

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	4548
Number of Logic Elements/Cells	90960
Total RAM Bits	4520488
Number of I/O	902
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA, FC (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2s90f1508c3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Stratix II devices are available in space-saving FineLine BGA® packages (see Tables 1–2 and 1–3).

Table 1–2. S	Table 1–2. Stratix II Package Options & I/O Pin Counts Notes (1), (2)											
Device	484-Pin FineLine BGA	484-Pin Hybrid FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA						
EP2S15	342		366									
EP2S30	342		500									
EP2S60 (3)	334		492		718							
EP2S90 (3)		308		534	758	902						
EP2S130 (3)				534	742	1,126						
EP2S180 (3)					742	1,170						

Notes to Table 1-2:

- (1) All I/O pin counts include eight dedicated clock input pins (clk1p, clk1n, clk3p, clk3n, clk9p, clk9n, clk11p, and clk11n) that can be used for data inputs.
- (2) The Quartus II software I/O pin counts include one additional pin, PLL_ENA, which is not available as general-purpose I/O pins. The PLL_ENA pin can only be used to enable the PLLs within the device.
- (3) The I/O pin counts for the EP2S60, EP2S90, EP2S130, and EP2S180 devices in the 1020-pin and 1508-pin packages include eight dedicated fast PLL clock inputs (FPLL7CLKp/n, FPLL8CLKp/n, FPLL9CLKp/n, and FPLL10CLKp/n) that can be used for data inputs.

Table 1–3. Stratix II FineLine BGA Package Sizes										
Dimension	484 Pin	484-Pin Hybrid	672 Pin	780 Pin	1,020 Pin	1,508 Pin				
Pitch (mm)	1.00	1.00	1.00	1.00	1.00	1.00				
Area (mm2)	529	729	729	841	1,089	1,600				
Length × width (mm × mm)	23 × 23	27 × 27	27 × 27	29 × 29	33 × 33	40 × 40				

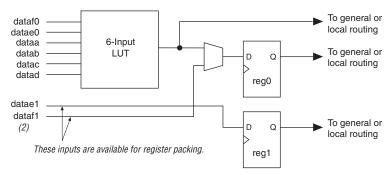
All Stratix II devices support vertical migration within the same package (for example, you can migrate between the EP2S15, EP2S30, and EP2S60 devices in the 672-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities.

To ensure that a board layout supports migratable densities within one package offering, enable the applicable vertical migration path within the Quartus II software (Assignments menu > Device > Migration Devices).

signal with asynchronous load data input tied high. When the asynchronous load/preset signal is used, the labclkena0 signal is no longer available.

The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide control signals. The MultiTrackTM interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit.

There are two unique clock signals per LAB. Dedicated Row LAB Clocks Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local Interconnect labclr1 labclk0 labclk1 labclkena0 labclkena1 labclkena2 labclr0 synclr or asyncload or labpreset


Figure 2-4. LAB-Wide Control Signals

Adaptive Logic Modules

The basic building block of logic in the Stratix II architecture, the adaptive logic module (ALM), provides advanced features with efficient logic utilization. Each ALM contains a variety of look-up table (LUT)-based resources that can be divided between two adaptive LUTs (ALUTs). With up to eight inputs to the two ALUTs, one ALM can implement various combinations of two functions. This adaptability allows the ALM to be

datael and datafl are utilized, the output drives to registerl and/or bypasses registerl and drives to the interconnect using the bottom set of output drivers. The Quartus II Compiler automatically selects the inputs to the LUT. Asynchronous load data for the register comes from the datae or dataf input of the ALM. ALMs in normal mode support register packing.

Figure 2–9. 6-Input Function in Normal Mode Notes (1), (2)

Notes to Figure 2-9:

- If datae1 and dataf1 are used as inputs to the six-input function, then datae0 and dataf0 are available for register packing.
- (2) The dataf1 input is available for register packing only if the six-input function is un-registered.

Extended LUT Mode

The extended LUT mode is used to implement a specific set of seven-input functions. The set must be a 2-to-1 multiplexer fed by two arbitrary five-input functions sharing four inputs. Figure 2–10 shows the template of supported seven-input functions utilizing extended LUT mode. In this mode, if the seven-input function is unregistered, the unused eighth input is available for register packing.

Functions that fit into the template shown in Figure 2–10 occur naturally in designs. These functions often appear in designs as "if-else" statements in Verilog HDL or VHDL code.

The direct link interconnect allows an LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself. This provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2-16 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by DSP blocks and RAM blocks and row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects.

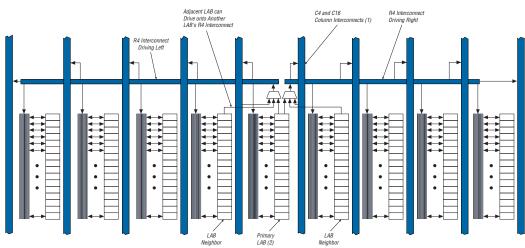


Figure 2–16. R4 Interconnect Connections Notes (1), (2), (3)

Notes to Figure 2–16:

- (1) C4 and C16 interconnects can drive R4 interconnects.
- (2) This pattern is repeated for every LAB in the LAB row.
- (3) The LABs in Figure 2–16 show the 16 possible logical outputs per LAB.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The six labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–21.

The R4, C4, and direct link interconnects from adjacent LABs drive the M4K RAM block local interconnect. The M4K RAM blocks can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 16 direct link input connections to the M4K RAM Block are possible from the left adjacent LABs and another 16 possible from the right adjacent LAB. M4K RAM block outputs can also connect to left and right LABs through direct link interconnect. Figure 2–22 shows the M4K RAM block to logic array interface.

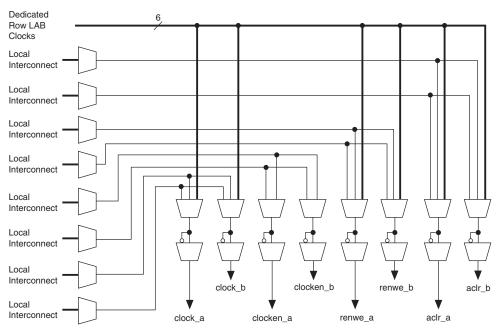


Figure 2-21. M4K RAM Block Control Signals

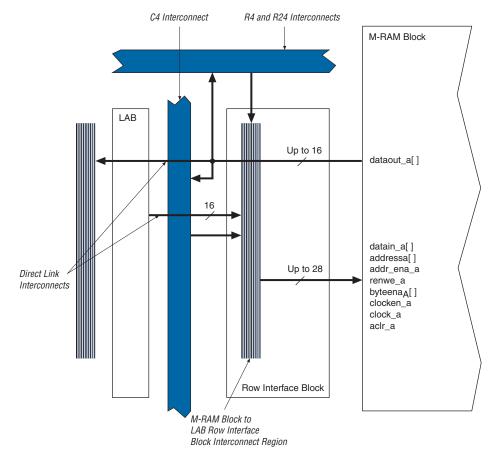


Figure 2-26. M-RAM Row Unit Interface to Interconnect

Table 2–4 shows the input and output data signal connections along with the address and control signal input connections to the row unit interfaces (L0 to L5 and R0 to R5).

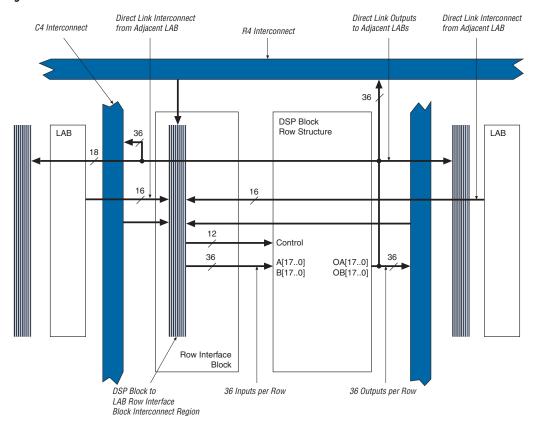


Figure 2-30. DSP Block Interface to Interconnect

A bus of 44 control signals feeds the entire DSP block. These signals include clocks, asynchronous clears, clock enables, signed/unsigned control signals, addition and subtraction control signals, rounding and saturation control signals, and accumulator synchronous loads. The clock signals are routed from LAB row clocks and are generated from specific LAB rows at the DSP block interface.

Table 2–16. Stratix II Supported I/O Standards (Part 2 of 2)								
I/O Standard	Туре	Input Reference Voltage (V _{REF}) (V)	Output Supply Voltage (V _{CCIO}) (V)	Board Termination Voltage (V_{TT}) (V)				
SSTL-2 Class I and II	Voltage-referenced	1.25	2.5	1.25				

Notes to Table 2–16:

- (1) This I/O standard is only available on input and output column clock pins.
- (2) This I/O standard is only available on input clock pins and DQS pins in I/O banks 3, 4, 7, and 8, and output clock pins in I/O banks 9,10, 11, and 12.
- (3) V_{CCIO} is 3.3 V when using this I/O standard in input and output column clock pins (in I/O banks 9, 10, 11, and 12). The clock input pins supporting LVDS on banks 3, 4, 7, and 8 use V_{CCINT} for LVDS input operations and have no dependency on the V_{CCIO} level of the bank.
- (4) 1.2-V HSTL is only supported in I/O banks 4,7, and 8.

For more information on I/O standards supported by Stratix II I/O banks, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*.

Stratix II devices contain eight I/O banks and four enhanced PLL external clock output banks, as shown in Figure 2–57. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS and HyperTransport inputs and outputs. These banks support all Stratix II I/O standards except PCI or PCI-X I/O pins, and SSTL-18 Class II and HSTL outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, enhanced PLL external clock output banks allow clock output capabilities such as differential support for SSTL and HSTL.

Device	TDI Input	Stratix II TDO V _{CC10} Voltage Level in I/O Bank 4							
	Buffer Power	V _{CC10} = 3.3 V	V _{CC10} = 2.5 V	V _{CCIO} = 1.8 V	V _{CC10} = 1.5 V	V _{CCIO} = 1.2 V			
Non-Stratix II	VCC = 3.3 V	√ (1)	√ (2)	√ (3)	Level shifter required	Level shifter required			
	VCC = 2.5 V	✓ (1), (4)	√ (2)	√ (3)	Level shifter required	Level shifter required			
	VCC = 1.8 V	✓ (1), (4)	✓ (2), (5)	~	Level shifter required	Level shifter required			
	VCC = 1.5 V	√ (1), (4)	√ (2), (5)	√ (6)	✓	✓			

Notes to Table 2-20:

- (1) The TDO output buffer meets V_{OH} (MIN) = 2.4 V.
- (2) The TDO output buffer meets V_{OH} (MIN) = 2.0 V.
- (3) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal.
- (4) Input buffer must be 3.3-V tolerant.
- (5) Input buffer must be 2.5-V tolerant.
- (6) Input buffer must be 1.8-V tolerant.

High-Speed Differential I/O with DPA Support

Stratix II devices contain dedicated circuitry for supporting differential standards at speeds up to 1 Gbps. The LVDS and HyperTransport differential I/O standards are supported in the Stratix II device. In addition, the LVPECL I/O standard is supported on input and output clock pins on the top and bottom I/O banks.

The high-speed differential I/O circuitry supports the following high speed I/O interconnect standards and applications:

- SPI-4 Phase 2 (POS-PHY Level 4)
- SFI-4
- Parallel RapidIO
- HyperTransport technology

There are four dedicated high-speed PLLs in the EP2S15 to EP2S30 devices and eight dedicated high-speed PLLs in the EP2S60 to EP2S180 devices to multiply reference clocks and drive high-speed differential SERDES channels.

Tables 2–21 through 2–26 show the number of channels that each fast PLL can clock in each of the Stratix II devices. In Tables 2–21 through 2–26 the first row for each transmitter or receiver provides the number of channels driven directly by the PLL. The second row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center PLL. For example, in the 484-pin FineLine BGA EP2S15

Table 3–7. Dod	cument Revision History (Part 2 of 2)	<u> </u>
Date and Document Version	Changes Made	Summary of Changes
April 2006, v4.1	Updated "Device Security Using Configuration Bitstream Encryption" section.	_
December 2005, v4.0	Updated "Software Interface" section.	_
May 2005, v3.0	 Updated "IEEE Std. 1149.1 JTAG Boundary-Scan Support" section. Updated "Operating Modes" section. 	_
January 2005, v2.1	Updated JTAG chain device limits.	_
January 2005, v2.0	Updated Table 3–3.	_
July 2004, v1.1	 Added "Automated Single Event Upset (SEU) Detection" section. Updated "Device Security Using Configuration Bitstream Encryption" section. Updated Figure 3–2. 	_
February 2004, v1.0	Added document to the Stratix II Device Handbook.	_

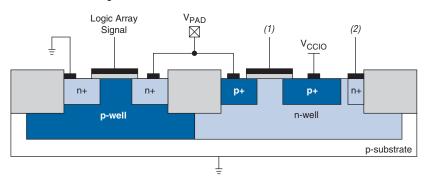
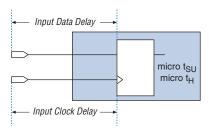


Figure 4–2. Transistor Level Diagram of FPGA Device I/O Buffers

Notes to Figure 4–2:


- This is the logic array signal or the larger of either the V_{CCIO} or V_{PAD} signal.
- This is the larger of either the V_{CCIO} or V_{PAD} signal.

Power-On Reset Circuitry

Stratix II devices have a POR circuit to keep the whole device system in reset state until the power supply voltage levels have stabilized during power-up. The POR circuit monitors the $V_{\rm CCINT}$, $V_{\rm CCIO}$, and $V_{\rm CCPD}$ voltage levels and tri-states all the user I/O pins while $V_{\rm CC}$ is ramping up until normal user levels are reached. The POR circuitry also ensures that all eight I/O bank $V_{\rm CCIO}$ voltages, $V_{\rm CCPD}$ voltage, as well as the logic array $V_{\rm CCINT}$ voltage, reach an acceptable level before configuration is triggered. After the Stratix II device enters user mode, the POR circuit continues to monitor the $V_{\rm CCINT}$ voltage level so that a brown-out condition during user mode can be detected. If there is a $V_{\rm CCINT}$ voltage sag below the Stratix II operational level during user mode, the POR circuit resets the device.

When power is applied to a Stratix II device, a power-on-reset event occurs if V_{CC} reaches the recommended operating range within a certain period of time (specified as a maximum V_{CC} rise time). The maximum V_{CC} rise time for Stratix II device is 100 ms. Stratix II devices provide a dedicated input pin (PORSEL) to select POR delay times of 12 or 100 ms during power-up. When the PORSEL pin is connected to ground, the POR time is 100 ms. When the PORSEL pin is connected to V_{CC} , the POR time is 12 ms.

Figure 5–3. Input Register Setup & Hold Timing Diagram

For output timing, different I/O standards require different baseline loading techniques for reporting timing delays. Altera characterizes timing delays with the required termination for each I/O standard and with 0 pF (except for PCI and PCI-X which use 10 pF) loading and the timing is specified up to the output pin of the FPGA device. The Quartus II software calculates the I/O timing for each I/O standard with a default baseline loading as specified by the I/O standards.

The following measurements are made during device characterization. Altera measures clock-to-output delays (t_{CO}) at worst-case process, minimum voltage, and maximum temperature (PVT) for default loading conditions shown in Table 5–34. Use the following equations to calculate clock pin to output pin timing for Stratix II devices.

 t_{CO} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay

 t_{xz}/t_{zx} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay + output enable pin delay

Simulation using IBIS models is required to determine the delays on the PCB traces in addition to the output pin delay timing reported by the Quartus II software and the timing model in the device handbook.

- 1. Simulate the output driver of choice into the generalized test setup, using values from Table 5–34.
- 2. Record the time to V_{MEAS} .
- 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load.

0	Downwater		peed le <i>(2)</i>	-3 Speed Grade (3)		-4 Speed Grade		-5 Speed Grade		
Symbol	Parameter	Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{MEGARC}	Synchronous read cycle time	1,866	2,774	1,866	2,911	1,777 1,866	3,189	1,777 1,866	3,716	ps
t _{MEGAWERESU}	Write or read enable setup time before clock	144		151		165 165		192		ps
t _{MEGAWEREH}	Write or read enable hold time after clock	39		40		44 44		52		ps
t _{MEGABESU}	Byte enable setup time before clock	50		52		57 57		67		ps
t _{MEGABEH}	Byte enable hold time after clock	39		40		44 44		52		ps
t _{MEGADATAASU}	A port data setup time before clock	50		52		57 57		67		ps
t _{MEGADATAAH}	A port data hold time after clock	243		255		279 279		325		ps
t _{MEGAADDRASU}	A port address setup time before clock	589		618		677 677		789		ps
t _{MEGAADDRAH}	A port address hold time after clock	241		253		277 277		322		ps
t _{MEGADATABSU}	B port setup time before clock	50		52		57 57		67		ps
t _{MEGADATABH}	B port hold time after clock	243		255		279 279		325		ps
t _{megaaddrbsu}	B port address setup time before clock	589		618		677 677		789		ps
t _{MEGAADDRBH}	B port address hold time after clock	241		253		277 277		322		ps
t _{MEGADATACO1}	Clock-to-output delay when using output registers	480	715	480	749	457 480	821	480	957	ps
t _{MEGADATACO2}	Clock-to-output delay without output registers	1,950	2,899	1,950	3,042	1,857 1,950	3,332	1,950	3,884	ps
t _{MEGACLKL}	Minimum clock low time	1,250		1,312		1,437 1,437		1,675		ps

Table 5–73. Stratix II I/O Input Delay for Column Pins (Part 3 of 3)											
I/O Standard	Davamatav	Minimur	n Timing	-3 Speed	-3 Speed	-4 Speed Grade	-5 Speed	11!4			
	Parameter	Industrial	Commercial	Grade (2)	Grade (3)		Grade	Unit			
1.2-V HSTL	t _{P1}	645	677	1194	1252	-	-	ps			
	t _{PCOUT}	379	398	758	795	-	-	ps			

Notes for Table 5-73:

- (1) These I/O standards are only supported on DQS pins.
- (2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.
- (3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

Table 5–74. Stra	tix II I/O Input	t Delay for Ro	w Pins (Part 1	1 of 2)					
I/O Standard	Parameter	Minimu	m Timing	-3 Speed Grade	-3 Speed Grade	-4 Speed	-5 Speed	Unit	
i/O Stanuaru	i arameter	Industrial	Commercial	(1)	<i>(2)</i>	Grade	Grade		
LVTTL	t _{Pl}	715	749	1287	1350	1477	1723	ps	
	t _{PCOUT}	391	410	760	798	873	1018	ps	
2.5 V	t _{Pl}	726	761	1273	1335	1461	1704	ps	
	t _{PCOUT}	402	422	746	783	857	999	ps	
1.8 V	t _{PI}	788	827	1427	1497	1639	1911	ps	
	t _{PCOUT}	464	488	900	945	1035	1206	ps	
1.5 V	t _{Pl}	792	830	1498	1571	1720	2006	ps	
	t _{PCOUT}	468	491	971	1019	1116	1301	ps	
LVCMOS	t _{Pl}	715	749	1287	1350	1477	1723	ps	
	t _{PCOUT}	391	410	760	798	873	1018	ps	
SSTL-2 Class I	t _{Pl}	547	573	879	921	1008	1176	ps	
	t _{PCOUT}	223	234	352	369	404	471	ps	
SSTL-2 Class II	t _{Pl}	547	573	879	921	1008	1176	ps	
	t _{PCOUT}	223	234	352	369	404	471	ps	
SSTL-18 Class I	t _{Pl}	577	605	960	1006	1101	1285	ps	
	t _{PCOUT}	253	266	433	454	497	580	ps	
SSTL-18 Class II	t _{Pl}	577	605	960	1006	1101	1285	ps	
	t _{PCOUT}	253	266	433	454	497	580	ps	
1.5-V HSTL	t _{Pl}	602	631	1056	1107	1212	1413	ps	
Class I	t _{PCOUT}	278	292	529	555	608	708	ps	

Table 5–76. St	ratix II I/O	Output Delay	for Row Pins	(Part 3 of 3)					
			Minimu	m Timing	-3	-3	-4	-5	
I/O Standard	Drive Strength	Parameter	Industrial	Commercial	Speed Grade (2)	Speed Grade (3)	Speed Grade	Speed Grade	Unit
1.8-V HSTL	4 mA	t _{OP}	972	1019	1610	1689	1850	1956	ps
Class I		t _{DIP}	930	976	1555	1632	1787	1883	ps
	6 mA	t _{OP}	975	1022	1580	1658	1816	1920	ps
		t _{DIP}	933	979	1525	1601	1753	1847	ps
	8 mA	t _{OP}	958	1004	1576	1653	1811	1916	ps
		t _{DIP}	916	961	1521	1596	1748	1843	ps
	10 mA	t _{OP}	962	1008	1567	1644	1801	1905	ps
		t _{DIP}	920	965	1512	1587	1738	1832	ps
	12 mA	t _{OP}	953	999	1566	1643	1800	1904	ps
	(1)	t _{DIP}	911	956	1511	1586	1737	1831	ps
1.5-V HSTL	4 mA	t _{OP}	970	1018	1591	1669	1828	1933	ps
Class I		t _{DIP}	928	975	1536	1612	1765	1860	ps
	6 mA	t _{OP}	974	1021	1579	1657	1815	1919	ps
		t _{DIP}	932	978	1524	1600	1752	1846	ps
	8 mA (1)	t _{OP}	960	1006	1572	1649	1807	1911	ps
		t _{DIP}	918	963	1517	1592	1744	1838	ps
LVDS		t _{OP}	1018	1067	1723	1808	1980	2089	ps
		t _{DIP}	976	1024	1668	1751	1917	2016	ps
HyperTransport		t _{OP}	1005	1053	1723	1808	1980	2089	ps
		t _{DIP}	963	1010	1668	1751	1917	2016	ps

Notes to Table 5-76:

- (1) This is the default setting in the Quartus II software.
- (2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.
- (3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

Maximum Input & Output Clock Toggle Rate

Maximum clock toggle rate is defined as the maximum frequency achievable for a clock type signal at an I/O pin. The I/O pin can be a regular I/O pin or a dedicated clock I/O pin.

Table 5–79. Max	imum Outp	ut Clock	Toggle R	ate Derat	ing Facto	rs (Par	t 5 of 5)					
			Maximum Output Clock Toggle Rate Derating Factors (ps/pF)									
I/O Standard	Drive Strength	Column I/O Pins		Ro	Row I/O Pins			ted Clo	ck Outputs			
	ou ongui	-3	-4	-5	-3	-4	-5	-3	-4	-5		
3.3-V LVTTL	OCT 50 Ω	133	152	152	133	152	152	147	152	152		
2.5-V LVTTL	OCT 50 Ω	207	274	274	207	274	274	235	274	274		
1.8-V LVTTL	OCT 50 Ω	151	165	165	151	165	165	153	165	165		
3.3-V LVCMOS	OCT 50 Ω	300	316	316	300	316	316	263	316	316		
1.5-V LVCMOS	OCT 50 Ω	157	171	171	157	171	171	174	171	171		
SSTL-2 Class I	OCT 50 Ω	121	134	134	121	134	134	77	134	134		
SSTL-2 Class II	OCT 25 Ω	56	101	101	56	101	101	58	101	101		
SSTL-18 Class I	OCT 50 Ω	100	123	123	100	123	123	106	123	123		
SSTL-18 Class II	OCT 25 Ω	61	110	110	-	-	-	59	110	110		
1.2-V HSTL (2)	OCT 50 Ω	95	-	-	-	-	-	-	-	95		

Notes to Table 5-79:

- (1) For LVDS and HyperTransport technology output on row I/O pins, the toggle rate derating factors apply to loads larger than 5 pF. In the derating calculation, subtract 5 pF from the intended load value in pF for the correct result. For a load less than or equal to 5 pF, refer to Table 5–78 for output toggle rates.
- (2) 1.2-V HSTL is only supported on column I/O pins in I/O banks 4,7, and 8.
- (3) Differential HSTL and SSTL is only supported on column clock and DQS outputs.
- (4) LVPECL is only supported on column clock outputs.

Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 5–7. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (Figure 5–7). The maximum DCD for a clock is the larger value of D1 and D2.

Table 5–85. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path for -4 & -5 Devices (Part 2 of 2) Notes (1), (2)

DDIO Column Output I/O		Maximum DCD Based on I/O Standard of Input Feeding the DDI Clock Port (No PLL in the Clock Path)							
Standard	TTL/0	CMOS	SSTL-2	SSTL/HSTL	Unit				
	3.3/2.5 V	1.8/1.5 V	2.5 V	1.8/1.5 V					
SSTL-18 Class I	335	390	65	65	ps				
SSTL-18 Class II	320	375	70	80	ps				
1.8-V HSTL Class I	330	385	60	70	ps				
1.8-V HSTL Class II	330	385	60	70	ps				
1.5-V HSTL Class I	330	390	60	70	ps				
1.5-V HSTL Class II	330	360	90	100	ps				
1.2-V HSTL	420	470	155	165	ps				
LVPECL	180	180	180	180	ps				

Notes to Table 5-85:

- (1) Table 5–85 assumes the input clock has zero DCD.
- (2) The DCD specification is based on a no logic array noise condition.

Table 5–86. Maximum DCD for DDIO Output on Row I/O Pins with PLL in the Clock Path (Part 1 of 2) Note (1)

Row DDIO Output I/O	Maximum DCD (PLL Output Clock Feeding DDIO Clock Port)		
Stanuaru	-3 Device	-4 & -5 Device	
3.3-V LVTTL	110	105	ps
3.3-V LVCMOS	65	75	ps
2.5V	75	90	ps
1.8V	85	100	ps
1.5-V LVCMOS	105	100	ps
SSTL-2 Class I	65	75	ps
SSTL-2 Class II	60	70	ps
SSTL-18 Class I	50	65	ps
1.8-V HSTL Class I	50	70	ps
1.5-V HSTL Class I	55	70	ps

Table 5–91 shows the high-speed I/O timing specifications for -5 speed grade Stratix II devices.

Table 5–91. High-Speed I/O Specifications for -5 Speed Grade Notes (1), (2)							
Cumbal	Conditions			-5 Speed Grade			
Symbol				Min	Тур	Max	Unit
f _{HSCLK} (clock frequency) f _{HSCLK} = f _{HSDR} / W	W = 2 to 32 (LVDS, HyperTransport technology)			16		420	MHz
	W = 1 (SERDES by	pass, LVDS only	y)	16		500	MHz
	W = 1 (SERDES used, LVDS only)			150		640	MHz
f _{HSDR} (data rate)	J = 4 to 10 (LVDS, F	lyperTransport t	technology)	150		840	Mbps
	J = 2 (LVDS, Hyper	Transport techno	ology)	(4)		700	Mbps
	J = 1 (LVDS only)			(4)		500	Mbps
f _{HSDRDPA} (DPA data rate)	J = 4 to 10 (LVDS, HyperTransport technology)			150		840	Mbps
TCCS	All differential I/O standards			-		200	ps
SW	All differential I/O standards			440		-	ps
Output jitter						190	ps
Output t _{RISE}	All differential I/O standards					290	ps
Output t _{FALL}	All differential I/O standards					290	ps
t _{DUTY}				45	50	55	%
DPA run length						6,400	UI
DPA jitter tolerance	Data channel peak-to-peak jitter			0.44			UI
DPA lock time	Standard	Training Pattern	Transition Density				Number of repetitions
	SPI-4	0000000000 1111111111	10%	256			
	Parallel Rapid I/O	00001111	25%	256			1
		10010000	50%	256			1
	Miscellaneous	10101010	100%	256			1
		01010101		256			1

Notes to Table 5-91:

- (1) When J = 4 to 10, the SERDES block is used.
- (2) When J = 1 or 2, the SERDES block is bypassed.
- (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 ≤ input clock frequency × W ≤ 1,040.
- (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) utilized. The I/O differential buffer and input register do not have a minimum toggle rate.

Name	Description	Min	Тур	Max	Unit
f_{IN}	Input clock frequency (for -3 and -4 speed grade devices)	16.08		717	MHz
	Input clock frequency (for -5 speed grade devices)	16.08		640	MHz
f _{INPFD}	Input frequency to the PFD	16.08		500	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
t _{INJITTER}	Input clock jitter tolerance in terms of period jitter. Bandwidth ≤ 2 MHz		0.5		ns (p-p)
	Input clock jitter tolerance in terms of period jitter. Bandwidth > 2 MHz		1.0		ns (p-p)
f _{vco}	Upper VCO frequency range for -3 and -4 speed grades	300		1,040	MHz
	Upper VCO frequency range for –5 speed grades	300		840	MHz
	Lower VCO frequency range for -3 and -4 speed grades	150		520	MHz
	Lower VCO frequency range for –5 speed grades	150		420	MHz
f _{OUT}	PLL output frequency to GCLK or RCLK	4.6875		550	MHz
	PLL output frequency to LVDS or DPA clock	150		1,040	MHz
f _{OUT_IO}	PLL clock output frequency to regular I/O pin	4.6875		(1)	MHz
f _{SCANCLK}	Scanclk frequency			100	MHz
t _{CONFIGPLL}	Time required to reconfigure scan chains for fast PLLs		75/f _{SCANCLK}		ns
f _{CLBW}	PLL closed-loop bandwidth	1.16	5.00	28.00	MHz
t _{LOCK}	Time required for the PLL to lock from the time it is enabled or the end of the device configuration		0.03	1.00	ms
t _{PLL_PSERR}	Accuracy of PLL phase shift			±15	ps
t _{ARESET}	Minimum pulse width on areset signal.	10			ns
tareset_reconfig	Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandone goes high.	500			ns

Note to Table 5–93:

(1) Limited by I/O f_{MAX} . See Table 5–77 on page 5–67 for the maximum.

Table 5–97. DQS Phase Jitter Specifications for DLL-Delayed Clock (tDQS PHASE_JITTER) Note (1)				
Number of DQS Delay Buffer Stages (2)	DQS Phase Jitter	Unit		
1	30	ps		
2	60	ps		
3	90	ps		
4	120	ps		

Notes to Table 5–97:

- (1) Peak-to-peak phase jitter on the phase shifted DDS clock (digital jitter is caused by DLL tracking).
- (2) Delay stages used for requested DQS phase shift are reported in your project's Compilation Report in the Quartus II software.

Table 5–98. DQS Phase-Shift Error Specifications for DLL-Delayed Clock (tDQS_PSERR) (1)					
Number of DQS Delay Buffer Stages (2)	-3 Speed Grade	-4 Speed Grade	–5 Speed Grade	Unit	
1	25	30	35	ps	
2	50	60	70	ps	
3	75	90	105	ps	
4	100	120	140	ps	

Notes to Table 5–98:

- (1) This error specification is the absolute maximum and minimum error. For example, skew on three delay buffer stages in a C3 speed grade is 75 ps or \pm 37.5 ps.
- (2) Delay stages used for requested DQS phase shift are reported in your project's Compilation Report in the Quartus II software.

Table 5–99. DQS Bus Clock Skew Adder Specifications (tDQS_CLOCK_SKEW_ADDER)					
Mode	DQS Clock Skew Adder	Unit			
×4 DQ per DQS	40	ps			
×9 DQ per DQS	70	ps			
×18 DQ per DQS	75	ps			
×36 DQ per DQS	95	ps			

Note to Table 5-99:

(1) This skew specification is the absolute maximum and minimum skew. For example, skew on a $\times 4$ DQ group is 40 ps or ± 20 ps.