Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 4548 | | Number of Logic Elements/Cells | 90960 | | Total RAM Bits | 4520488 | | Number of I/O | 902 | | Number of Gates | - | | Voltage - Supply | 1.15V ~ 1.25V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1508-BBGA, FCBGA | | Supplier Device Package | 1508-FBGA, FC (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep2s90f1508i4n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong iν | Open-Drain Output | 2–84 | |---|------| | Bus Hold | | | Programmable Pull-Up Resistor | | | Advanced I/O Standard Support | | | On-Chip Termination | | | MultiVolt I/O Interface | | | High-Speed Differential I/O with DPA Support | | | Dedicated Circuitry with DPA Support | | | Fast PLL & Channel Layout | | | Document Revision History | | | Chapter 3. Configuration & Testing | | | IEEE Std. 1149.1 JTAG Boundary-Scan Support | 3_1 | | SignalTap II Embedded Logic Analyzer | | | Configuration | | | Operating Modes | | | Configuration Schemes | | | Configuring Stratix II FPGAs with JRunner | | | Programming Serial Configuration Devices with SRunner | 3_10 | | Configuring Stratix II FPGAs with the MicroBlaster Driver | | | PLL Reconfiguration | | | Temperature Sensing Diode (TSD) | | | Automated Single Event Upset (SEU) Detection | 3_13 | | Custom-Built Circuitry | | | Software Interface | | | Document Revision History | | | Document Revision History | 0 14 | | Chapter 4. Hot Socketing & Power-On Reset | | | Stratix II | | | Hot-Socketing Specifications | 4–1 | | Devices Can Be Driven Before Power-Up | | | I/O Pins Remain Tri-Stated During Power-Up | | | Signal Pins Do Not Drive the V _{CCIO} , V _{CCINT} or V _{CCPD} Power Supplies | | | Hot Socketing Feature Implementation in Stratix II Devices | | | Power-On Reset Circuitry | | | Document Revision History | | | Chapter 5. DC & Switching Characteristics | | | Operating Conditions | 5.1 | | Absolute Maximum Ratings | | | | | | Recommended Operating Conditions | | | | | | I/O Standard Specifications | | | Bus Hold Specifications On-Chip Termination Specifications | | | * | | | Pin Capacitance | | | Power Consumption | 5–20 | Stratix II devices are available in space-saving FineLine BGA® packages (see Tables 1–2 and 1–3). | Table 1–2. S | Table 1–2. Stratix II Package Options & I/O Pin Counts Notes (1), (2) | | | | | | | | | | |--------------|---|--------------------------------------|----------------------------|----------------------------|---------------------------|---------------------------|--|--|--|--| | Device | 484-Pin
FineLine BGA | 484-Pin
Hybrid
FineLine
BGA | 672-Pin
FineLine
BGA | 780-Pin
FineLine
BGA | 1,020-Pin
FineLine BGA | 1,508-Pin
FineLine BGA | | | | | | EP2S15 | 342 | | 366 | | | | | | | | | EP2S30 | 342 | | 500 | | | | | | | | | EP2S60 (3) | 334 | | 492 | | 718 | | | | | | | EP2S90 (3) | | 308 | | 534 | 758 | 902 | | | | | | EP2S130 (3) | | | | 534 | 742 | 1,126 | | | | | | EP2S180 (3) | | | | | 742 | 1,170 | | | | | #### Notes to Table 1-2: - (1) All I/O pin counts include eight dedicated clock input pins (clk1p, clk1n, clk3p, clk3n, clk9p, clk9n, clk11p, and clk11n) that can be used for data inputs. - (2) The Quartus II software I/O pin counts include one additional pin, PLL_ENA, which is not available as general-purpose I/O pins. The PLL_ENA pin can only be used to enable the PLLs within the device. - (3) The I/O pin counts for the EP2S60, EP2S90, EP2S130, and EP2S180 devices in the 1020-pin and 1508-pin packages include eight dedicated fast PLL clock inputs (FPLL7CLKp/n, FPLL8CLKp/n, FPLL9CLKp/n, and FPLL10CLKp/n) that can be used for data inputs. | Table 1–3. St | Table 1–3. Stratix II FineLine BGA Package Sizes | | | | | | | | | | |--------------------------|--|-------------------|---------|---------|-----------|-----------|--|--|--|--| | Dimension | 484 Pin | 484-Pin
Hybrid | 672 Pin | 780 Pin | 1,020 Pin | 1,508 Pin | | | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | | Area (mm2) | 529 | 729 | 729 | 841 | 1,089 | 1,600 | | | | | | Length × width (mm × mm) | 23 × 23 | 27 × 27 | 27 × 27 | 29 × 29 | 33 × 33 | 40 × 40 | | | | | All Stratix II devices support vertical migration within the same package (for example, you can migrate between the EP2S15, EP2S30, and EP2S60 devices in the 672-pin FineLine BGA package). Vertical migration means that you can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities. To ensure that a board layout supports migratable densities within one package offering, enable the applicable vertical migration path within the Quartus II software (Assignments menu > Device > Migration Devices). Each Stratix II device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and columns around the periphery of the device. I/O pins support numerous single-ended and differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers for registering input, output, and output-enable signals. When used with dedicated clocks, these registers provide exceptional performance and interface support with external memory devices such as DDR and DDR2 SDRAM, RLDRAM II, and QDR II SRAM devices. High-speed serial interface channels with dynamic phase alignment (DPA) support data transfer at up to 1 Gbps using LVDS or HyperTransport™ technology I/O standards. Figure 2–1 shows an overview of the Stratix II device. Figure 2-1. Stratix II Block Diagram synchronous load, and clock enable control for the register. These LAB-wide signals are available in all ALM modes. See the "LAB Control Signals" section for more information on the LAB-wide control signals. The Quartus II software and supported third-party synthesis tools, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically choose the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which ALM operating mode to use for optimal performance. #### Normal Mode The normal mode is suitable for general logic applications and combinational functions. In this mode, up to eight data inputs from the LAB local interconnect are inputs to the combinational logic. The normal mode allows two functions to be implemented in one Stratix II ALM, or an ALM to implement a single function of up to six inputs. The ALM can support certain combinations of completely independent functions and various combinations of functions which have common inputs. Figure 2–7 shows the supported LUT combinations in normal mode. | | | Destination | | | | | | | | | | | | | | | |------------|-------------------------|-------------|----------------|--------------------|--------------------------|-----------------|------------------|-----------------|------------------|-----|----------------|---------------|-------------|------------|------------|---------| | Source | Shared Arithmetic Chain | Carry Chain | Register Chain | Local Interconnect | Direct Link Interconnect | R4 Interconnect | R24 Interconnect | C4 Interconnect | C16 Interconnect | ALM | M512 RAM Block | M4K RAM Block | M-RAM Block | DSP Blocks | Column 10E | Row IDE | | Column IOE | | | | | ✓ | | | ✓ | ✓ | | | | | | | | | Row IOE | | | | | / | / | / | / | | | | | | | | | ## TriMatrix Memory TriMatrix memory consists of three types of RAM blocks: M512, M4K, and M-RAM. Although these memory blocks are different, they can all implement various types of memory with or without parity, including true dual-port, simple dual-port, and single-port RAM, ROM, and FIFO buffers. Table 2–3 shows the size and features of the different RAM blocks. | Table 2–3. TriMatrix Memor | y Features (Part 1 of 2) | | | |------------------------------|----------------------------------|----------------------------------|--------------------------------| | Memory Feature | M512 RAM Block
(32 × 18 Bits) | M4K RAM Block
(128 × 36 Bits) | M-RAM Block
(4K × 144 Bits) | | Maximum performance | 500 MHz | 550 MHz | 420 MHz | | True dual-port memory | | ✓ | ✓ | | Simple dual-port memory | ✓ | ✓ | ✓ | | Single-port memory | ✓ | ✓ | ✓ | | Shift register | ✓ | ✓ | | | ROM | ✓ | ✓ | (1) | | FIFO buffer | ✓ | ✓ | ✓ | | Pack mode | | ✓ | ✓ | | Byte enable | ✓ | ✓ | ✓ | | Address clock enable | | ✓ | ✓ | | Parity bits | ✓ | ✓ | ✓ | | Mixed clock mode | ✓ | ✓ | ✓ | | Memory initialization (.mif) | ✓ | ✓ | | ## Digital Signal Processing Block The most commonly used DSP functions are FIR filters, complex FIR filters, IIR filters, fast Fourier transform (FFT) functions, direct cosine transform (DCT) functions, and correlators. All of these use the multiplier as the fundamental building block. Additionally, some applications need specialized operations such as multiply-add and multiply-accumulate operations. Stratix II devices provide DSP blocks to meet the arithmetic requirements of these functions. Each Stratix II device has from two to four columns of DSP blocks to efficiently implement DSP functions faster than ALM-based implementations. Stratix II devices have up to 24 DSP blocks per column (see Table 2–5). Each DSP block can be configured to support up to: - Eight 9 × 9-bit multipliers - Four 18 × 18-bit multipliers - One 36 × 36-bit multiplier As indicated, the Stratix II DSP block can support one 36×36 -bit multiplier in a single DSP block. This is true for any combination of signed, unsigned, or mixed sign multiplications. This list only shows functions that can fit into a single DSP block. Multiple DSP blocks can support larger multiplication functions. ### **Modes of Operation** The adder, subtractor, and accumulate functions of a DSP block have four modes of operation: - Simple multiplier - Multiply-accumulator - Two-multipliers adder - Four-multipliers adder Table 2–6 shows the different number of multipliers possible in each DSP block mode according to size. These modes allow the DSP blocks to implement numerous applications for DSP including FFTs, complex FIR, FIR, and 2D FIR filters, equalizers, IIR, correlators, matrix multiplication and many other functions. The DSP blocks also support mixed modes and mixed multiplier sizes in the same block. For example, half of one DSP block can implement one 18×18 -bit multiplier in multiply-accumulator mode, while the other half of the DSP block implements four 9×9 -bit multipliers in simple multiplier mode. | Table 2–6. Multiplier Size | Table 2–6. Multiplier Size & Configurations per DSP Block | | | | | | | | | | |----------------------------|---|---|--|--|--|--|--|--|--|--| | DSP Block Mode | 9 × 9 | 18 × 18 | 36 × 36 | | | | | | | | | Multiplier | Eight multipliers with eight product outputs | Four multipliers with four product outputs | One multiplier with one product output | | | | | | | | | Multiply-accumulator | - | Two 52-bit multiply-
accumulate blocks | - | | | | | | | | | Two-multipliers adder | Four two-multiplier adder (two 9 × 9 complex multiply) | Two two-multiplier adder (one 18 × 18 complex multiply) | - | | | | | | | | | Four-multipliers adder | Two four-multiplier adder | One four-multiplier adder | - | | | | | | | | ### **DSP Block Interface** Stratix II device DSP block input registers can generate a shift register that can cascade down in the same DSP block column. Dedicated connections between DSP blocks provide fast connections between the shift register inputs to cascade the shift register chains. You can cascade registers within multiple DSP blocks for 9 \times 9- or 18 \times 18-bit FIR filters larger than four taps, with additional adder stages implemented in ALMs. If the DSP block is configured as 36 \times 36 bits, the adder, subtractor, or accumulator stages are implemented in ALMs. Each DSP block can route the shift register chain out of the block to cascade multiple columns of DSP blocks. Figure 2-46. Stratix II IOE Structure The IOEs are located in I/O blocks around the periphery of the Stratix II device. There are up to four IOEs per row I/O block and four IOEs per column I/O block. The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–47 shows how a row I/O block connects to the logic array. Figure 2–48 shows how a column I/O block connects to the logic array. Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different $V_{\rm CCIO}$ level independently. Each bank also has dedicated VREF pins to support the voltage-referenced standards (such as SSTL-2). The PLL banks utilize the adjacent VREF group when voltage-referenced standards are implemented. For example, if an SSTL input is implemented in PLL bank 10, the voltage level at VREFB7 is the reference voltage level for the SSTL input. I/O pins that reside in PLL banks 9 through 12 are powered by the VCC_PLL<5, 6, 11, or 12>_OUT pins, respectively. The EP2S60F484, EP2S60F780, EP2S90H484, EP2S90F780, and EP2S130F780 devices do not support PLLs 11 and 12. Therefore, any I/O pins that reside in bank 11 are powered by the VCCIO3 pin, and any I/O pins that reside in bank 12 are powered by the VCCIO8 pin. Each I/O bank can support multiple standards with the same $V_{\rm CCIO}$ for input and output pins. Each bank can support one $V_{\rm REF}$ voltage level. For example, when $V_{\rm CCIO}$ is 3.3 V, a bank can support LVTTL, LVCMOS, and 3.3-V PCI for inputs and outputs. ### **On-Chip Termination** Stratix II devices provide differential (for the LVDS or HyperTransport technology I/O standard), series, and parallel on-chip termination to reduce reflections and maintain signal integrity. On-chip termination simplifies board design by minimizing the number of external termination resistors required. Termination can be placed inside the package, eliminating small stubs that can still lead to reflections. Stratix II devices provide four types of termination: - Differential termination (R_D) - Series termination (R_s) without calibration - Series termination (R_S) with calibration - Parallel termination (R_T) with calibration # Document Revision History Table 2–27 shows the revision history for this chapter. | Date and
Document
Version | Changes Made | Summary of Changes | |---------------------------------|--|--| | May 2007, v4.3 | Updated "Clock Control Block" section. | _ | | | Updated note in the "Clock Control Block" section. | _ | | | Deleted Tables 2-11 and 2-12. | _ | | | Updated notes to: Figure 2–41 Figure 2–42 Figure 2–43 Figure 2–45 | - | | | Updated notes to Table 2–18. | _ | | | Moved Document Revision History to end of the chapter. | _ | | August 2006,
v4.2 | Updated Table 2–18 with note. | _ | | April 2006,
v4.1 | Updated Table 2–13. Removed Note 2 from Table 2–16. Updated "On-Chip Termination" section and Table 2–19 to include parallel termination with calibration information. Added new "On-Chip Parallel Termination with Calibration" section. Updated Figure 2–44. | Added parallel on-
chip termination
description and
specification. Changed RCLK
names to match the
Quartus II software in
Table 2–13. | | December
2005, v4.0 | Updated "Clock Control Block" section. | _ | | July 2005, v3.1 | Updated HyperTransport technology information in Table 2–18. Updated HyperTransport technology information in Figure 2–57. Added information on the asynchronous clear signal. | _ | | May 2005, v3.0 | Updated "Functional Description" section. Updated Table 2–3. Updated "Clock Control Block" section. Updated Tables 2–17 through 2–19. Updated Tables 2–20 through 2–22. Updated Figure 2–57. | _ | | March 2005,
2.1 | Updated "Functional Description" section.Updated Table 2–3. | _ | The PLL_ENA pin and the configuration input pins (Table 3–4) have a dual buffer design: a 3.3-V/2.5-V input buffer and a 1.8-V/1.5-V input buffer. The VCCSEL input pin selects which input buffer is used. The 3.3-V/2.5-V input buffer is powered by $V_{CCPD_{\rm c}}$, while the 1.8-V/1.5-V input buffer is powered by $V_{\rm CCIO}$. Table 3–4 shows the pins affected by VCCSEL. | Table 3–4. Pins Ai | ffected by the Voltage Level a | t VCCSEL | | | |-----------------------------------|--|--|--|--| | Pin | VCCSEL = LOW (connected to GND) | $ \begin{aligned} \text{VCCSEL} &= \text{HIGH (connected} \\ & \text{to V}_{\text{CCPD}}) \end{aligned} $ | | | | nSTATUS (when used as an input) | | | | | | nCONFIG | | | | | | CONF_DONE (when used as an input) | | | | | | DATA[70] | | | | | | nCE | | | | | | DCLK (when used as an input) | 3.3/2.5-V input buffer is selected. Input buffer is powered by V _{CCPD} . | 1.8/1.5-V input buffer is selected. Input buffer is | | | | CS | | powered by V _{CCIO} of the I/C bank. | | | | nWS | , 0015 | | | | | nRS | | | | | | nCS | | | | | | CLKUSR | | | | | | DEV_OE | | | | | | DEV_CLRn | | | | | | RUnLU | | | | | | PLL_ENA | | | | | VCCSEL is sampled during power-up. Therefore, the VCCSEL setting cannot change on the fly or during a reconfiguration. The VCCSEL input buffer is powered by V_{CCINT} and must be hardwired to V_{CCPD} or ground. A logic high VCCSEL connection selects the 1.8-V/1.5-V input buffer, and a logic low selects the 3.3-V/2.5-V input buffer. VCCSEL should be set to comply with the logic levels driven out of the configuration device or MAX^{\circledast} II/microprocessor. If you need to support configuration input voltages of 3.3 V/2.5 V, you should set the VCCSEL to a logic low; you can set the V_{CCIO} of the I/O bank that contains the configuration inputs to any supported voltage. If Figure 4–2. Transistor Level Diagram of FPGA Device I/O Buffers Notes to Figure 4–2: - This is the logic array signal or the larger of either the V_{CCIO} or V_{PAD} signal. - This is the larger of either the V_{CCIO} or V_{PAD} signal. # Power-On Reset Circuitry Stratix II devices have a POR circuit to keep the whole device system in reset state until the power supply voltage levels have stabilized during power-up. The POR circuit monitors the $V_{\rm CCINT}$, $V_{\rm CCIO}$, and $V_{\rm CCPD}$ voltage levels and tri-states all the user I/O pins while $V_{\rm CC}$ is ramping up until normal user levels are reached. The POR circuitry also ensures that all eight I/O bank $V_{\rm CCIO}$ voltages, $V_{\rm CCPD}$ voltage, as well as the logic array $V_{\rm CCINT}$ voltage, reach an acceptable level before configuration is triggered. After the Stratix II device enters user mode, the POR circuit continues to monitor the $V_{\rm CCINT}$ voltage level so that a brown-out condition during user mode can be detected. If there is a $V_{\rm CCINT}$ voltage sag below the Stratix II operational level during user mode, the POR circuit resets the device. When power is applied to a Stratix II device, a power-on-reset event occurs if V_{CC} reaches the recommended operating range within a certain period of time (specified as a maximum V_{CC} rise time). The maximum V_{CC} rise time for Stratix II device is 100 ms. Stratix II devices provide a dedicated input pin (PORSEL) to select POR delay times of 12 or 100 ms during power-up. When the PORSEL pin is connected to ground, the POR time is 100 ms. When the PORSEL pin is connected to V_{CC} , the POR time is 12 ms. | Symbol | Parameter | -3 Speed
Grade <i>(2)</i> | | -3 Speed
Grade (3) | | -4 Speed
Grade | | -5 Speed
Grade | | Heit | | |--------------------------|---|------------------------------|-------|-----------------------|-------|-------------------|-------|-------------------|-------|------|--| | | Parameter | Min (4) | Max | Min (4) | Max | Min
(5) | Max | Min (4) | Max | Unit | | | t _{M512DATACO1} | Clock-to-output delay when using output registers | 298 | 478 | 298 | 501 | 284
298 | 548 | 298 | 640 | ps | | | t _{M512DATACO2} | Clock-to-output delay without output registers | 2,102 | 2,345 | 2,102 | 2,461 | 2,003
2,102 | 2,695 | 2,102 | 3,141 | ps | | | t _{M512CLKL} | Minimum clock low time | 1,315 | | 1,380 | | 1,512
1,512 | | 1,762 | | ps | | | t _{M512CLKH} | Minimum clock high time | 1,315 | | 1,380 | | 1,512
1,512 | | 1,762 | | ps | | | t _{M512CLR} | Minimum clear pulse width | 144 | | 151 | | 165
165 | | 192 | | ps | | #### Notes to Table 5-40: - (1) F_{MAX} of M512 block obtained using the Quartus II software does not necessarily equal to 1/TM512RC. - $(2) \quad \text{These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.}$ - (3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices. - (4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade. - (5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices. | Symbol | Dovomotov | -3 Speed
Grade <i>(2)</i> | | -3 Speed
Grade (3) | | -4 Speed
Grade | | -5 Speed
Grade | | Unit | | |------------------------|--|------------------------------|-------|-----------------------|-------|-------------------|-------|-------------------|-------|------|--| | | Parameter | Min (4) | Max | Min (4) | Max | Min
(5) | Max | Min (4) | Max | Unit | | | t _{M4KRC} | Synchronous read cycle time | 1,462 | 2,240 | 1,462 | 2,351 | 1,393
1,462 | 2,575 | 1,462 | 3,000 | ps | | | t _{M4KWERESU} | Write or read enable setup time before clock | 22 | | 23 | | 25
25 | | 29 | | ps | | | t _{M4KWEREH} | Write or read enable hold time after clock | 203 | | 213 | | 233
233 | | 272 | | ps | | | t _{M4KBESU} | Byte enable setup time before clock | 22 | | 23 | | 25
25 | | 29 | | ps | | | t _{M4KBEH} | Byte enable hold time after clock | 203 | | 213 | | 233
233 | | 272 | | ps | | ### EP2S15 Clock Timing Parameters Tables 5–44 though 5–47 show the maximum clock timing parameters for EP2S15 devices. | Table 5-44. EP28 | Table 5-44. EP2S15 Column Pins Regional Clock Timing Parameters | | | | | | | | | | | |----------------------|---|------------|----------|----------|----------|-------|--|--|--|--|--| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | | | | | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | UIIII | | | | | | | t _{CIN} | 1.445 | 1.512 | 2.487 | 2.848 | 3.309 | ns | | | | | | | t _{COUT} | 1.288 | 1.347 | 2.245 | 2.570 | 2.985 | ns | | | | | | | t _{PLLCIN} | 0.104 | 0.102 | 0.336 | 0.373 | 0.424 | ns | | | | | | | t _{PLLCOUT} | -0.053 | -0.063 | 0.094 | 0.095 | 0.1 | ns | | | | | | | Table 5–45. EP2S15 Column Pins Global Clock Timing Parameters | | | | | | | |---|----------------|------------|----------|----------|----------|-------| | Parameter | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIIII | | t _{CIN} | 1.419 | 1.487 | 2.456 | 2.813 | 3.273 | ns | | t _{cout} | 1.262 | 1.322 | 2.214 | 2.535 | 2.949 | ns | | t _{PLLCIN} | 0.094 | 0.092 | 0.326 | 0.363 | 0.414 | ns | | t _{PLLCOUT} | -0.063 | -0.073 | 0.084 | 0.085 | 0.09 | ns | | Table 5–46. EP2S15 Row Pins Regional Clock Timing Parameters | | | | | | | |--|------------|------------|----------|----------|----------|-------| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | UIIIL | | t _{CIN} | 1.232 | 1.288 | 2.144 | 2.454 | 2.848 | ns | | t _{COUT} | 1.237 | 1.293 | 2.140 | 2.450 | 2.843 | ns | | t _{PLLCIN} | -0.109 | -0.122 | -0.007 | -0.021 | -0.037 | ns | | t _{PLLCOUT} | -0.104 | -0.117 | -0.011 | -0.025 | -0.042 | ns | | Table 5–50. EP2S30 Row Pins Regional Clock Timing Parameters | | | | | | | |--|----------------|------------|----------|----------|----------|------| | Daramatar | Minimum Timing | | -3 Speed | -4 Speed | -5 Speed | Unit | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIII | | t _{CIN} | 1.304 | 1.184 | 1.966 | 2.251 | 2.616 | ns | | t _{COUT} | 1.309 | 1.189 | 1.962 | 2.247 | 2.611 | ns | | t _{PLLCIN} | -0.135 | -0.158 | -0.208 | -0.254 | -0.302 | ns | | t _{PLLCOUT} | -0.13 | -0.153 | -0.212 | -0.258 | -0.307 | ns | | Table 5–51. EP2S30 Row Pins Global Clock Timing Parameters | | | | | | | |--|------------|------------|----------|----------|----------|------| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | UIII | | t _{CIN} | 1.289 | 1.352 | 2.238 | 2.567 | 2.990 | ns | | t _{COUT} | 1.294 | 1.357 | 2.234 | 2.563 | 2.985 | ns | | t _{PLLCIN} | -0.14 | -0.154 | -0.169 | -0.205 | -0.254 | ns | | t _{PLLCOUT} | -0.135 | -0.149 | -0.173 | -0.209 | -0.259 | ns | ## EP2S60 Clock Timing Parameters Tables 5–52 through 5–55 show the maximum clock timing parameters for EP2S60 devices. | Table 5–52. EP2S60 Column Pins Regional Clock Timing Parameters | | | | | | | |---|------------|------------|----------|----------|----------|-------| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | Ullit | | t _{CIN} | 1.681 | 1.762 | 2.945 | 3.381 | 3.931 | ns | | t _{COUT} | 1.524 | 1.597 | 2.703 | 3.103 | 3.607 | ns | | t _{PLLCIN} | 0.066 | 0.064 | 0.279 | 0.311 | 0.348 | ns | | t _{PLLCOUT} | -0.091 | -0.101 | 0.037 | 0.033 | 0.024 | ns | | Table 5–59. EP2S90 Row Pins Global Clock Timing Parameters | | | | | | | |--|------------|------------|----------|----------|----------|-------| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | Ullit | | t _{CIN} | 1.585 | 1.658 | 2.757 | 3.154 | 3.665 | ns | | t _{COUT} | 1.590 | 1.663 | 2.753 | 3.150 | 3.660 | ns | | t _{PLLCIN} | -0.341 | -0.341 | -0.193 | -0.235 | -0.278 | ns | | t _{PLLCOUT} | -0.336 | -0.336 | -0.197 | -0.239 | -0.283 | ns | ### EP2S130 Clock Timing Parameters Tables 5–60 through 5–63 show the maximum clock timing parameters for EP2S130 devices. | Table 5–60. EP2S130 Column Pins Regional Clock Timing Parameters | | | | | | | |--|------------|----------------|--------|----------|----------|-------| | Parameter | Minimu | Minimum Timing | | -4 Speed | -5 Speed | Unit | | Parameter | Industrial | Commercial | Grade | Grade | Grade | UIIII | | t _{CIN} | 1.889 | 1.981 | 3.405 | 3.722 | 4.326 | ns | | t _{COUT} | 1.732 | 1.816 | 3.151 | 3.444 | 4.002 | ns | | t _{PLLCIN} | 0.105 | 0.106 | 0.226 | 0.242 | 0.277 | ns | | t _{PLLCOUT} | -0.052 | -0.059 | -0.028 | -0.036 | -0.047 | ns | | Table 5–61. EP2S130 Column Pins Global Clock Timing Parameters | | | | | | | |--|------------|------------|----------|----------|----------|-------| | Parameter | Minimu | m Timing | -3 Speed | -4 Speed | -5 Speed | Unit | | rataillelet | Industrial | Commercial | Grade | Grade | Grade | Ullit | | t _{CIN} | 1.907 | 1.998 | 3.420 | 3.740 | 4.348 | ns | | t _{COUT} | 1.750 | 1.833 | 3.166 | 3.462 | 4.024 | ns | | t _{PLLCIN} | 0.134 | 0.136 | 0.276 | 0.296 | 0.338 | ns | | t _{PLLCOUT} | -0.023 | -0.029 | 0.022 | 0.018 | 0.014 | ns | | Table 5–78. Max | Table 5–78. Maximum Output Toggle Rate on Stratix II Devices (Part 4 of 5) Note (1) | | | | | | | | | | |-------------------------------------|---|-------|------------|-------|-------|------------|-------|-------|---------|-------| | 1/0 0444 | Drive | Colum | n I/O Pins | (MHz) | Row I | /O Pins (I | VIHz) | Clock | Outputs | (MHz) | | I/O Standard | Strength | -3 | -4 | -5 | -3 | -4 | -5 | -3 | -4 | -5 | | 1.8-V LVTTL | OCT 50 Ω | 700 | 550 | 450 | 700 | 550 | 450 | 700 | 550 | 450 | | 3.3-V LVCMOS | OCT 50 Ω | 350 | 350 | 300 | 350 | 350 | 300 | 350 | 350 | 300 | | 1.5-V LVCMOS | OCT 50 Ω | 550 | 450 | 400 | 550 | 450 | 400 | 550 | 450 | 400 | | SSTL-2 Class I | OCT 50 Ω | 600 | 500 | 500 | 600 | 500 | 500 | 600 | 500 | 500 | | SSTL-2 Class II | OCT 25 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | | SSTL-18 Class I | OCT 50 Ω | 560 | 400 | 350 | 590 | 400 | 350 | 450 | 400 | 350 | | SSTL-18 Class II | OCT 25 Ω | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.2-V HSTL (2) | OCT 50 Ω | 280 | - | - | - | - | - | 280 | - | - | | 1.5-V HSTL
Class I | OCT 50 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | | 1.8-V HSTL
Class I | OCT 50 Ω | 650 | 600 | 600 | 650 | 600 | 600 | 650 | 600 | 600 | | 1.8-V HSTL
Class II | OCT 25 Ω | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | Differential
SSTL-2 Class I | OCT 50 Ω | 600 | 500 | 500 | 600 | 500 | 500 | 600 | 500 | 500 | | Differential
SSTL-2 Class II | OCT 25 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | | Differential
SSTL-18 Class I | OCT 50 Ω | 560 | 400 | 350 | 590 | 400 | 350 | 560 | 400 | 350 | | Differential
SSTL-18 Class II | OCT 25 Ω | 550 | 500 | 450 | - | - | - | 550 | 500 | 450 | | 1.8-V Differential
HSTL Class I | OCT 50 Ω | 650 | 600 | 600 | 650 | 600 | 600 | 650 | 600 | 600 | | 1.8-V Differential
HSTL Class II | OCT 25 Ω | 500 | 500 | 450 | - | - | - | 500 | 500 | 450 | | 1.5-V Differential
HSTL Class I | OCT 50 Ω | 600 | 550 | 500 | 600 | 550 | 500 | 600 | 550 | 500 | # High-Speed I/O Specifications Table 5–88 provides high-speed timing specifications definitions. | Table 5–88. High-Speed Timing Sp | ecifications & Definitions | |----------------------------------|--| | High-Speed Timing Specifications | Definitions | | t _C | High-speed receiver/transmitter input and output clock period. | | f _{HSCLK} | High-speed receiver/transmitter input and output clock frequency. | | J | Deserialization factor (width of parallel data bus). | | W | PLL multiplication factor. | | t _{RISE} | Low-to-high transmission time. | | t _{FALL} | High-to-low transmission time. | | Timing unit interval (TUI) | The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency} \times \text{Multiplication Factor}) = t_{\text{C}}/w$). | | f _{HSDR} | Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA. | | f _{HSDRDPA} | Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA. | | Channel-to-channel skew (TCCS) | The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement. | | Sampling window (SW) | The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window. | | Input jitter | Peak-to-peak input jitter on high-speed PLLs. | | Output jitter | Peak-to-peak output jitter on high-speed PLLs. | | t _{DUTY} | Duty cycle on high-speed transmitter output clock. | | t _{LOCK} | Lock time for high-speed transmitter and receiver PLLs. | Table 5–89 shows the high-speed I/O timing specifications for -3 speed grade Stratix II devices. | Table 5–89. High-Speed I/O Specifications for -3 Speed Grade (Part 1 of 2) Notes (1), (2) | | | | | | | |---|---|-----|-----|-----|------|--| | -3 Speed Grade | | | | | | | | Symbol | Conditions | Min | Тур | Max | Unit | | | f_{HSCLK} (clock frequency)
$f_{HSCLK} = f_{HSDR} / W$ | W = 2 to 32 (LVDS, HyperTransport technology) (3) | 16 | | 520 | MHz | | | | W = 1 (SERDES bypass, LVDS only) | 16 | | 500 | MHz | | | | W = 1 (SERDES used, LVDS only) | 150 | | 717 | MHz | | | Table 5–103. Do | Table 5–103. Document Revision History (Part 3 of 3) | | | | | | | |---------------------------------|--|--------------------|--|--|--|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | | | | | | January 2005,
v2.0 | Updated the "Power Consumption" section. Added the "High-Speed I/O Specifications" and "On-Chip Termination Specifications" sections. Removed the ESD Protection Specifications section. Updated Tables 5–3 through 5–13, 5–16 through 5–18, 5–21, 5–35, 5–39, and 5–40. Updated tables in "Timing Model" section. Added Tables 5–30 and 5–31. | _ | | | | | | | October 2004,
v1.2 | Updated Table 5–3. Updated introduction text in the "PLL Timing
Specifications" section. | _ | | | | | | | July 2004, v1.1 | Re-organized chapter. Added typical values and C_{OUTFB} to Table 5–32. Added undershoot specification to Note (4) for Tables 5–1 through 5–9. Added Note (1) to Tables 5–5 and 5–6. Added V_{ID} and V_{ICM} to Table 5–10. Added "I/O Timing Measurement Methodology" section. Added Table 5–72. Updated Tables 5–1 through 5–2 and Tables 5–24 through 5–29. | _ | | | | | | | February 2004,
v1.0 | Added document to the Stratix II Device Handbook. | _ | | | | | | Figure 6-1. Stratix II Device Packaging Ordering Information Note to Figure 6-1: Applicable to I4 devices. For more information, refer to the Stratix II Military Temperature Range Support technical brief. ## Document Revision History Table 6–1 shows the revision history for this chapter. | Table 6–1. Document Revision History | | | |--------------------------------------|--|--| | Date and
Document
Version | Changes Made | Summary of Changes | | April 2011,
v2.2 | Updated Figure 6–1. | Added operating junction temperature for military use. | | May 2007,
v2.1 | Moved the Document Revision History section to the end of the chapter. | _ | | January
2005, v2.0 | Contact information was removed. | _ | | October
2004, v1.1 | Updated Figure 6–1. | _ | | February
2004, v1.0 | Added document to the Stratix II Device Handbook. | _ |