Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 4548 | | Number of Logic Elements/Cells | 90960 | | Total RAM Bits | 4520488 | | Number of I/O | 902 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 1508-BBGA, FCBGA | | Supplier Device Package | 1508-FBGA, FC (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s90f1508c5n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Stratix II devices are available in up to three speed grades, -3, -4, and -5, with -3 being the fastest. Table 1-5 shows Stratix II device speed-grade offerings. | Table 1-5 | Table 1–5. Stratix II Device Speed Grades | | | | | | | | | | |-----------|---|----------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------|------------------------------|--|--|--| | Device | Temperature
Grade | 484-Pin
FineLine
BGA | 484-Pin
Hybrid
FineLine
BGA | 672-Pin
FineLine
BGA | 780-Pin
FineLine
BGA | 1,020-Pin
FineLine
BGA | 1,508-Pin
FineLine
BGA | | | | | EP2S15 | Commercial | -3, -4, -5 | | -3, -4, -5 | | | | | | | | | Industrial | -4 | | -4 | | | | | | | | EP2S30 | Commercial | -3, -4, -5 | | -3, -4, -5 | | | | | | | | | Industrial | -4 | | -4 | | | | | | | | EP2S60 | Commercial | -3, -4, -5 | | -3, -4, -5 | | -3, -4, -5 | | | | | | | Industrial | -4 | | -4 | | -4 | | | | | | EP2S90 | Commercial | | -4, -5 | | -4, -5 | -3, -4, -5 | -3, -4, -5 | | | | | | Industrial | | | | | -4 | -4 | | | | | EP2S130 | Commercial | | | | -4, -5 | -3, -4, -5 | -3, -4, -5 | | | | | | Industrial | | | | | -4 | -4 | | | | | EP2S180 | Commercial | | | | _ | -3, -4, -5 | -3, -4, -5 | | | | | | Industrial | | | | | -4 | -4 | | | | LABs on right and left sides for easy access to horizontal I/O pins M-RAM M-RAM Block Block M-RAM M-RAM Block Block M-RAM M-RAM Block Block DSP DSP M4K M512 LABs Blocks Blocks **Blocks** Blocks Figure 2–24. EP2S130 Device with M-RAM Interface Locations Note (1) M-RAM blocks interface to *Note to Figure 2–24:* (1) The device shown is an EP2S130 device. The number and position of M-RAM blocks varies in other devices. Figure 2-28. DSP Block Diagram for 18 x 18-Bit Configuration Figure 2–41. Global & Regional Clock Connections from Center Clock Pins & Fast PLL Outputs Note (1) #### Notes to Figure 2-41: - (1) EP2S15 and EP2S30 devices only have four fast PLLs (1, 2, 3, and 4), but the connectivity from these four PLLs to the global and regional clock networks remains the same as shown. - (2) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock control block, provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL. | Table 2–11. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs (Part 2 of 2) | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Top Side Global & Regional
Clock Network Connectivity | DLLCLK | CLK12 | CLK13 | CLK14 | CLK15 | RCLK24 | RCLK25 | RCLK26 | RCLK27 | RCLK28 | RCLK29 | RCLK30 | RCLK31 | | c4 | ✓ | | | | | ✓ | | ✓ | | ✓ | | ✓ | | | c5 | ✓ | | | | | | ✓ | | ✓ | | ✓ | | ✓ | | Enhanced PLL 11 outputs | | | | | | | | | | | | | | | c0 | | ~ | / | | | ✓ | | | | ✓ | | | | | c1 | | ✓ | ✓ | | | | ✓ | | | | ✓ | | | | c2 | | | | ✓ | ✓ | | | ✓ | | | | ✓ | | | с3 | | | | ✓ | ✓ | | | | ✓ | | | | ✓ | | c4 | | | | | | ✓ | | ✓ | | ✓ | | ✓ | | | c5 | | | | | | | ✓ | | ✓ | | ✓ | | ✓ | | Table 2–12. Global & Regional Clock Connections from Bottom Clock Pins & Enhanced PLL
Outputs (Part 1 of 2) | | | | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Bottom Side Global &
Regional Clock Network
