E·XFL

Altera - EP2S90F780C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	4548
Number of Logic Elements/Cells	90960
Total RAM Bits	4520488
Number of I/O	534
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep2s90f780c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Handbook

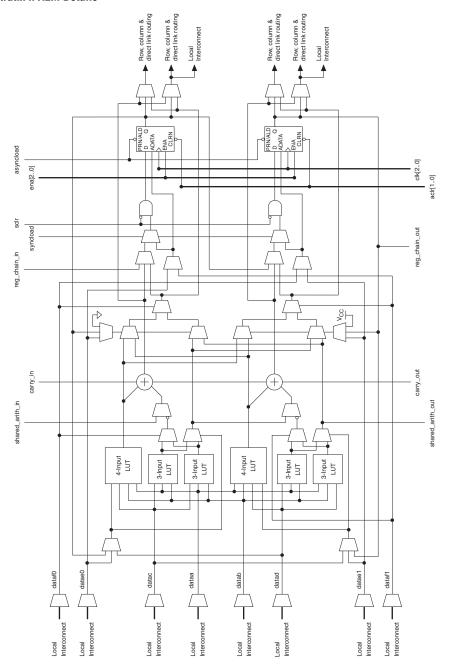
This handbook provides comprehensive information about the Altera® Stratix[®] II family of devices.

How to Contact Altera

For the most up-to-date information about Altera products, refer to the following table.

Contact (1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
	Email	custrain@altera.com
Product literature	Email	www.altera.com/literature
Altera literature services	Website	literature@altera.com
Non-technical support (General)	Email	nacomp@altera.com
(Software Licensing)	Email	authorization@altera.com

Note to table:


(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

This document uses the typographic conventions shown below.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: <i>AN 75: High-Speed Board Design.</i>

Figure 2–6. Stratix II ALM Details

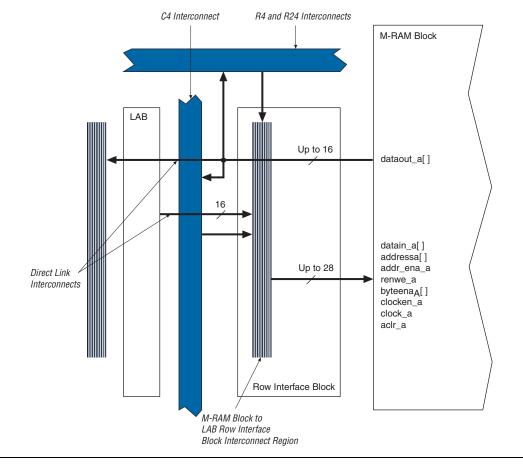


Table 2–4 shows the input and output data signal connections along with the address and control signal input connections to the row unit interfaces (L0 to L5 and R0 to R5).

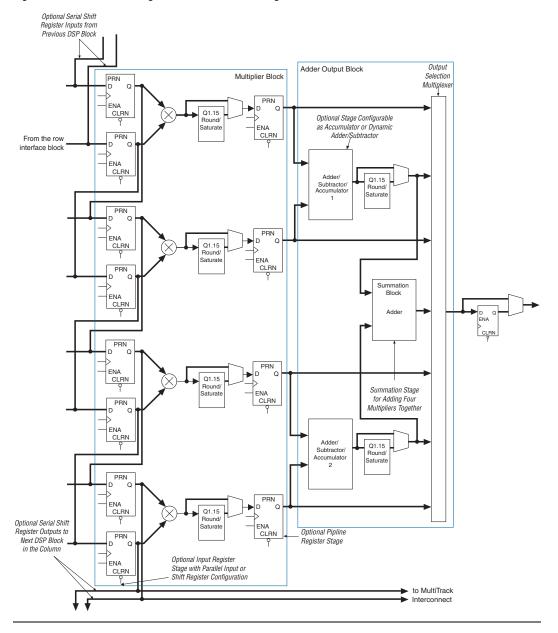
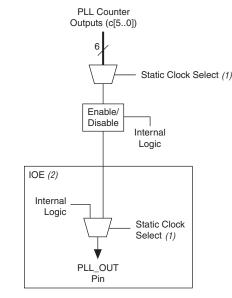



