E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	38 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f510-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Міскоснір PIC12F510/16F506

8/14-Pin, 8-Bit Flash Microcontroller

Devices Included In This Data Sheet:

- PIC16F506
- PIC12F510

High-Performance RISC CPU:

- · Only 33 Single-Word Instructions to Learn
- All Single-Cycle Instructions except for Program Branches, which are Two-Cycle
- 12-Bit Wide Instructions
- Two-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- · 8-Bit Wide Data Path
- 10 Special Function Hardware Registers (PIC12F510)
- 13 Special Function Hardware Registers (PIC16F506)
- · Operating Speed:
 - DC 8 MHz Crystal Oscillator (PIC12F510)
 - DC 500 ns instruction cycle (PIC12F510)
 - DC 20 MHz Crystal Oscillator (PIC16F506)
 - DC 200 ns instruction cycle (PIC16F506)

Special Microcontroller Features:

- 4 or 8 MHz Selectable Precision Internal Oscillator:
 - Factory calibrated to ±1%
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Debugging (ICD) Support
- Power-on Reset (POR)
- Device Reset Timer (DRT):
- Short DRT (1.125 ms, typical) for INTOSC, EXTRC and EC
- DRT (18 ms, typical) for HS, XT and LP
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- Programmable Code Protection
- Multiplexed MCLR Input Pin
- · Selectable Internal Weak Pull-Ups on I/O Pins
- · Power-Saving Sleep mode
- Wake-up from Sleep on Pin Change
- · Wake-up from Sleep on Comparator Change

- · Selectable Oscillator Options:
 - INTOSC: 4/8 MHz precision Internal oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - LP: Power-saving, low-frequency crystal
 - HS: High-speed crystal/resonator (PIC16F506 only)
 - EC: High-speed external clock input (PIC16F506 only)
- Analog-to-Digital (A/D) Converter:
 - 8-bit resolution
 - 4-input channels (1 channel is dedicated to conversion of the internal 0.6V absolute voltage reference)
- High Current Sink/Source for Direct LED Drive
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler

Low-Power Features/CMOS Technology:

- Operating Current:
 - < 175 μA @ 2V, 4 MHz, typical
- Standby Current:
 - 100 nA @ 2V, typical
- · Low-Power, High-Speed Flash Technology:
 - 100,000 cycle Flash endurance
 - > 40-year retention
- Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V
- Wide Temperature Range:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features (PIC12F510):

- 6 I/O Pins:
- 5 I/O pins with individual direction control
- 1 input only pin
- 1 Analog Comparator with Absolute Reference

Peripheral Features (PIC16F506):

- 12 I/O Pins:
 - 11 I/O pins with individual direction control
- 1 input only pin
- 2 Analog Comparators with Absolute Reference and Programmable Reference

Dovico	Program Memory	Data Memory	10	Timers	
Device	Flash (words)	SRAM (bytes)	1/0	8-bit	
PIC16F506	1024	67	12	1	
PIC12F510	1024	38	6	1	

Pin Diagrams

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset
N/A	TRIS	I/O Control	/O Control Registers (TRISB, TRISC)							
N/A	OPTION	Contains co	ontrol bits to co	onfigure Tim	ner0 and Time	r0/WDT Pre	scaler			1111 1111
00h	INDF	Uses conte	nts of FSR to	address dat	a memory (no	ot a physical	register)			xxxx xxxx
01h	TMR0	Timer0 Mod	dule Register							XXXX XXXX
02h ⁽¹⁾	PCL	Low Order	Low Order 8 bits of PC						1111 1111	
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx
04h	FSR	Indirect Dat	a Memory Ad	dress Pointe	er					100x xxxx
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	1111 111-
06h	PORTB	_	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx
07h	PORTC	—	—	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx
08h	CM1CON0	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111
09h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100
0Ah	ADRES	ADC Conversion Result							xxxx xxxx	
0Bh	CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111
0Ch	VRCON	VREN	VROE	VRR	_(2)	VR3	VR2	VR1	VR0	0011 1111

TABLE 4-2: SPECIAL FUNCTION REGISTER SUMMARY – PIC16F506

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused.
 Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to access these bits.

2: Unimplemented bit VRCON<4> read as '1'.

4.3 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see **Section 11.0 "Instruction Set Summary"**.

FIGURE 5-6: BLOCK DIAGRAM OF RB4

FIGURE 5-9: **BLOCK DIAGRAM OF** RC0/RC1 Data Bus D Q Data I/O WR Latch pin⁽¹⁾ P<u>ort</u> Q СК W Reg D Q TRIS Latch TRIS 'f' CK Q Reset Comp Pin Enable

RD Port

Vss.

COMP2

Note 1: I/O pins have protection diodes to VDD and

FIGURE 8-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 8-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	001- 1111	001- 1111
08h	CM1CON0 ⁽¹⁾	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	uuuu uuuu
0Bh	CM2CON0 ⁽¹⁾	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111	uuuu uuuu

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented, read as `0`.$

Note 1: PIC16F506 only.

REGISTER 10-2: CONFIG: CONFIGURATION WORD REGISTER (PIC16F506)⁽¹⁾

—	—	_	—	_	—	—	_
bit 15							bit 8

_	IOSCFS	MCLRE	CP	WDTE	FOSC2	FOSC1	FOSC0
bit 7					1		bit 0
L							/
bit 11-7	Unimplemen	ted: Read as ':	L'				
bit 6	IOSCFS: Inte	rnal Oscillator	Frequency Se	lect bit			
	1 = 8 MHz IN	TOSC speed					
	0 = 4 MHz IN	TOSC speed					
bit 5	MCLRE: Mas	ter Clear Enab	le bit				
	1 = RB3/MCL	R pin functions	as MCLR				
	0 = RB3/MCLR pin functions as RB3, MCLR tied internally to VDD						
bit 4	CP: Code Pro	otection bit					
	1 = Code prot	ection off					
	0 = Code prot	ection on					
bit 3	WDTE: Watch	ndog Timer Ena	able bit				
	1 = WDT enal	bled					
bit 2-0	FOSC<2:0>:	Oscillator Sele	ction bits				
	000 = LP osc	illator and 18 n					
	001 = HS osc	illator and 18 r	ns DRT				
	011 = EC osc	illator with RB4	function on F	RB4/OSC2/CL	KOUT and 1.12	5 ms DRT ⁽²⁾	
	100 = INTOS	C with RB4 fun	ction on RB4/	OSC2/CLKOL	JT and 1.125 ms	3 DRT ⁽²⁾	
	101 = INTOS	C with CLKOU	T function on	RB4/OSC2/CL	KOUT and 1.12	$25 \text{ ms } DRT^{(2)}$	
	110 = EXTRO	C with RB4 fund	tion on RB4/0	DSC2/CLKOU	T and 1.125 ms	DRT (2)	
Nata d	$\perp \perp \perp = EXIRU$			(D4/USU2/UL)			4
NOTE 1:	Configuration Wor	ารบธ <i>เพemory</i> ป	Programming	Specification	(DS41258) to (aetermine now	to access the
2.	It is the responsibil	ity of the applic	nation designe	er to ensure the	e use of the 1.12	25 ms (nominal) DRT will

2: It is the responsibility of the application designer to ensure the use of the 1.125 ms (nominal) DRT will result in acceptable operation. Refer to Electrical Specifications for VDD rise time and stability requirements for this mode of operation.

10.7 Time-out Sequence, Power-down and <u>Wake-up</u> from Sleep Status Bits (TO, PD, GPWUF/RBWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$ and (GPWUF/RBWUF) bits in the STATUS register can be tested to determine if a Reset condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) Reset.