Connectivity | DLLCLK | CLK4 | CLK5 | CLK6 | CLK7 | RCLK8 | RCLK9 | RCLK10 | RCLK11 | RCLK12 | RCLK13 | RCLK14 | RCLK15 | | Clock pins | | | | | | | | | | | | | | | CLK4p | ✓ | \ | \ | | | ~ | | | | ~ | | | | | CLK5p | ✓ | ✓ | ✓ | | | | ✓ | | | | ✓ | | | | CLK6p | ✓ | | | ✓ | ✓ | | | ✓ | | | | ✓ | | | CLK7p | ✓ | | | ✓ | ✓ | | | | ✓ | | | | \ | | CLK4n | | ✓ | | | | ✓ | | | | ✓ | | | | | CLK5n | | | ✓ | | | | ✓ | | | | ✓ | | | | CLK6n | | | | ✓ | | | | ✓ | | | | ✓ | | | CLK7n | | | | | ✓ | | | | ✓ | | | | ✓ | | Drivers from internal logic | | | • | | • | | | | • | | • | • | | | GCLKDRV0 | | ✓ | | | | | | | | | | | | | GCLKDRV1 | | | ✓ | | | | | | | | | | | | GCLKDRV2 | | | | ✓ | | | | | | | | | | When using the IOE for DDR inputs, the two input registers clock double rate input data on alternating edges. An input latch is also used in the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times. This allows both bits of data to be synchronous with the same clock edge (either rising or falling). Figure 2–52 shows an IOE configured for DDR input. Figure 2–53 shows the DDR input timing diagram. Figure 2–52. Stratix II IOE in DDR Input I/O Configuration Notes (1), (2), (3) *Notes to Figure 2–52:* - (1) All input signals to the IOE can be inverted at the IOE. - (2) This signal connection is only allowed on dedicated DQ function pins. - (3) This signal is for dedicated DQS function pins only. - (4) The optional PCI clamp is only available on column I/O pins. Figure 2-53. Input Timing Diagram in DDR Mode When using the IOE for DDR outputs, the two output registers are configured to clock two data paths from ALMs on rising clock edges. These output registers are multiplexed by the clock to drive the output pin at a $\times 2$ rate. One output register clocks the first bit out on the clock high time, while the other output register clocks the second bit out on the clock low time. Figure 2–54 shows the IOE configured for DDR output. Figure 2–55 shows the DDR output timing diagram. Figure 2-55. Output Timing Diagram in DDR Mode The Stratix II IOE operates in bidirectional DDR mode by combining the DDR input and DDR output configurations. The negative-edge-clocked OE register holds the OE signal inactive until the falling edge of the clock. This is done to meet DDR SDRAM timing requirements. ### **External RAM Interfacing** In addition to the six I/O registers in each IOE, Stratix II devices also have dedicated phase-shift circuitry for interfacing with external memory interfaces. Stratix II devices support DDR and DDR2 SDRAM, QDR II SRAM, RLDRAM II, and SDR SDRAM memory interfaces. In every Stratix II device, the I/O banks at the top (banks 3 and 4) and bottom (banks 7 and 8) of the device support DQ and DQS signals with DQ bus modes of $\times 4$, $\times 8/\times 9$, $\times 16/\times 18$, or $\times 32/\times 36$. Table 2–14 shows the number of DQ and DQS buses that are supported per device. | Table 2- | Table 2–14. DQS & DQ Bus Mode Support (Part 1 of 2) Note (1) | | | | | | | | | |----------|--|------------------------|------------------------|-----------------------------|-----------------------------|--|--|--|--| | Device | Package | Number of
×4 Groups | Number of ×8/×9 Groups | Number of
×16/×18 Groups | Number of
×32/×36 Groups | | | | | | EP2S15 | 484-pin FineLine BGA | 8 | 4 | 0 | 0 | | | | | | | 672-pin FineLine BGA | 18 | 8 | 4 | 0 | | | | | | EP2S30 | 484-pin FineLine BGA | 8 | 4 | 0 | 0 | | | | | | | 672-pin FineLine BGA | 18 | 8 | 4 | 0 | | | | | | EP2S60 | 484-pin FineLine BGA | 8 | 4 | 0 | 0 | | | | | | | 672-pin FineLine BGA | 18 | 8 | 4 | 0 | | | | | | | 1,020-pin FineLine BGA | 36 | 18 | 8 | 4 | | | | | For more information on tolerance specifications for on-chip termination with calibration, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. #### On-Chip Parallel Termination with Calibration Stratix II devices support on-chip parallel termination with calibration for column I/O pins only. There is one calibration circuit for the top I/O banks and one circuit for the bottom I/O banks. Each on-chip parallel termination calibration circuit compares the total impedance of each I/O buffer to the external 50- Ω resistors