Figure 2–28. DSP Block Diagram for 18 × 18-Bit Configuration

Figure 2–39. External PLL Output Clock Control Blocks

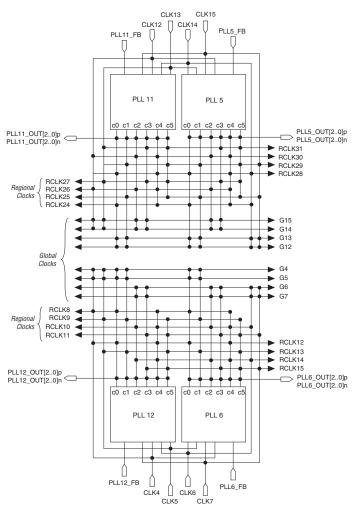
Notes to Figure 2–39:

- These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation.
- (2) The clock control block feeds to a multiplexer within the PLL_OUT pin's IOE. The PLL_OUT pin is a dual-purpose pin. Therefore, this multiplexer selects either an internal signal or the output of the clock control block.

For the global clock control block, the clock source selection can be controlled either statically or dynamically. The user has the option of statically selecting the clock source by using the Quartus II software to set specific configuration bits in the configuration file (**.sof** or **.pof**) or the user can control the selection dynamically by using internal logic to drive the multiplexor select inputs. When selecting statically, the clock source can be set to any of the inputs to the select multiplexor. When selecting the clock source dynamically, you can either select between two PLL outputs (such as the C0 or C1 outputs from one PLL), between two PLLs (such as the C0/C1 clock output of one PLL or the C0/C1 clock output of the other PLL), between two clock pins (such as CLK0 or CLK1), or between a combination of clock pins or PLL outputs. The clock outputs from corner PLLs cannot be dynamically selected through the global control block.

For the regional and PLL_OUT clock control block, the clock source selection can only be controlled statically using configuration bits. Any of the inputs to the clock select multiplexor can be set as the clock source.

The Quartus II software enables the PLLs and their features without requiring any external devices. Table 2–9 shows the PLLs available for each Stratix II device and their type.


Table 2–9. Si	Table 2–9. Stratix II Device PLL Availability												
. .	Fast PLLs									Enhanced PLLs			
Device	1	2	3	4	7	8	9	10	5	6	11	12	
EP2S15	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark			
EP2S30	>	>	>	\checkmark					\checkmark	\checkmark			
EP2S60 (1)	>	>	>	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
EP2S90 (2)	>	>	>	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
EP2S130 (3)	>	>	>	\checkmark	\checkmark	>	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
EP2S180	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

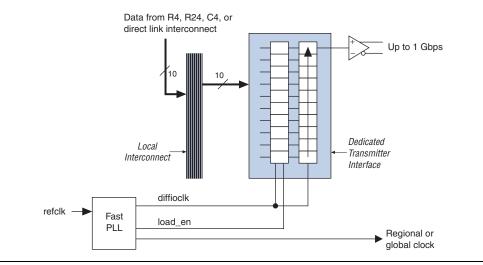
Notes to Table 2–9:

(1) EP2S60 devices in the 1020-pin package contain 12 PLLs. EP2S60 devices in the 484-pin and 672-pin packages contain fast PLLs 1–4 and enhanced PLLs 5 and 6.

(2) EP2S90 devices in the 1020-pin and 1508-pin packages contain 12 PLLs. EP2S90 devices in the 484-pin and 780-pin packages contain fast PLLS 1–4 and enhanced PLLs 5 and 6.

(3) EP2S130 devices in the 1020-pin and 1508-pin packages contain 12PLLs. The EP2S130 device in the 780-pin package contains fast PLLs 1–4 and enhanced PLLs 5 and 6.

Figure 2–43. Global & Regional Clock Connections from Top & Bottom Clock Pins & Enhanced PLL Outputs Notes (1), (2), and (3)


Notes to Figure 2–43:

- (1) EP2S15 and EP2S30 devices only have two enhanced PLLs (5 and 6), but the connectivity from these two PLLs to the global and regional clock networks remains the same as shown.
- (2) If the design uses the feedback input, you lose one (or two, if FBIN is differential) external clock output pin.
- (3) The enhanced PLLs can also be driven through the global or regional clock netowrks. The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock control block provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally generated global signal cannot drive the PLL.

Dedicated Circuitry with DPA Support

Stratix II devices support source-synchronous interfacing with LVDS or HyperTransport signaling at up to 1 Gbps. Stratix II devices can transmit or receive serial channels along with a low-speed or high-speed clock. The receiving device PLL multiplies the clock by an integer factor W = 1 through 32. For example, a HyperTransport technology application where the data rate is 1,000 Mbps and the clock rate is 500 MHz would require that W be set to 2. The SERDES factor *J* determines the parallel data width to deserialize from receivers or to serialize for transmitters. The SERDES factor *J* can be set to 4, 5, 6, 7, 8, 9, or 10 and does not have to equal the PLL clock-multiplication W value. A design using the dynamic phase aligner also supports all of these *J* factor values. For a *J* factor of 1, the Stratix II device bypasses the SERDES block. For a *J* factor of 2, the Stratix II device bypasses the SERDES block, and the DDR input and output registers are used in the IOE. Figure 2–58 shows the block diagram of the Stratix II transmitter channel.

Figure 2–58. Stratix II Transmitter Channel

Each Stratix II receiver channel features a DPA block for phase detection and selection, a SERDES, a synchronizer, and a data realigner circuit. You can bypass the dynamic phase aligner without affecting the basic sourcesynchronous operation of the channel. In addition, you can dynamically switch between using the DPA block or bypassing the block via a control signal from the logic array. Figure 2–59 shows the block diagram of the Stratix II receiver channel. The Quartus II software has an Auto Usercode feature where you can choose to use the checksum value of a programming file as the JTAG user code. If selected, the checksum is automatically loaded to the USERCODE register. Turn on the **Auto Usercode** option by clicking **Device & Pin Options**, then **General**, in the **Settings** dialog box (Assignments menu).

Table 3–2. Stratix II Boundary-Scan Register Length							
Device	Boundary-Scan Register Length						
EP2S15	1,140						
EP2S30	1,692						
EP2S60	2,196						
EP2S90	2,748						
EP2S130	3,420						
EP2S180	3,948						

Table 3–3. 32	Table 3–3. 32-Bit Stratix II Device IDCODE											
	IDCODE (32 Bits) (1)											
Device	Version (4 Bits)	(4 Bits) Part Number (16 Bits) Bits) LSB (1 Bit)										
EP2S15	0000	0010 0000 1001 0001	000 0110 1110	1								
EP2S30	0000	0010 0000 1001 0010	000 0110 1110	1								
EP2S60	0001	0010 0000 1001 0011	000 0110 1110	1								
EP2S90	0000	0010 0000 1001 0100	000 0110 1110	1								
EP2S130	0000	0010 0000 1001 0101	000 0110 1110	1								
EP2S180	0000	0010 0000 1001 0110	000 0110 1110	1								

Notes to Table 3–3:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

P

Stratix, Stratix II, Cyclone, and Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix, Stratix II, Cyclone, and Cyclone II devices are in the 18th or after they fail configuration. This does not affect SignalTap II.

P

An encryption configuration file is the same size as a nonencryption configuration file. When using a serial configuration scheme such as passive serial (PS) or active serial (AS), configuration time is the same whether or not the design security feature is enabled. If the fast passive parallel (FPP) scheme us used with the design security or decompression feature, a 4× DCLK is required. This results in a slower configuration time when compared to the configuration time of an FPGA that has neither the design security, nor decompression feature enabled. For more information about this feature, refer to *AN 341: Using the Design Security Feature in Stratix II Devices.* Contact your local Altera sales representative to request this document.

Device Configuration Data Decompression

Stratix II FPGAs support decompression of configuration data, which saves configuration memory space and time. This feature allows you to store compressed configuration data in configuration devices or other memory, and transmit this compressed bit stream to Stratix II FPGAs. During configuration, the Stratix II FPGA decompresses the bit stream in real time and programs its SRAM cells.

Stratix II FPGAs support decompression in the FPP (when using a MAX II device/microprocessor and flash memory), AS and PS configuration schemes. Decompression is not supported in the PPA configuration scheme nor in JTAG-based configuration.

Remote System Upgrades

Shortened design cycles, evolving standards, and system deployments in remote locations are difficult challenges faced by modern system designers. Stratix II devices can help effectively deal with these challenges with their inherent re-programmability and dedicated circuitry to perform remote system updates. Remote system updates help deliver feature enhancements and bug fixes without costly recalls, reduce time to market, and extend product life.

Stratix II FPGAs feature dedicated remote system upgrade circuitry to facilitate remote system updates. Soft logic (Nios[®] processor or user logic) implemented in the Stratix II device can download a new configuration image from a remote location, store it in configuration memory, and direct the dedicated remote system upgrade circuitry to initiate a reconfiguration cycle. The dedicated circuitry performs error detection during and after the configuration process, recovers from any error condition by reverting back to a safe configuration image, and provides

The temperature-sensing diode works for the entire operating range, as shown in Figure 3–2.

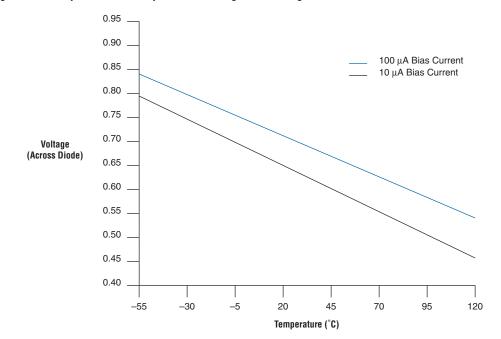


Figure 3–2. Temperature vs. Temperature-Sensing Diode Voltage

The temperature sensing diode is a very sensitive circuit which can be influenced by noise coupled from other traces on the board, and possibly within the device package itself, depending on device usage. The interfacing device registers temperature based on milivolts of difference as seen at the TSD. Switching I/O near the TSD pins can affect the temperature reading. Altera recommends you take temperature readings during periods of no activity in the device (for example, standby mode where no clocks are toggling in the device), such as when the nearby I/Os are at a DC state, and disable clock networks in the device.

Automated Single Event Upset (SEU) Detection

Stratix II devices offer on-chip circuitry for automated checking of single event upset (SEU) detection. Some applications that require the device to operate error free at high elevations or in close proximity to Earth's North or South Pole require periodic checks to ensure continued data integrity. The error detection cyclic redundancy check (CRC) feature controlled by

Table 5-	Table 5–3. Stratix II Device Recommended Operating Conditions (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions	Minimum	Maximum	Unit					
TJ	Operating junction temperature	For commercial use	0	85	°C					
		For industrial use	-40	100	°C					
		For military use (7)	-55	125	°C					

Notes to Table 5–3:

- (1) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply.
- (2) During transitions, the inputs may overshoot to the voltage shown in Table 5–2 based upon the input duty cycle. The DC case is equivalent to 100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically from ground to V_{CC} .
- (4) V_{CCPD} must ramp-up from 0 V to 3.3 V within 100 µs to 100 ms. If V_{CCPD} is not ramped up within this specified time, your Stratix II device does not configure successfully. If your system does not allow for a V_{CCPD} ramp-up time of 100 ms or less, you must hold nCONFIG low until all power supplies are reliable.
- (5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT}, V_{CCPD}, and V_{CCIO} are powered.
- (6) V_{CCIO} maximum and minimum conditions for PCI and PCI-X are shown in parentheses.
- (7) For more information, refer to the *Stratix II Military Temperature Range Support* technical brief.

DC Electrical Characteristics

Table 5-4 shows the Stratix II device family DC electrical characteristics.

Table 5-	4. Stratix II Device DC Op	erating Conditions	(Part 1 of 2)	Note (1)			
Symbol	Parameter	Conditio	ins	Minimum	Typical	Maximum	Unit
I _I	Input pin leakage current	$V_I = V_{CCIOmax}$ to 0 V	-10		10	μA	
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0	-10		10	μA	
I _{CCINT0}	V _{CCINT} supply current	$V_I = ground, no$	EP2S15		0.25	(3)	А
	(standby)	load, no toggling inputs	EP2S30		0.30	(3)	А
		$T_J = 25^{\circ} C$	EP2S60		0.50	(3)	А
		E	EP2S90		0.62	(3)	Α
			EP2S130		0.82	(3)	А
			EP2S180		1.12	(3)	А
I _{CCPD0}	V _{CCPD} supply current	$V_I = ground, no$	EP2S15		2.2	(3)	mA
	(standby)	load, no toggling	EP2S30		2.7	(3)	mA
		inputs T _{.1} = 25° C,	EP2S60		3.6	(3)	mA
		$V_{CCPD} = 3.3V$	EP2S90		4.3	(3)	mA
			EP2S130		5.4	(3)	mA
			EP2S180		6.8	(3)	mA

The performance numbers in Table 5–36 are extracted from the Quartus II software version 5.1 SP1.

Table 5–3	36. Stratix II Performand	ce Notes	(Part 1 of 6)	Note	e (1)				
		R	esources Us	ed	Performance				
	Applications	ALUTs	TriMatrix Memory Blocks	DSP Blocks	-3 Speed Grade (2)	-3 Speed Grade (3)	-4 -5 Speed Speed Grade Grade		Unit
LE	16-to-1 multiplexer (4)	21	0	0	654.87	625.0	523.83	460.4	MHz
	32-to-1 multiplexer (4)	38	0	0	519.21	473.26	464.25	384.17	MHz
	16-bit counter	16	0	0	566.57	538.79	489.23	421.05	MHz
	64-bit counter	64	0	0	244.31	232.07	209.11	181.38	MHz
TriMatrix Memory	Simple dual-port RAM 32 × 18 bit	0	1	0	500.00	476.19	434.02	373.13	MHz
M512 block	FIFO 32 x 18 bit	22	1	0	500.00	476.19	434.78	373.13	MHz
TriMatrix Memory	Simple dual-port RAM 128 x 36 bit (8)	0	1	0	540.54	515.46	469.48	401.60	MHz
M4K block	True dual-port RAM 128 \times 18 bit (8)	0	1	0	540.54	515.46	469.48	401.60	MHz
	FIFO 128 × 36 bit	22	1	0	530.22	499.00	469.48	401.60	MHz
	Simple dual-port RAM 128 \times 36 bit (9)	0	1	0	475.28	453.30	413.22	354.10	MHz
	True dual-port RAM 128 \times 18 bit (9)	0	1	0	475.28	453.30	413.22	354.10	MHz

		R	esources Us	ed	Performance					
Applications		ALUTs	TriMatrix Memory Blocks	DSP Blocks	-3 Speed Grade (2)	-3 Speed Grade (3)	-4 Speed Grade	-5 Speed Grade	Uni	
TriMatrix Memory	Single port RAM 4K × 144 bit	0	1	0	349.65	333.33	303.95	261.09	MHz	
M-RAM block	Simple dual-port RAM 4K × 144 bit	0	1	0	420.16	400.00	364.96	313.47	MHz	
	True dual-port RAM 4K × 144 bit	0	1	0	349.65	333.33	303.95	261.09	MHz	
	Single port RAM 8K × 72 bit	0	1	0	354.60	337.83	307.69	263.85	MHz	
	Simple dual-port RAM 8K × 72 bit	0	1	0	420.16	400.00	364.96	313.47	MHz	
	True dual-port RAM 8K × 72 bit	0	1	0	349.65	333.33	303.95	261.09	MH	
	Single port RAM 16K × 36 bit	0	1	0	364.96	347.22	317.46	271.73	MH	
	Simple dual-port RAM 16K × 36 bit	0	1	0	420.16	400.00	364.96	313.47	MH	
	True dual-port RAM 16K × 36 bit	0	1	0	359.71	342.46	313.47	268.09	MH	
	Single port RAM 32K × 18 bit	0	1	0	364.96	347.22	317.46	271.73	MH	
	Simple dual-port RAM 32K × 18 bit	0	1	0	420.16	400.0	364.96	313.47	MH	
-	True dual-port RAM 32K × 18 bit	0	1	0	359.71	342.46	313.47	268.09	MH	
	Single port RAM 64K × 9 bit	0	1	0	364.96	347.22	317.46	271.73	MH	
	Simple dual-port RAM 64K × 9 bit	0	1	0	420.16	400.0	364.96	313.47	MH	
	True dual-port RAM 64K × 9 bit	0	1	0	359.71	342.46	313.47	268.09	MH	

Internal Timing Parameters

See Tables 5–37 through 5–42 for internal timing parameters.

Quanda al	Parameter	-3 Speed Grade (1)		-3 Speed Grade (2)		-4 Speed Grade		-5 Speed Grade		Unit
Symbol		Min <i>(3)</i>	Max	Min <i>(3)</i>	Max	Min (4)	Max	Min <i>(3)</i>	Max	
t _{SU}	LE register setup time before clock	90		95		104 104		121		ps
t _H	LE register hold time after clock	149		157		172 172		200		ps
t _{co}	LE register clock-to-output delay	62	94	62	99	59 62	109	62	127	ps
t _{CLR}	Minimum clear pulse width	204		214		234 234		273		ps
t _{PRE}	Minimum preset pulse width	204		214		234 234		273		ps
t _{CLKL}	Minimum clock low time	612		642		703 703		820		ps
t _{CLKH}	Minimum clock high time	612		642		703 703		820		ps
t _{lut}		162	378	162	397	162 170	435	162	507	ps
t _{adder}		354	619	354	650	354 372	712	354	829	ps

Notes to Table 5–37:

- (1) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.
- (2) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.
- (3) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade.
- (4) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.

Sumbol	Parameter	-3 Speed Grade <i>(2)</i>		-3 Speed Grade <i>(</i> 3)		-4 Speed Grade		-5 Speed Grade		Unit
Symbol		Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{M512DATACO1}	Clock-to-output delay when using output registers	298	478	298	501	284 298	548	298	640	ps
t _{m512Dataco2}	Clock-to-output delay without output registers	2,102	2,345	2,102	2,461	2,003 2,102	2,695	2,102	3,141	ps
t _{M512CLKL}	Minimum clock low time	1,315		1,380		1,512 1,512		1,762		ps
t _{M512CLKH}	Minimum clock high time	1,315		1,380		1,512 1,512		1,762		ps
t _{M512CLR}	Minimum clear pulse width	144		151		165 165		192		ps

Notes to Table 5-40:

Г

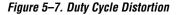
(1) F_{MAX} of M512 block obtained using the Quartus II software does not necessarily equal to 1/TM512RC.

(2) These numbers apply to -3 speed grade EP2S15, EP2S30, EP2S60, and EP2S90 devices.

(3) These numbers apply to -3 speed grade EP2S130 and EP2S180 devices.

(4) For the -3 and -5 speed grades, the minimum timing is for the commercial temperature grade. Only -4 speed grade devices offer the industrial temperature grade.

(5) For the -4 speed grade, the first number is the minimum timing parameter for industrial devices. The second number is the minimum timing parameter for commercial devices.


Table 5–41. M4K Block Internal Timing Microparameters (Part 1 of 2) Note (1)										
Symbol		-3 Speed Grade (2)		-3 Speed Grade (3)		-4 Speed Grade		-5 Speed Grade		11
	Parameter	Min (4)	Max	Min (4)	Max	Min (5)	Max	Min (4)	Max	Unit
t _{M4KRC}	Synchronous read cycle time	1,462	2,240	1,462	2,351	1,393 1,462	2,575	1,462	3,000	ps
t _{M4KWERESU}	Write or read enable setup time before clock	22		23		25 25		29		ps
t _{M4KWEREH}	Write or read enable hold time after clock	203		213		233 233		272		ps
t _{M4KBESU}	Byte enable setup time before clock	22		23		25 25		29		ps
t _{M4KBEH}	Byte enable hold time after clock	203		213		233 233		272		ps

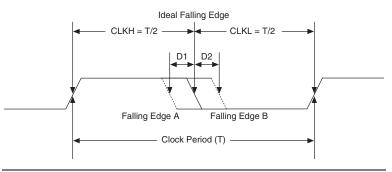
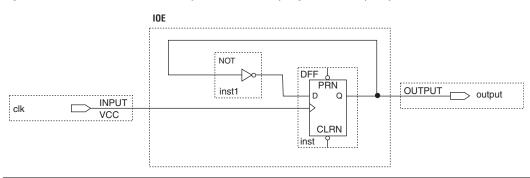

Table 5–65. EP2S180 Column Pins Global Clock Timing Parameters									
Parameter	Minimum Timing		-3 Speed	-4 Speed	-5 Speed	Unit			
	Industrial	Commercial	Grade	Grade	Grade	Unit			
t _{CIN}	2.003	2.100	3.652	3.993	4.648	ns			
t _{COUT}	1.846	1.935	3.398	3.715	4.324	ns			
t _{PLLCIN}	-0.3	-0.29	0.053	0.054	0.058	ns			
t _{PLLCOUT}	-0.457	-0.455	-0.201	-0.224	-0.266	ns			

Table 5–66. EP2S180 Row Pins Regional Clock Timing Parameters										
Parameter	Minimum Timing		-3 Speed	-4 Speed	-5 Speed	Unit				
	Industrial	Commercial	Grade	Grade	Grade	Unit				
t _{CIN}	1.759	1.844	3.273	3.577	4.162	ns				
t _{COUT}	1.764	1.849	3.269	3.573	4.157	ns				
t _{PLLCIN}	-0.542	-0.541	-0.317	-0.353	-0.414	ns				
t _{PLLCOUT}	-0.537	-0.536	-0.321	-0.357	-0.419	ns				

Table 5–67. EP2S180 Row Pins Global Clock Timing Parameters									
Parameter	Minimum Timing		-3 Speed	-4 Speed	-5 Speed	Unit			
	Industrial	Commercial	Grade	Grade	Grade	UIII			
t _{CIN}	1.763	1.850	3.285	3.588	4.176	ns			
t _{COUT}	1.768	1.855	3.281	3.584	4.171	ns			
t _{PLLCIN}	-0.542	-0.542	-0.319	-0.355	-0.42	ns			
t _{PLLCOUT}	-0.537	-0.537	-0.323	-0.359	-0.425	ns			

Table 5–75. Stratix II I/O Output Delay for Column Pins (Part 6 of 8)										
I/O Standard	Drive Strength	Parameter	Minimu	-3	-3	-4	-5			
			Industrial	Commercial	Speed Grade (3)	Speed Grade (4)	Grade	Speed Grade	Unit	
Differential	8 mA	t _{OP}	913	957	1715	1799	1971	2041	ps	
SSTL-2 Class I		t _{DIP}	933	979	1781	1869	2047	2131	ps	
	12 mA	t _{OP}	896	940	1672	1754	1921	1991	ps	
		t _{DIP}	916	962	1738	1824	1997	rade Grade 971 2041 971 2131 921 1991 997 2081 849 1918 925 2008 836 1905 912 1993 912 1993 912 2012 013 2102 903 1973 979 2063 885 1954 961 2044 882 1952 958 2042 869 1938 945 2028 835 1904 911 1994 813 1882 889 1972 821 1890 837 1980 8397 1980 819 1888	ps	
Differential	16 mA	t _{OP}	876	918	1609	1688	1849	1918	ps	
SSTL-2 Class II		t _{DIP}	896	940	1675	1758	1925	2008	ps	
	20 mA	t _{OP}	877	919	1598	1676	1836	1905	ps	
		t _{DIP}	897	941	1664	1746	1912	1995	ps	
	24 mA	t _{OP}	872	915	1596	1674	1834	1903	ps	
		t _{DIP}	892	937	1662	1744	1910	1993	ps	
Differential	4 mA	t _{OP}	909	953	1690	1773	1942	2012	ps	
SSTL-18 Class I		t _{DIP}	929	975	1756	1843	2018	2102	ps	
	6 mA	t _{OP}	914	958	1656	1737	1903	1973	ps	
		t _{DIP}	934	980	1722	1807	1979	Speed Grade 2041 2131 1991 2081 1993 2008 1995 1993 2012 1973 2063 1954 2044 1952 2042 1938 2028 1994 1994 1994 1994 1994 1882 1972 1880 1980 1888	ps	
	8 mA	t _{OP}	894	937	1640	1721	1885	1954	ps	
		t _{DIP}	914	959	1706	1791	1961	2044	ps	
	10 mA	t _{OP}	898	942	1638	1718	1882	1952	ps	
		t _{DIP}	918	964	1704	1788	1958	2042	ps	
	12 mA	t _{OP}	891	936	1626	1706	1869	1938	ps	
		t _{DIP}	911	958	1692	1776	1945	2028	ps	
Differential	8 mA	t _{OP}	883	925	1597	1675	1835	1904	ps	
SSTL-18 Class II		t _{DIP}	903	947	1663	1745	1911	1994	ps	
0.000 11	16 mA	t _{OP}	894	937	1578	1655	1813	1882	ps	
		t _{DIP}	914	959	1644	1725	1889	1972	ps	
	18 mA	t _{OP}	890	933	1585	1663	1821	1890	ps	
		t _{DIP}	910	955	1651	1733	1897	1980	ps	
	20 mA	t _{OP}	890	933	1583	1661	1819	1888	ps	
		t _{DIP}	910	955	1649	1731	1895	1978	ps	

DCD expressed in absolution derivation, for example, D1 or D2 in Figure 5–7, is clock-period independent. DCD can also be expressed as a percentage, and the percentage number is clock-period dependent. DCD as a percentage is defined as


(T/2 – D1) / T (the low percentage boundary)

(T/2 + D2) / T (the high percentage boundary)

DCD Measurement Techniques

DCD is measured at an FPGA output pin driven by registers inside the corresponding I/O element (IOE) block. When the output is a single data rate signal (non-DDIO), only one edge of the register input clock (positive or negative) triggers output transitions (Figure 5–8). Therefore, any DCD present on the input clock signal or caused by the clock input buffer or different input I/O standard does not transfer to the output signal.

Figure 5–8. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs

