

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	38 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VFDFN Exposed Pad
Supplier Device Package	8-DFN (2x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f510-i-mc

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 PIC12F510/16F506 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12F510/16F506 Product Identification System at the back of this data sheet to specify the correct part number.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices, but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

3.0 ARCHITECTURAL OVERVIEW

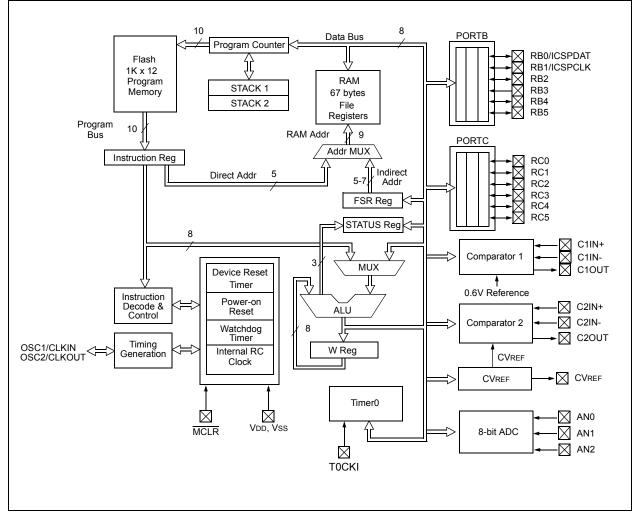
The high performance of the PIC12F510/16F506 devices can be attributed to a number of architectural features commonly found in RISC microprocessors. The PIC12F510/16F506 devices use a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architectures where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200 ns @ 20 MHz, 1 µs @ 4 MHz) except for program branches.

Table 3-1 lists program memory (Flash) and data memory (RAM) for the PIC12F510/16F506 devices.

TABLE 3-1: PIC12F510/16F506 MEMORY

Device	Memory						
Device	Program	Data					
PIC12F510	1024 x 12	38 x 8					
PIC16F506	1024 x 12	67 x 8					

The PIC12F510/16F506 devices can directly or indirectly address its register files and data memory. All Special Function Registers (SFRs), including the PC, are mapped in the data memory. The PIC12F510/ 16F506 devices have a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of "special optimal situations" make programming with the PIC12F510/16F506 devices simple, yet efficient. In addition, the learning curve is reduced significantly.


The PIC12F510/16F506 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file. The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single-operand instructions, the operand is either the W register or a file register.

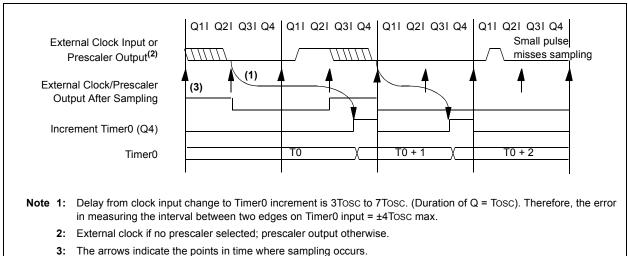
The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1 for PIC12F510 with the corresponding device pins described in Table 3-2. A simplified block diagram for PIC16F506 is shown in Figure 3-2 with the corresponding device pins described in Table 3-3.

6.1 Using Timer0 With An External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.


6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of an external clock with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for TOCKI or the comparator output to be high for at least 2Tosc (and a small RC delay of 2Tt0H) and low for at least 2Tosc (and a small RC delay of 2Tt0H). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI or the comparator output to have a period of at least 4Tosc (and a small RC delay of 4Tt0H) divided by the prescaler value. The only requirement on TOCKI or the comparator output high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

6.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see Figure 10-12). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note:	The prescaler may be used by either the								
	Timer0 module or the WDT, but not both.								
	Thus, a prescaler assignment for the								
	Timer0 module means that there is no								
	prescaler for the WDT and vice-versa.								

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

9.1.6 ANALOG CONVERSION RESULT REGISTER

The ADRES register contains the results of the last conversion. These results are present during the sampling period of the next analog conversion process. After the sampling period is over, ADRES is cleared (= 0). A 'leading one' is then right shifted into the ADRES to serve as an internal conversion complete bit. As each bit weight, starting with the MSB, is converted, the leading one is shifted right and the converted bit is stuffed into ADRES. After a total of 9 right

shifts of the 'leading one' have taken place, the conversion is complete; the 'leading one' has been shifted out and the GO/DONE bit is cleared.