connected to the RUP and RDN pins and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. Once the calibration circuit finds the correct impedance, it powers down and stops changing the characteristics of the drivers. On-chip parallel termination with calibration is only supported for input pins. For more information on on-chip termination supported by Stratix II devices, refer to the *Selectable I/O Standards in Stratix II & Stratix II GX Devices* chapter in volume 2 of the *Stratix II Device Handbook* or the *Stratix II GX Device Handbook*. For more information on tolerance specifications for on-chip termination with calibration, refer to the *DC & Switching Characteristics* chapter in volume 1 of the *Stratix II Device Handbook*. ## MultiVolt I/O Interface The Stratix II architecture supports the MultiVolt I/O interface feature that allows Stratix II devices in all packages to interface with systems of different supply voltages. The Stratix II VCCINT pins must always be connected to a 1.2-V power supply. With a 1.2-V V $_{\rm CCINT}$ level, input pins are 1.5-, 1.8-, 2.5-, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-, 1.8-, 2.5-, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (for example, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). The Stratix II VCCPD power pins must be connected to a 3.3-V power supply. These power pins are used to supply the pre-driver power to the output buffers, which increases the performance of the output pins. The VCCPD pins also power configuration input pins and JTAG input pins. | Table 2–19. Board Design Recommendations for nCEO | | | | | | | | | | |--|---|---------------------------|---------------------------|---------------------------|---------------------------|--|--|--|--| | nCF Innut Buffer Bower in I/O | Stratix II nCEO V _{CCIO} Voltage Level in I/O Bank 7 | | | | | | | | | | nCE Input Buffer Power in I/O
Bank 3 | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CC10} = 1.8 V | V _{CC10} = 1.5 V | V _{CC10} = 1.2 V | | | | | | VCCSEL high (V _{CCIO} Bank 3 = 1.5 V) | √ (1), (2) | ✓ (3), (4) | √ (5) | ✓ | ✓ | | | | | | VCCSEL high (V _{CCIO} Bank 3 = 1.8 V) | √ (1), (2) | ✓ (3), (4) | ✓ | ✓ | Level shifter required | | | | | | VCCSEL low (nCE Powered by V _{CCPD} = 3.3V) | √ | √ (4) | √ (6) | Level shifter required | Level shifter required | | | | | #### Notes to Table 2-19: - (1) Input buffer is 3.3-V tolerant. - (2) The nCEO output buffer meets V_{OH} (MIN) = 2.4 V. - (3) Input buffer is 2.5-V tolerant. - (4) The nCEO output buffer meets V_{OH} (MIN) = 2.0 V. - (5) Input buffer is 1.8-V tolerant. - (6) An external 250-Ω pull-up resistor is not required, but recommended if signal levels on the board are not optimal. For JTAG chains, the TDO pin of the first device drives the TDI pin of the second device in the chain. The V_{CCSEL} input on JTAG input I/O cells (TCK, TMS, TDI, and TRST) is internally hardwired to GND selecting the 3.3-V/2.5-V input buffer powered by V_{CCPD} . The ideal case is to have the V_{CCIO} of the TDO bank from the first device to match the V_{CCSEL} settings for TDI on the second device, but that may not be possible depending on the application. Table 2–20 contains board design recommendations to ensure proper JTAG chain operation. | Table 2–20. Supported TDO/TDI Voltage Combinations (Part 1 of 2) | | | | | | | | | | | |--|------------------------------------|---------------------------|--|---------------------------|---------------------------|---------------------------|--|--|--|--| | Device | TDI Input
Buffer Power | ; | Stratix II TDO V _{CC10} Voltage Level in I/O Bank 4 | | | | | | | | | | | V _{CC10} = 3.3 V | V _{CC10} = 2.5 V | V _{CC10} = 1.8 V | V _{CC10} = 1.5 V | V _{CC10} = 1.2 V | | | | | | Stratix II | Always