TABLE 10-8: TO/PD/(GPWUF/RBWUF) STATUS AFTER RESET

CWUF	GPWUF/ RBWUF	то	PD	Reset Caused By
0	0	0	0	WDT wake-up from Sleep
0	0	0	u	WDT time-out (not from Sleep)
0	0	1	0	MCLR wake-up from Sleep
0	0	1	1	Power-up
0	0	u	u	MCLR not during Sleep
0	1	1	0	Wake-up from Sleep on pin change
1	0	1	0	Wake-up from Sleep on comparator change

Legend: u = unchanged

10.8 Reset on Brown-out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12F510/16F506 devices when a brownout occurs, external brown-out protection circuits may be built, as shown in Figure 10-12 and Figure 10-13.

FIGURE 10-12: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 10-14: BROWN-OUT PROTECTION CIRCUIT 3

11.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories.

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 12-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands** which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 11-1, while the various opcode fields are summarized in Table 11-1.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bits affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 11-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top-of-Stack
PC	Program Counter
WDT	Watchdog Timer counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Figure 11-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 11-1: GENERAL FORMAT FOR INSTRUCTIONS

•	-			ution	-	
11	6	5	4			0
OPCODE	:	d		f (F	LE #)	
d = 0 for de d = 1 for de f = 5-bit file	stinati stinati regis	on W on f ter ac	dres	s		
Bit-oriented file	regist	ter op	perat	ions		
11	8	7	5	4		0
OPCODE	-	b (B	IT #)	f	(FILE #)	
Literal and cont	rol op	erati	ons (excep	t goto)	0
OPCODE		0		k (literal)	0
	modia					
k = 8-bit im	media	ate va	lue			
k = 8-bit im	rol op	erati	ons -	- GOT	o instruc	tion
κ = 8-bit im Literal and contr	rol op	erati 9	ons - 8	- GOT	o instruc	tion 0
k = 8-bit im Literal and contr 11 OPCODE	rol op	erati 9	ons - 8	- GOT(⊃ instruc literal)	tion 0

ADDWF	Add W and f
Syntax:	[label]ADDWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Description:	Add the contents of the W register and register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND literal with W
Syntax:	[label] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W).AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	Z			
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

BTFSC	Bit Test f, Skip if Clear
Syntax:	[<i>label</i>]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 31$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Description:	Move data from the W register to register 'f'.				

MOVF	Move f				
Syntax:	[<i>label</i>] MOVF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$				
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Description:	The contents of register 'f' are moved to destination 'd'. If 'd' is '0', destination is the W register. If 'd' is '1', the destination is file register 'f'. 'd' = 1 is useful as a test of a file register, since Status flag Z is affected				

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W			
Syntax:	[<i>label</i>] MOVLW k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (W)$			
Status Affected:	None			
Description:	The eight-bit literal 'k' is loaded into the W register. The "don't cares" will be assembled as '0's.			

OPTION	Load OPTION Register
Syntax:	[label] Option
Operands:	None
Operation:	$(W) \rightarrow Option$
Status Affected:	None
Description:	The content of the W register is loaded into the OPTION register.

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- · Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

12.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

12.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

12.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC[®] and MCU devices. It debugs and programs PIC[®] and dsPIC[®] Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

12.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

12.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

12.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

12.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

12.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

13.3 DC Characteristics: PIC12F510/16F506 (Industrial, Extended)

		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				s otherwise specified) ≤ +85°C (industrial) ≤ +125°C (extended)			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports	ports						
D030		with TTL buffer	Vss	—	0.8V	V	For $4.5 \le VDD \le 5.5V$		
D030A			Vss	—	0.15 VDD	V	otherwise		
D031		with Schmitt Trigger buffer	Vss	—	0.15 VDD	V			
D032		MCLR, TOCKI	Vss	—	0.15 VDD	V			
D033		OSC1 (in EXTRC), EC ⁽¹⁾	Vss	—	0.15 VDD	V			
D033		OSC1 (in HS)	Vss	—	0.3 VDD	V			
D033		OSC1 (in XT and LP)	Vss	-	0.3 VDD	V			
	Vih	Input High Voltage							
		I/O ports		-					
D040		with TTL buffer	2.0	—	Vdd	V	$4.5 \leq V\text{DD} \leq 5.5 V$		
D040A			0.25 VDD	—	Vdd	V	Otherwise		
			+ 0.8V						
D041		with Schmitt Trigger buffer	0.85 VDD	—	Vdd	V	For entire VDD range		
D042		MCLR, TOCKI	0.85 VDD	—	Vdd	V			
D043		OSC1 (in EXTRC), EC ⁽¹⁾	0.85 VDD	—	Vdd	V			
D043		OSC1 (in HS)	0.7 Vdd	—	Vdd	V			
D043		OSC1 (in XT and LP)	1.6	—	Vdd	V			
D070	IPUR	GPIO/PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
	lı∟	Input Leakage Current ^{(2), (3)}							
D060		I/O ports	—	-	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}, \text{ Pin at high-impedance}$		
D062		GP3/RB3/MCLR ⁽⁵⁾	50	250	400	μA	VDD = 5V		
D061A		GP3/RB3/MCLR ⁽⁴⁾	—	+0.7	±5	μA	$Vss \leq V pin \leq V dd$		
D063		OSC1	—		±5	μA	VSS \leq VPIN \leq VDD, XT, HS and LP oscillator configuration		
		Output Low Voltage							
D080	Vol	I/O ports/CLKOUT	—	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40° C to $+85^{\circ}$ C		
D080A			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083		OSC2	_	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			_	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
		Output High Voltage							
D090	Vон	I/O ports/CLKOUT ⁽³⁾	VDD - 0.7	_	_	V	Юн = -3.0 mA, VDD = 4.5V, -40°C to +85°C		
D090A			VDD - 0.7	_	_	v	Юн = -2.5 mA, VDD = 4.5V, -40°C to +125°C		
D092		OSC2	VDD - 0.7	_	_	v	Іон = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D092A			$V_{DD} = 0.7$ V $I_{OH} = -1.0 \text{ mA}, V_{DD} = 4.5 \text{V} -40^{\circ} \text{C to} +12^{\circ} \text{C}$			ІОН = -1.0 mA, VDD = 4.5V, -40°C to +125°C			
<u> </u>		Capacitive Loading Specs on Output P	ins		1	1	1		
D100	Cosc2	OSC2 pin	-	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	Сю	All I/O pins	—	_	50	pF			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12F510/16F506 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: This specification applies when GP3/MCLR is configured as an input with the pull-up disabled. The leakage current for the GP3/RB3/ MCLR pin is higher than for the standard I/O port pins.

5: This specification applies when GP3/RB3/MCLR is configured as the MCLR Reset pin function with the weak pull-up always enabled.

Note

13.4 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. Tpp\$	S		
Т			
F	Frequency	T Time	
Low	vercase (pp) and their meanings:		
рр			
2	То	mc	MCLR
ck	CLKOUT	osc	Oscillator
су	Cycle Time	os	OSC1
drt	Device Reset Timer	t0	ТОСКІ
io	I/O port	wdt	Watchdog Timer
Upp	percase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (high-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 13-5: LOAD CONDITIONS

FIGURE 13-6: EXTERNAL CLOCK TIMING

15.2 Package Marking Information (Cont'd)

14-Lead SOIC (3.90 mm)

8-Lead MSOP

14-Lead TSSOP (4.4 mm)

Example

Example

Example

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dime	nsion Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		.100 BSC	
Top to Seating Plane	A	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	е	0.50 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	E	3.00 BSC			
Exposed Pad Length	D2	1.30	-	1.75	
Exposed Pad Width	E2	1.50	-	1.90	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	_	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123B