-2 Class II | 20 mA | 400 | 350 | 350 | 350 | 350 | 297 | 400 | 350 | 350 | | (3) | 24 mA | 400 | 400 | 350 | - | _ | - | 400 | 400 | 350 | | Table 5–78. Maxi | mum Output | t Toggle R | ate on St | ratix II De | evices (Pa | art 3 of 5) |) No | ote (1) | | | | |---|-----------------|------------|------------|-------------|------------|--------------------|------|---------|---------------------|-----|--| | I/O Otomdond | Drive | Colum | n I/O Pins | (MHz) | Row I | Row I/O Pins (MHz) | | | Clock Outputs (MHz) | | | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | | Differential | 4 mA | 200 | 150 | 150 | 200 | 150 | 150 | 200 | 150 | 150 | | | SSTL-18 Class I | 6 mA | 350 | 250 | 200 | 350 | 250 | 200 | 350 | 250 | 200 | | | (0) | 8 mA | 450 | 300 | 300 | 450 | 300 | 300 | 450 | 300 | 300 | | | | 10 mA | 500 | 400 | 400 | 500 | 400 | 400 | 500 | 400 | 400 | | | | 12 mA | 700 | 550 | 400 | 350 | 350 | 297 | 650 | 550 | 400 | | | Differential | 8 mA | 200 | 200 | 150 | - | - | - | 200 | 200 | 150 | | | SSTL-18 Class II | 16 mA | 400 | 350 | 350 | - | - | - | 400 | 350 | 350 | | | (3) | 18 mA | 450 | 400 | 400 | - | - | - | 450 | 400 | 400 | | | | 20 mA | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | | 1.8-V Differential | 4 mA | 300 | 300 | 300 | - | - | - | 300 | 300 | 300 | | | HSTL Class I (3) | 6 mA | 500 | 450 | 450 | - | - | - | 500 | 450 | 450 | | | | 8 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | | 10 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | | 12 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | 1.8-V Differential
HSTL Class II (3) | 16 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | | 18 mA | 550 | 500 | 500 | - | - | - | 550 | 500 | 500 | | | | 20 mA | 650 | 550 | 550 | - | - | - | 550 | 550 | 550 | | | 1.5-V Differential | 4 mA | 350 | 300 | 300 | - | - | - | 350 | 300 | 300 | | | HSTL Class I (3) | 6 mA | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | | | 8 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | | 10 mA | 700 | 700 | 650 | - | - | - | 700 | 700 | 650 | | | | 12 mA | 700 | 700 | 700 | - | - | - | 700 | 700 | 700 | | | 1.5-V Differential | 16 mA | 600 | 600 | 550 | - | - | - | 600 | 600 | 550 | | | HSTL Class II (3) | 18 mA | 650 | 600 | 600 | - | - | - | 650 | 600 | 600 | | | | 20 mA | 700 | 650 | 600 | - | - | - | 700 | 650 | 600 | | | 3.3-V PCI | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | | 3.3-V PCI-X | | 1,000 | 790 | 670 | - | - | - | 1,000 | 790 | 670 | | | LVDS (6) | | - | - | - | 500 | 500 | 500 | 450 | 400 | 300 | | | HyperTransport technology (4), (6) | | | | | 500 | 500 | 500 | - | - | - | | | LVPECL (5) | | - | - | - | - | - | - | 450 | 400 | 300 | | | 3.3-V LVTTL | OCT 50 Ω | 400 | 400 | 350 | 400 | 400 | 350 | 400 | 400 | 350 | | | 2.5-V LVTTL | OCT 50 Ω | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | | Name | Description | Min | Тур | Max | Unit | |------------------------|--|--------|-------------------------|-------|----------| | f_{IN} | Input clock frequency (for -3 and -4 speed grade devices) | 16.08 | | 717 | MHz | | | Input clock frequency (for -5 speed grade devices) | 16.08 | | 640 | MHz | | f _{INPFD} | Input frequency to the PFD | 16.08 | | 500 | MHz | | f _{INDUTY} | Input clock duty cycle | 40 | | 60 | % | | t _{INJITTER} | Input clock jitter tolerance in terms of period jitter. Bandwidth ≤ 2 MHz | | 0.5 | | ns (p-p) | | | Input clock jitter tolerance in terms of period jitter. Bandwidth > 2 MHz | | 1.0 | | ns (p-p) | | f _{vco} | Upper VCO frequency range for -3 and -4 speed grades | 300 | | 1,040 | MHz | | | Upper VCO frequency range for –5 speed grades | 300 | | 840 | MHz | | | Lower VCO frequency range for -3 and -4 speed grades | 150 | | 520 | MHz | | | Lower VCO frequency range for –5 speed grades | 150 | | 420 | MHz | | f _{OUT} | PLL output frequency to GCLK or RCLK | 4.6875 | | 550 | MHz | | | PLL output frequency to LVDS or DPA clock | 150 | | 1,040 | MHz | | f _{OUT_IO} | PLL clock output frequency to regular I/O pin | 4.6875 | | (1) | MHz | | f _{SCANCLK} | Scanclk frequency | | | 100 | MHz | | t _{CONFIGPLL} | Time required to reconfigure scan chains for fast PLLs | | 75/f _{SCANCLK} | | ns | | f _{CLBW} | PLL closed-loop bandwidth | 1.16 | 5.00 | 28.00 | MHz | | t _{LOCK} | Time required for the PLL to lock from the time it is enabled or the end of the device configuration | | 0.03 | 1.00 | ms | | t _{PLL_PSERR} | Accuracy of PLL phase shift | | | ±15 | ps | | t _{ARESET} | Minimum pulse width on areset signal. | 10 | | | ns | | tareset_reconfig | Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandone goes high. | 500 | | | ns | Note to Table 5–93: (1) Limited by I/O f_{MAX} . See Table 5–77 on page 5–67 for the maximum.