V _{CCPD} (3.3V) | √ (1) | √ (2) | √ (3) | Level shifter required | Level shifter required | | | | | The Quartus II software has an Auto Usercode feature where you can choose to use the checksum value of a programming file as the JTAG user code. If selected, the checksum is automatically loaded to the USERCODE register. Turn on the **Auto Usercode** option by clicking **Device & Pin Options**, then **General**, in the **Settings** dialog box (Assignments menu). | Table 3–2. Stratix II Boundary-Scan Register Length | | | | | | | | |---|-------------------------------|--|--|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | | | EP2S15 | 1,140 | | | | | | | | EP2S30 | 1,692 | | | | | | | | EP2S60 | 2,196 | | | | | | | | EP2S90 | 2,748 | | | | | | | | EP2S130 | 3,420 | | | | | | | | EP2S180 | 3,948 | | | | | | | | Table 3–3. 32 | Table 3–3. 32-Bit Stratix II Device IDCODE | | | | | | | | | |---------------|--|-----------------------|------------------------------------|-----------------|--|--|--|--|--| | | | IDCODE (32 Bits) (1) | | | | | | | | | Device | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer Identity (11
Bits) | LSB (1 Bit) (2) | | | | | | | EP2S15 | 0000 | 0010 0000 1001 0001 | 000 0110 1110 | 1 | | | | | | | EP2S30 | 0000 | 0010 0000 1001 0010 | 000 0110 1110 | 1 | | | | | | | EP2S60 | 0001 | 0010 0000 1001 0011 | 000 0110 1110 | 1 | | | | | | | EP2S90 | 0000 | 0010 0000 1001 0100 | 000 0110 1110 | 1 | | | | | | | EP2S130 | 0000 | 0010 0000 1001 0101 | 000 0110 1110 | 1 | | | | | | | EP2S180 | 0000 | 0010 0000 1001 0110 | 000 0110 1110 | 1 | | | | | | #### Notes to Table 3-3: - (1) The most significant bit (MSB) is on the left. - (2) The IDCODE's least significant bit (LSB) is always 1. Stratix, Stratix II, Cyclone, and Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix, Stratix II, Cyclone, and Cyclone II devices are in the 18th or after they fail configuration. This does not affect SignalTap II. you need to support configuration input voltages of 1.8 V/1.5 V, you should set the VCCSEL to a logic high and the V_{CCIO} of the bank that contains the configuration inputs to 1.8 V/1.5 V. For more information on multi-volt support, including information on using TDO and nCEO in multi-volt systems, refer to the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. ## **Configuration Schemes** You can load the configuration data for a Stratix II device with one of five configuration schemes (see Table 3–5), chosen on the basis of the target application. You can use a configuration device, intelligent controller, or the JTAG port to configure a Stratix II device. A configuration device can automatically configure a Stratix II device at system power-up. You can configure multiple Stratix II devices in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Stratix II FPGAs offer the following: - Configuration data decompression to reduce configuration file storage - Design security using configuration data encryption to protect your designs - Remote system upgrades for remotely updating your Stratix II designs Table 3–5 summarizes which configuration features can be used in each configuration scheme. | Configuration Scheme | Configuration Method | Design Security | Decompression | Remote System
Upgrade | |----------------------|--|-----------------|---------------|--------------------------| | FPP | MAX II device or microprocessor and flash device | √ (1) | √ (1) | ✓ | | | Enhanced configuration device | | √ (2) | ~ | | AS | Serial configuration device | ✓ | ✓ | √ (3) | | PS | MAX II device or microprocessor and flash device | ✓ | ~ | ✓ | | | Enhanced configuration device | ✓ | ✓ | ✓ | | | Download cable (4) | ✓ | ✓ | | # 5. DC & Switching Characteristics SII51005-4.5 ## Operating Conditions Stratix[®] II devices are offered in both commercial and industrial grades. Industrial devices are offered in -4 speed grades and commercial devices are offered in -3 (fastest), -4, -5 speed grades. Tables 5–1 through 5–32 provide information about absolute maximum ratings, recommended operating conditions, DC electrical characteristics, and other specifications for Stratix II devices. ### **Absolute Maximum Ratings** Table 5–1 contains the absolute maximum ratings for the Stratix II device family. | Table 5–1. Stratix II Device Absolute Maximum Ratings Notes (1), (2), (3) | | | | | | | | | | |---|-------------------------------|-------------------------|-----------------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V_{CCINT} | Supply voltage | With respect to ground | -0.5 | 1.8 | V | | | | | | V _{CCIO} | Supply voltage | With respect to ground | -0.5 | 4.6 | V | | | | | | V _{CCPD} | Supply voltage | With respect to ground | -0.5 | 4.6 | V | | | | | | V _{CCA} | Analog power supply for PLLs | With respect to ground | -0.5 | 1.8 | V | | | | | | V _{CCD} | Digital power supply for PLLs | With respect to ground | -0.5 | 1.8 | V | | | | | | VI | DC input voltage (4) | | -0.5 | 4.6 | V | | | | | | I _{OUT} | DC output current, per pin | | -25 | 40 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | | | | T _J | Junction temperature | BGA packages under bias | - 55 | 125 | °C | | | | | #### Notes to Tables 5-1 - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Conditions beyond those listed in Table 5–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device. - (3) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply. - (4) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to −2.0 V for input currents less than 100 mA and periods shorter than 20 ns. | Table 5–5. | Table 5–5. LVTTL Specifications (Part 2 of 2) | | | | | | | | | |------------|---|----------------------------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V_{OL} | Low-level output voltage | I _{OL} = 4 mA (2) | | 0.45 | V | | | | | #### Notes to Tables 5-5: - Stratix II devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B. - (2) This specification is supported across all the programmable drive strength settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–6. LVCMOS Specifications | | | | | | | | | |----------------------------------|---------------------------|--|-------------------------|---------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V _{CCIO} (1) | Output supply voltage | | 3.135 | 3.465 | V | | | | | V _{IH} | High-level input voltage | | 1.7 | 4.0 | ٧ | | | | | V _{IL} | Low-level input voltage | | -0.3 | 0.8 | V | | | | | V _{OH} | High-level output voltage | $V_{CCIO} = 3.0,$ $I_{OH} = -0.1 \text{ mA } (2)$ | V _{CCIO} - 0.2 | | ٧ | | | | | V _{OL} | Low-level output voltage | V _{CCIO} = 3.0,
I _{OL} = 0.1 mA (2) | | 0.2 | ٧ | | | | #### Notes to Table 5-6: - (1) Stratix II devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B. - (2) This specification is supported across all the programmable drive strength available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5-7. | Table 5–7. 2.5-V I/O Specifications | | | | | | | | | |-----------------------|-------------------------------------|----------------------------|---------|---------|------|--|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | | V _{CCIO} (1) | Output supply voltage | | 2.375 | 2.625 | V | | | | | | V _{IH} | High-level input voltage | | 1.7 | 4.0 | ٧ | | | | | | V _{IL} | Low-level input voltage | | -0.3 | 0.7 | V | | | | | | V _{OH} | High-level output voltage | I _{OH} = -1mA (2) | 2.0 | | V | | | | | | V _{OL} | Low-level output voltage | I _{OL} = 1 mA (2) | | 0.4 | V | | | | | #### *Notes to Table 5–7:* - (1) Stratix II devices V_{CCIO} voltage level support of $2.5 \pm .5\%$ is narrower than defined in the Normal Range of the EIA/JEDEC standard. - (2) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–8. 1.8-V I/O Specifications | | | | | | | | | |-------------------------------------|---------------------------|-----------------------------|--------------------------|------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V _{CCIO} (1) | Output supply voltage | | 1.71 | 1.89 | V | | | | | V _{IH} | High-level input voltage | | $0.65 \times V_{CCIO}$ | 2.25 | V | | | | | V _{IL} | Low-level input voltage | | -0.30 | $0.35 \times V_{CCIO}$ | V | | | | | V _{OH} | High-level output voltage | I _{OH} = -2 mA (2) | V _{CCIO} - 0.45 | | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 2 mA (2) | | 0.45 | V | | | | #### Notes to Table 5-8: - (1) The Stratix II device family's $V_{\rm CCIO}$ voltage level support of $1.8 \pm .5\%$ is narrower than defined in the Normal Range of the EIA/JEDEC standard. - (2) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. | Table 5–9. 1.5-V I/O Specifications | | | | | | | | | |-------------------------------------|---------------------------|-------------------------------|------------------------|--------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Maximum | Unit | | | | | V _{CCIO} (1) | Output supply voltage | | 1.425 | 1.575 | V | | | | | V _{IH} | High-level input voltage | | $0.65 \times V_{CCIO}$ | V _{CCIO} + 0.30 | V | | | | | V _{IL} | Low-level input voltage | | -0.30 | $0.35 \times V_{CCIO}$ | V | | | | | V _{OH} | High-level output voltage | $I_{OH} = -2 \text{ mA } (2)$ | $0.75 \times V_{CCIO}$ | | V | | | | | V _{OL} | Low-level output voltage | I _{OL} = 2 mA (2) | | $0.25 \times V_{CCIO}$ | V | | | | #### Notes to Table 5-9: - (1) The Stratix II device family's $V_{\rm CCIO}$ voltage level support of 1.5 \pm -5% is narrower than defined in the Normal Range of the EIA/JEDEC standard. - (2) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. Figures 5–1 and 5–2 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS, LVPECL, and HyperTransport technology). | Table 5–25. 1.5-V HSTL Class I & II Differential Specifications | | | | | | | | | |---|-------------------------------------|------------|---------|---------|---------|------|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | V _{CCIO} | I/O supply voltage | | 1.425 | 1.500 | 1.575 | V | | | | V _{DIF} (DC) | DC input differential voltage | | 0.2 | | | V | | | | V _{CM} (DC) | DC common mode input voltage | | 0.68 | | 0.90 | V | | | | V _{DIF} (AC) | AC differential input voltage | | 0.4 | | | ٧ | | | | V _{OX} (AC) | AC differential cross point voltage | | 0.68 | | 0.90 | V | | | | Table 5–2 | Table 5–26. 1.8-V HSTL Class I Specifications | | | | | | | | | |----------------------|---|-----------------------------|-------------------------|---------|------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit | | | | | V_{CCIO} | Output supply voltage | | 1.71 | 1.80 | 1.89 | V | | | | | V_{REF} | Input reference voltage | | 0.85 | 0.90 | 0.95 | ٧ | | | | | V _{TT} | Termination voltage | | 0.85 | 0.90 | 0.95 | ٧ | | | | | V _{IH} (DC) | DC high-level input voltage | | V _{REF} + 0.1 | | | ٧ | | | | | V _{IL} (DC) | DC low-level input voltage | | -0.3 | | V _{REF} - 0.1 | ٧ | | | | | V _{IH} (AC) | AC high-level input voltage | | V _{REF} + 0.2 | | | ٧ | | | | | V _{IL} (AC) | AC low-level input voltage | | | | V _{REF} - 0.2 | ٧ | | | | | V _{OH} | High-level output voltage | I _{OH} = 8 mA (1) | V _{CCIO} - 0.4 | | | V | | | | | V _{OL} | Low-level output voltage | I _{OH} = -8 mA (1) | | | 0.4 | V | | | | #### *Note to Table 5–26:* ⁽¹⁾ This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Stratix II Architecture* chapter in volume 1 of the *Stratix II Device Handbook*. ## EP2S90 Clock Timing Parameters Tables 5–56 through 5–59 show the maximum clock timing parameters for EP2S90 devices. | Table 5–56. EP2S90 Column Pins Regional Clock Timing Parameters | | | | | | | | | |---|----------------|------------|----------|----------|----------|-------|--|--| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | Industrial | Commercial | Grade | Grade | Grade | UIIII | | | | t _{CIN} | 1.768 | 1.850 | 3.033 | 3.473 | 4.040 | ns | | | | t _{COUT} | 1.611 | 1.685 | 2.791 | 3.195 | 3.716 | ns | | | | t _{PLLCIN} | -0.127 | -0.117 | 0.125 | 0.129 | 0.144 | ns | | | | t _{PLLCOUT} | -0.284 | -0.282 | -0.117 | -0.149 | -0.18 | ns | | | | Table 5–57. EP2S90 Column Pins Global Clock Timing Parameters | | | | | | | | | |---|----------------|------------|----------|----------|----------|------|--|--| | Doromotor | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | Parameter | Industrial | Commercial | Grade | Grade | Grade | Unit | | | | t _{CIN} | 1.783 | 1.868 | 3.058 | 3.502 | 4.070 | ns | | | | t _{COUT} | 1.626 | 1.703 | 2.816 | 3.224 | 3.746 | ns | | | | t _{PLLCIN} | -0.137 | -0.127 | 0.115 | 0.119 | 0.134 | ns | | | | t _{PLLCOUT} | -0.294 | -0.292 | -0.127 | -0.159 | -0.19 | ns | | | | Table 5–58. EP2S90 Row Pins Regional Clock Timing Parameters | | | | | | | | | |--|----------------|------------|----------|----------|----------|-------|--|--| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | Industrial | Commercial | Grade | Grade | Grade | Uiiit | | | | t _{CIN} | 1.566 | 1.638 | 2.731 | 3.124 | 3.632 | ns | | | | t _{COUT} | 1.571 | 1.643 | 2.727 | 3.120 | 3.627 | ns | | | | t _{PLLCIN} | -0.326 | -0.326 | -0.178 | -0.218 | -0.264 | ns | | | | t _{PLLCOUT} | -0.321 | -0.321 | -0.182 | -0.222 | -0.269 | ns | | | | Table 5-70. Str | Table 5–70. Stratix II IOE Programmable Delay on Row Pins Note (1) | | | | | | | | | | | |--|--|-------------------------|-----------------------|--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--| | | | | | Minimum -3 Speed
Timing (2) Grade (3) | | | • | | -5 Speed
Grade | | | | Parameter | Paths Affected | Available -
Settings | Min
Offset
(ps) | Max
Offset
(ps) | Min
Offset
(ps) | Max
Offset
(ps) | Min
Offset
(ps) | Max
Offset
(ps) | Min
Offset
(ps) | Max
Offset
(ps) | | | Input delay from pin to internal cells | Pad to I/O
dataout to logic
array | 8 | 0 | 1,697
1,782 | 0 | 2,876
3,020 | 0 | 3,308 | 0 | 3,853 | | | Input delay from pin to input register | Pad to I/O input register | 64 | 0 | 1,956
2,054 | 0 | 3,270
3,434 | 0 | 3,761 | 0 | 4,381 | | | Delay from
output register
to output pin | I/O output
register to pad | 2 | 0 | 316
332 | 0
0 | 525
525 | 0 | 575 | 0 | 670 | | | Output enable pin delay | t_{XZ}, t_{ZX} | 2 | 0 | 305
320 | 0
0 | 507
507 | 0 | 556 | 0 | 647 | | #### *Notes to Table 5–70:* - (1) The incremental values for the settings are generally linear. For the exact delay associated with each setting, use the latest version of the Quartus II software. - (2) The first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices. - (3) The first number applies to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. The second number applies to -3 speed grade EP2S130 and EP2S180 devices. ## Default Capacitive Loading of Different I/O Standards See Table 5–71 for default capacitive loading of different I/O standards. | Table 5–71. Default Loading of Different I/O Standards for Stratix II (Part 1 of 2) | | | | | | | | |---|-----------------|------|--|--|--|--|--| | I/O Standard | Capacitive Load | Unit | | | | | | | LVTTL | 0 | pF | | | | | | | LVCMOS | 0 | pF | | | | | | | 2.5 V | 0 | pF | | | | | | | 1.8 V | 0 | pF | | | | | | | 1.5 V | 0 | pF | | | | | | | PCI | 10 | pF | | | | | | | PCI-X | 10 | pF | | | | | | | SSTL-2 Class I | 0 | pF | | | | | | | Table 5–74. Stratix II I/O Input Delay for Row Pins (Part 2 of 2) | | | | | | | | | | |---|--------------------|----------------|------------|--------------|-----------|----------|----------|------|--| | 1/0 04 | D | Minimum Timing | | -3 Speed | -3 Speed | -4 Speed | -5 Speed | 11 | | | I/O Standard | Parameter | Industrial | Commercial | Grade
(1) | Grade (2) | Grade | Grade | Unit | | | 1.5-V HSTL | t _{P1} | 602 | 631 | 1056 | 1107 | 1212 | 1413 | ps | | | Class II | t _{PCOUT} | 278 | 292 | 529 | 555 | 608 | 708 | ps | | | 1.8-V HSTL | t _{P1} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | Class I | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | | 1.8-V HSTL | t _{P1} | 577 | 605 | 960 | 1006 | 1101 | 1285 | ps | | | Class II | t _{PCOUT} | 253 | 266 | 433 | 454 | 497 | 580 | ps | | | LVDS | t _{P1} | 515 | 540 | 948 | 994 | 1088 | 1269 | ps | | | | t _{PCOUT} | 191 | 201 | 421 | 442 | 484 | 564 | ps | | | HyperTransport | t _{Pl} | 515 | 540 | 948 | 994 | 1088 | 1269 | ps | | | | t _{PCOUT} | 191 | 201 | 421 | 442 | 484 | 564 | ps | | #### *Notes for Table 5–74:* - These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices. These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. | Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 1 of 8) | | | | | | | | | | | | | |---|-------------------|------------------|----------------|------------|-----------------------|-----------------------|----------------|----------------|------|--|--|--| | I/O Standard | Drive
Strength | Parameter | Minimum Timing | | -3 | -3 | -4 | -5 | | | | | | | | | Industrial | Commercial | Speed
Grade
(3) | Speed
Grade
(4) | Speed
Grade | Speed
Grade | Unit | | | | | LVTTL | 4 mA | t _{OP} | 1178 | 1236 | 2351 | 2467 | 2702 | 2820 | ps | | | | | | | t _{DIP} | 1198 | 1258 | 2417 | 2537 | 2778 | 2910 | ps | | | | | | 8 mA | t _{OP} | 1041 | 1091 | 2036 | 2136 | 2340 | 2448 | ps | | | | | | | t _{DIP} | 1061 | 1113 | 2102 | 2206 | 2416 | 2538 | ps | | | | | | 12 mA | t _{OP} | 976 | 1024 | 2036 | 2136 | 2340 | 2448 | ps | | | | | | | t _{DIP} | 996 | 1046 | 2102 | 2206 | 2416 | 2538 | ps | | | | | | 16 mA | t _{OP} | 951 | 998 | 1893 | 1986 | 2176 | 2279 | ps | | | | | | | t _{DIP} | 971 | 1020 | 1959 | 2056 | 2252 | 2369 | ps | | | | | | 20 mA | t _{OP} | 931 | 976 | 1787 | 1875 | 2054 | 2154 | ps | | | | | | | t _{DIP} | 951 | 998 | 1853 | 1945 | 2130 | 2244 | ps | | | | | | 24 mA
(1) | t _{OP} | 924 | 969 | 1788 | 1876 | 2055 | 2156 | ps | | | | | | | t _{DIP} | 944 | 991 | 1854 | 1946 | 2131 | 2246 | ps | | | | | Name | Description | Min | Тур | Max | Unit | |-------------------------|--|------|------|-------|------| | t _{LOCK} | Time required for the PLL to lock from the time it is enabled or the end of device configuration | | 0.03 | 1 | ms | | [†] БLОСК | Time required for the PLL to lock dynamically after automatic clock switchover between two identical clock frequencies | | | 1 | ms | | f _{SWITCHOVER} | Frequency range
where the clock
switchover performs
properly | 4 | | 500 | MHz | | f _{CLBW} | PLL closed-loop bandwidth | 0.13 | 1.20 | 16.90 | MHz | | f _{VCO} | PLL VCO operating range for –3 and –4 speed grade devices | 300 | | 1,040 | MHz | | | PLL VCO operating range for –5 speed grade devices | 300 | | 840 | MHz | | f _{SS} | Spread-spectrum modulation frequency | 30 | | 150 | kHz | | % spread | Percent down spread
for a given clock
frequency | 0.4 | 0.5 | 0.6 | % | | t _{PLL_PSERR} | Accuracy of PLL phase shift | | | ±15 | ps | | t _{ARESET} | Minimum pulse width on areset signal. | 10 | | | ns | | tareset_reconfig | Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandone goes high. | 500 | | | ns | #### Notes to Table 5–92: - (1) Limited by I/O f_{MAX} . See Table 5–78 on page 5–69 for the maximum. Cannot exceed f_{OUT} specification. - $(2) \quad \text{If the counter cascading feature of the PLL is utilized, there is no minimum output clock frequency.} \\$