If the GO/DONE bit is cleared in software during a conversion, the conversion stops. The data in ADRES is the partial conversion result. This data is valid for the bit weights that have been converted. The position of the 'leading one' determines the number of bits that have been converted. The bits that were not converted before the GO/DONE was cleared are unrecoverable.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER (PIC12F510)

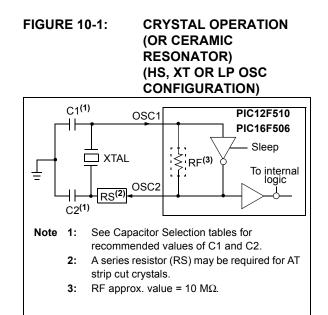
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	00 = No 01 = AN 10 = AN	0>: ADC Analog Input Pin S pins configured for analog in 2 configured as an analog ir 2 and AN0 configured as an 2, AN1 and AN0 configured	nput iput alog inputs	
bit 5-4	ADCS< 00 = FO 01 = FO 10 = FO 11 = IN	sc/8 sc/4	s Select bits	
bit 3-2	00 = Ch 01 = Ch 10 = Ch	0>: ADC Channel Select bits annel AN0 annel AN1 annel AN2 V absolute voltage reference		
bit 1	1 = AD0 auto 0 = AD0	omatically cleared by hardwa	Setting this bit starts an Al are when the ADC is done con in progress. Manually clearin	DC conversion cycle. This bit verting. Ig this bit while a conversion is
bit 0	1 = AD0	ADC Enable bit C module is operating C module is shut-off and con	sumes no power	
Note 1: 2:	less of the pir input to the co that the ADC	n function previously defined omparator and the ADC will b	. The only exception to this is be active at the same time. It is nput does not affect their appli	forced into Analog mode, regard- the comparator, where the analog the users responsibility to ensur- cation.
3:		s default to 11 after any Res		
<u></u> <i>A</i> .		hit is clear the GO/DONE hit	cannot ha sat	

4: If the ADON bit is clear, the GO/DONE bit cannot be set.

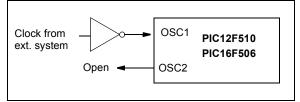
10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC12F510/16F506 devices can be operated in up to six different oscillator modes. The user can program up to three Configuration bits (FOSC<1:0> [PIC12F510], FOSC<2:0> [PIC16F506]). To select one of these modes:

•LP:	Low-Power Crystal
•XT:	Crystal/Resonator
•HS:	High-Speed Crystal/Resonator (PIC16F506 only)
•INTOSC:	Internal 4/8 MHz Oscillator
•EXTRC:	External Resistor/Capacitor
•EC:	External High-Speed Clock Input (PIC16F506 only)

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS


In HS (PIC16F506), XT or LP modes, a crystal or ceramic resonator is connected to the (GP5/RB5)/ OSC1/(CLKIN) and (GP4/RB4)/OSC2/(CLKOUT) pins to establish oscillation (Figure 10-1). The PIC12F510/ 16F506 oscillator designs require the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS (PIC16F506), XT or LP modes, the device can have an external clock source drive the (GP5/ RB5)/OSC1/CLKIN pin (Figure 10-2). When the part is used in this fashion, the output drive levels on the OSC2 pin are very weak. This pin should be left open and unloaded. Also, when using this mode, the external clock should observe the frequency limits for the clock mode chosen (HS, XT or LP).

- Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.
 - The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.

FIGURE 10-2:

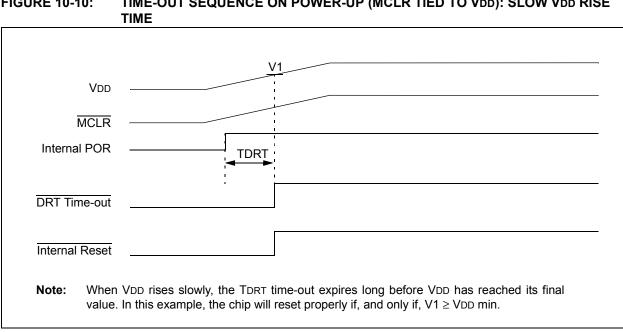

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS –
PIC12F510/16F506⁽¹⁾

Osc. Type	Resonator Freq.	Cap. Range C1	Cap. Range C2		
XT	4.0 MHz	30 pF	30 pF		
HS ⁽²⁾	16 MHz	10-47 pF	10-47 pF		

- Note 1: These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.
 - 2: PIC16F506 only.

TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE FIGURE 10-10:

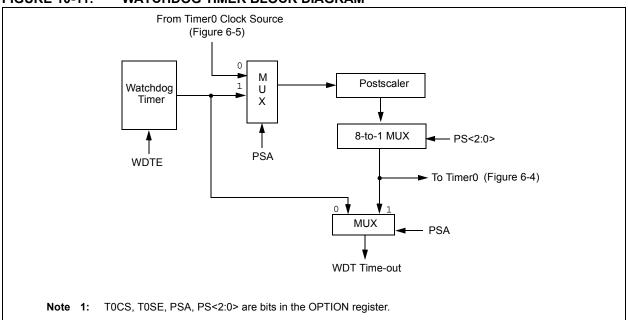


TABLE 10-7: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	OPTION ⁽¹⁾	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	OPTION ⁽²⁾	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded boxes = Not used by Watchdog Timer. - = unimplemented, read as '0', u = unchanged.

Note 1: PIC12F510 only.

2: PIC16F506 only.

10.9 Power-Down Mode (Sleep)

A device may be powered down (Sleep) and later powered up (wake-up from Sleep Reset).

10.9.1 SLEEP

The Power-Down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit (STATUS<4>) is set, the PD bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low or high-impedance).

Note: A device Reset generated by a WDT time-will not drive the MCLR pin low.

For lowest current consumption while powered down, all input pins should be at VDD or VSS and (GP3/RB3)/ MCLR/VPP pin must be at a logic high level if MCLR is enabled.

10.9.2 WAKE-UP FROM SLEEP RESET

The device can wake-up from Sleep through one of the following events:

- An external Reset input on <u>(GP3/RB3)/MCLR/</u> VPP pin when configured as MCLR.
- 2. A Watchdog Timer Time-out Reset (if WDT was enabled).
- A change-on-input pin GP0/RB0, GP1/RB1, GP3/RB3 or RB4 when wake-up on change is enabled.
- 4. A change in the comparator ouput bits, C1OUT and C2OUT (if comparator wake-up is enabled).

These events cause a device Reset. The \overline{TO} , \overline{PD} , CWUF and GPWUF/RBWUF bits can be used to determine the cause of device Reset. The \overline{TO} bit is cleared if a WDT time-out occurred (and caused wake-up). The \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The CWUF bit indicates a change in comparator output state while the device was in Sleep. The GPWUF/RBWUF bit indicates a change in state while in Sleep at pins GP0/RB0, GP1/RB1, GP3/RB3 or RB4 (since the last file or bit operation on GP/RB port).

Note: Caution: Right before entering Sleep, read the input pins. When in Sleep, wakeup occurs when the values at the pins change from the state they were in at the last reading. If a wake-up on change occurs and the pins are not read before reentering Sleep, a wake-up will occur immediately even if no pins change while in Sleep mode.

- Note 1: Caution: Right before entering Sleep, read the comparator Configuration register(s) CM1CON0 and CM2CON0. When in Sleep, wake-up occurs when the comparator output bit C1OUT and C2OUT change from the state they were in at the last reading. If a wake-up on comparator change occurs and the pins are not read before re-entering Sleep, a wake-up will occur immediately, even if no pins change while in Sleep mode.
 - 2: For 16F506 only.

The WDT is cleared when the device wakes from Sleep, regardless of the wake-up source.

10.10 Program Verification/Code Protection

If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.

The first 64 locations and the last location (OSCCAL) can be read, regardless of the code protection bit setting.

The last memory location can be read regardless of the code protection bit setting on the PIC12F510/16F506 devices.

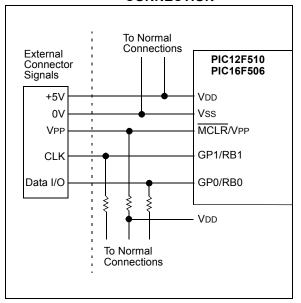
10.11 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify.

Use only the lower 4 bits of the ID locations and always set the upper 4 bits as '1's. The upper 4 bits are unimplemented.

These locations can be read regardless of the code protect setting.

10.12 In-Circuit Serial Programming™ (ICSP™)


The PIC12F510/16F506 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed.

The devices are placed into a Program/Verify mode by holding the GP1/RB1 and GP0/RB0 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1/RB1 becomes the programming clock and GP0/RB0 becomes the programming data. Both GP1/RB1 and GP0/RB0 are Schmitt Trigger inputs in this mode.

After Reset, a 6-bit command is supplied to the device. Depending on the command and if the command was a Load or a Read, 14 bits of program data are then supplied to or from the device. For complete details of serial programming, please refer to the PIC12F510/16F506 Programming Specifications.

A typical In-Circuit Serial Programming connection is shown in Figure 10-15.

FIGURE 10-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

Mnemonic,		Description	Cycles	12-1	Bit Opc	ode	Status	Notes
Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C, DC, Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2, 4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C, DC, Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
	·	BIT-ORIENTED FILE REGISTE	R OPER	ATIONS	;		1	
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	,
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
	,	LITERAL AND CONTROL C	PERATIO	ONS				1
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR literal to W	1	1111	kkkk	kkkk	Z	-
Note 1:		bit of the Program Counter will be forced to a 'o	' by any i					cept fo

TABLE 11-2: INSTRUCTION SET SUMMARY

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- · Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

12.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

12.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

12.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

12.4 MPLINK Object Linker/ MPLIB Object Librarian

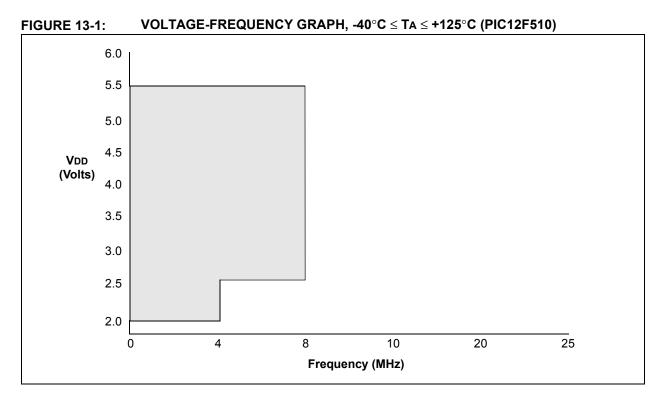
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

12.5 MPLAB ASM30 Assembler, Linker and Librarian


MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

12.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

FIGURE 13-2: MAXIMUM OSCILLATOR FREQUENCY TABLE (PIC12F510)

13.1 DC Characteristics: PIC12F510/16F506 (Industrial)

DC Cha	aracteris	tics					The second state of the s
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 14-1
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	_	1.5*		V	Device in Sleep mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss		V	See Section 10.4 "Power-on Reset (POR)" for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—		V/ms	See Section 10.4 "Power-on Reset (POR)" for details
D010	IDD	Supply Current ^(3,4)	_	175 0.625	275 1.1	μA mA	Fosc = 4 MHz, VDD = 2.0V Fosc = 4 MHz, VDD = 5.0V
			_	250 1.0	450 1.5	μA mA	Fosc = 8 MHz, Vdd = 2.0V Fosc = 8 MHz, Vdd = 5.0V
				1.4	2.0	mA	Fosc = 20 MHz, VDD = 5.0V
			_	11 38	15 52	μΑ μΑ	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 5.0V
D020	IPD	Power-down Current ⁽⁵⁾	_	0.1 0.35	1.2 2.4	μA μA	VDD = 2.0V VDD = 5.0V
D022	Iwdt	WDT Current ⁽⁵⁾	_	1.0 7.0	3.0 16.0	μΑ μΑ	VDD = 2.0V VDD = 5.0V
D023	ICMP	Comparator Current ⁽⁵⁾	_	15 55	22 67	μΑ μΑ	VDD = 2.0V (per comparator) VDD = 5.0V (per comparator)
D022	ICVREF	CVREF Current ⁽⁵⁾	_	30 75	60 125	μΑ μΑ	VDD = 2.0V (high range) VDD = 5.0V (high range)
D023	IFVR	Internal 0.6V Fixed Voltage Reference Current ⁽⁵⁾		85 175	120 205	μΑ μΑ	V_{DD} = 2.0V (0.6V reference and 1 comparator enabled) V_{DD} = 5.0V (0.6V reference and
							1 comparator enabled)
D024	Δ IAD	A/D Conversion Current ⁽⁵⁾		120	150	μA	2.0V
			—	200	250	μA	5.0V

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

 4: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

5: For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.

6: Does not include current through REXT. The current through the resistor can be estimated by the formula: I = VDD/2REXT (mA) with REXT in kΩ.

TABLE 13-1: COMPARATOR SPECIFICATIONS

Sym	Characteristics	Min	Тур	Max	Units	Comments
Vos	Input Offset Voltage	—	±3	±10	mV	(Vdd - 1.5V)/2
Vсм	Input Common Mode Voltage	0	_	Vdd - 1.5	V	
CMRR	Common Mode Rejection Ratio	+55*	_	—	dB	
TRT	Response Time ⁽¹⁾	—	150	400*	ns	Internal
VIVRF	Internal Voltage Reference	0.550	0.6	0.650	V	

These parameters are characterized but not tested. *

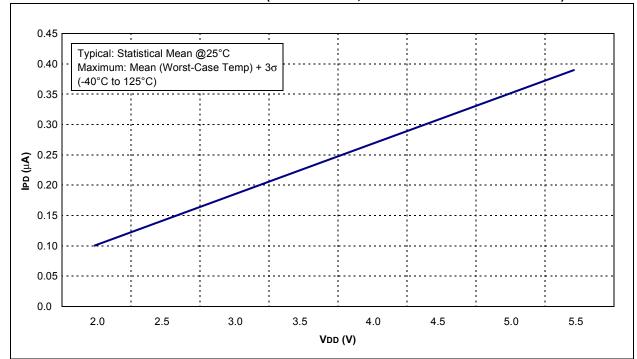
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD - 1.5V.

TABLE 13-2: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Sym	Characteristics	Min	Тур	Max	Units	Comments			
CVRES	Resolution	_	VDD/24*	_	LSb	Low Range (VRR = 1)			
		—	VDD/32	—	LSb	High Range (VRR = 0)			
	Absolute Accuracy	_		±1/2*	LSb	Low Range (VRR = 1)			
		—		±1/2*	LSb	High Range (VRR = 0)			
	Unit Resistor Value (R)	_	2K*	_	Ω				
		—							
	Settling Time ⁽¹⁾	_		10*	μs				
*	* These parameters are characterized but not tested.								

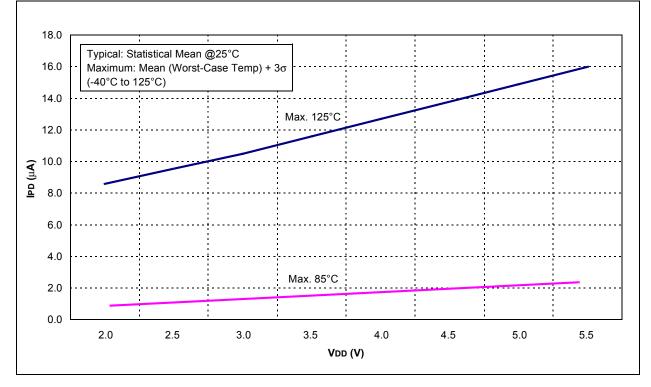
These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.


TABLE 13-3: A/D CONVERTER CHARACTERISTICS (PIC16F506/PIC12F510)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution			8 bits	bit	
A03	EIL	Integral Error	_	—	± 1.5	LSb	VDD = 5.0V
A04	Edl	Differential Error	_	—	-1 < EDL ≤ 1.5	LSb	No missing codes to 8 bits VDD = 5.0V
A05	EFS	Full-scale Range	2	—	5.5*	V	Vdd
A06	EOFF	Offset Error	_	—	± 1.5	LSb	VDD = 5.0V
A07	Egn	Gain Error	-0.5	—	+1.75	LSb	VDD = 5.0V
A10		Monotonicity	_	guaranteed ⁽¹⁾	_		$Vss \leq Vain \leq Vdd$
A25	VAIN	Analog Input Voltage	Vss	—	Vdd	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	_	—	10	kΩ	

These parameters are characterized but not tested.


† Data in the "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only are not tested.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

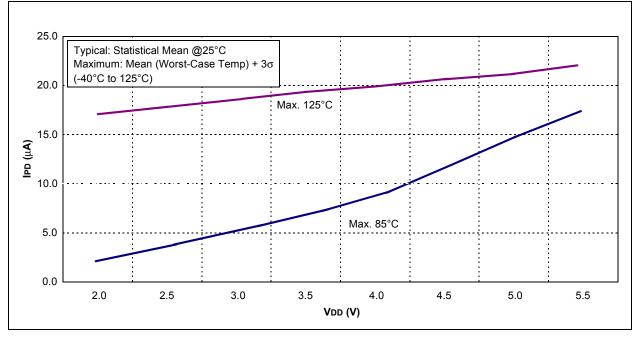
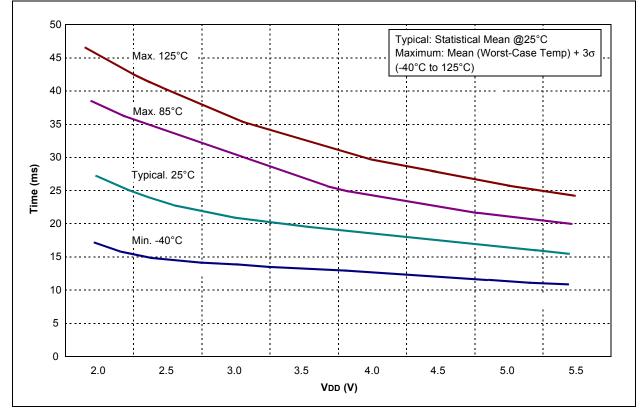


FIGURE 14-2: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)



NOTES: