

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	38 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f510-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Міскоснір PIC12F510/16F506

8/14-Pin, 8-Bit Flash Microcontroller

Devices Included In This Data Sheet:

- PIC16F506
- PIC12F510

High-Performance RISC CPU:

- · Only 33 Single-Word Instructions to Learn
- All Single-Cycle Instructions except for Program Branches, which are Two-Cycle
- 12-Bit Wide Instructions
- Two-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- · 8-Bit Wide Data Path
- 10 Special Function Hardware Registers (PIC12F510)
- 13 Special Function Hardware Registers (PIC16F506)
- · Operating Speed:
 - DC 8 MHz Crystal Oscillator (PIC12F510)
 - DC 500 ns instruction cycle (PIC12F510)
 - DC 20 MHz Crystal Oscillator (PIC16F506)
 - DC 200 ns instruction cycle (PIC16F506)

Special Microcontroller Features:

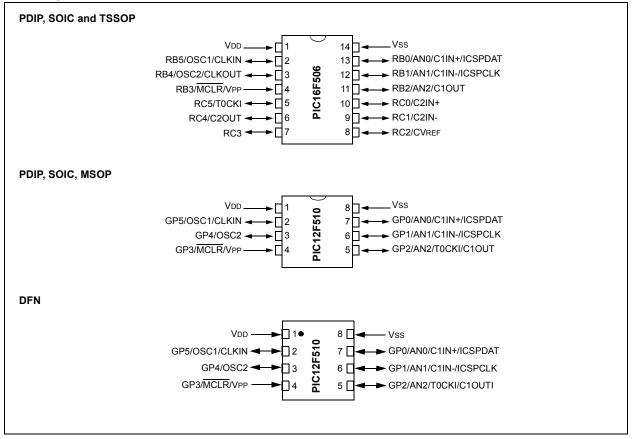
- 4 or 8 MHz Selectable Precision Internal Oscillator:
 - Factory calibrated to ±1%
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Debugging (ICD) Support
- Power-on Reset (POR)
- Device Reset Timer (DRT):
- Short DRT (1.125 ms, typical) for INTOSC, EXTRC and EC
- DRT (18 ms, typical) for HS, XT and LP
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- Programmable Code Protection
- Multiplexed MCLR Input Pin
- · Selectable Internal Weak Pull-Ups on I/O Pins
- · Power-Saving Sleep mode
- Wake-up from Sleep on Pin Change
- · Wake-up from Sleep on Comparator Change

- · Selectable Oscillator Options:
 - INTOSC: 4/8 MHz precision Internal oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - LP: Power-saving, low-frequency crystal
 - HS: High-speed crystal/resonator (PIC16F506 only)
 - EC: High-speed external clock input (PIC16F506 only)
- Analog-to-Digital (A/D) Converter:
 - 8-bit resolution
 - 4-input channels (1 channel is dedicated to conversion of the internal 0.6V absolute voltage reference)
- High Current Sink/Source for Direct LED Drive
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler

Low-Power Features/CMOS Technology:

- Operating Current:
 - < 175 μA @ 2V, 4 MHz, typical
- Standby Current:
 - 100 nA @ 2V, typical
- · Low-Power, High-Speed Flash Technology:
 - 100,000 cycle Flash endurance
 - > 40-year retention
- Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V
- Wide Temperature Range:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features (PIC12F510):


- 6 I/O Pins:
- 5 I/O pins with individual direction control
- 1 input only pin
- 1 Analog Comparator with Absolute Reference

Peripheral Features (PIC16F506):

- 12 I/O Pins:
 - 11 I/O pins with individual direction control
- 1 input only pin
- 2 Analog Comparators with Absolute Reference and Programmable Reference

Device	Program Memory	Data Memory	I/O	Timers	
Device	Flash (words)	SRAM (bytes)	1/0	8-bit	
PIC16F506	1024	67	12	1	
PIC12F510	1024	38	6	1	

Pin Diagrams

Table of Contents

1.0	General Description	5				
2.0	PIC12F510/16F506 Device Varieties	7				
3.0	Architectural Overview	9				
4.0	Memory Organization	15				
5.0	I/O Port	27				
6.0	TMR0 Module and TMR0 Register	39				
7.0	Comparator(s)	43				
8.0	Comparator Voltage Reference Module (PIC16F506 only)	49				
9.0	Analog-to-Digital (A/D) Converter	51				
10.0	Special Features Of The CPU	55				
	Instruction Set Summary					
12.0	Development Support	79				
13.0	Electrical Characteristics	83				
14.0	DC and AC Characteristics Graphs and Charts	97				
15.0	Packaging	. 105				
Index		. 117				
The N	ficrochip Web Site	. 119				
Custo	Customer Change Notification Service					
	Customer Support					
Read	Reader Response					
Produ	roduct Identification System					

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

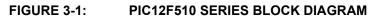
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

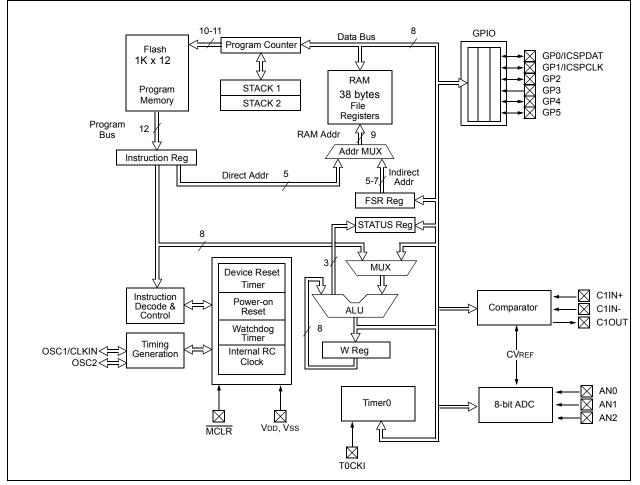
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.0 PIC12F510/16F506 DEVICE VARIETIES

A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC12F510/16F506 Product Identification System at the back of this data sheet to specify the correct part number.


2.1 Quick Turn Programming (QTP) Devices


Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices, but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

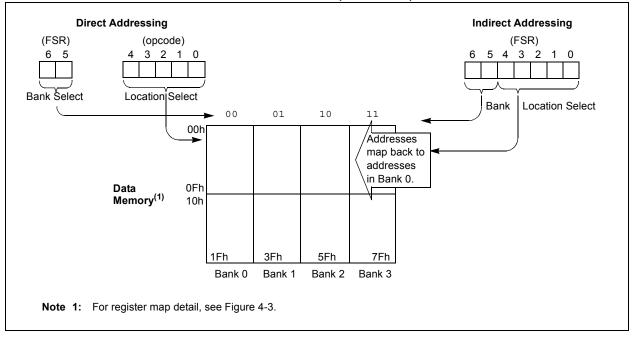
Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

4.4 **OPTION Register**

The OPTION register is a 8-bit wide, write-only register, that contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A Reset sets the OPTION<7:0> bits.


- Note 1: If TRIS bit is set to '0', the wake-up on change and pull-up functions are disabled for that pin (i.e., note that TRIS overrides Option control of GPPU/RBPU and GPWU/RBWU).
 - **2:** If the TOCS bit is set to '1', it will override the TRIS function on the TOCKI pin.

REGISTER 4-3: OPTION_REG: OPTION REGISTER (PIC12F510)

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7 bit 0							

Legend:								
R = Reada	eadable bit W = Writable bit		U	U = Unimplemented bit, read as '0'				
-n = Value	at POR '1' =	Bit is set	'0'	= Bit is cleared	x = Bit is unknown			
bit 7	GPWU: Enable Wake-u 1 = Disabled 0 = Enabled	p On Pin Chang	e bit (GP0, GP	1, GP3)				
bit 6	GPPU: Enable Weak Pu 1 = Disabled 0 = Enabled	ull-Ups bit (GP0,	GP1, GP3)					
bit 5	1 = Transition on TOCI							
bit 4	T0SE: Timer0 Source E 1 = Increment on high 0 = Increment on low-1	-to-low transition						
bit 3	 PSA: Prescaler Assignr 1 = Prescaler assigner 0 = Prescaler assigner 	d to the WDT						
bit 2-0	PS<2:0>: Prescaler Rat	e Select bits						
	Bit Value	Timer0 Rate	WDT Rate					
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128					

5.0 I/O PORT

As with any other register, the I/O register(s) can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's Input/Output modes. On Reset, all I/O ports are defined as input (inputs are at high-impedance) since the I/O control registers are all set.

Note:	On the PIC12F510, I/O PORTB is refer-			
	enced as GPIO. On the PIC16F506, I/O			
	PORTB is referenced as PORTB.			

5.1 PORTB/GPIO

PORTB/GPIO is an 8-bit I/O register. Only the loworder 6 bits are used (RB/GP<5:0>). Bits 7 and 6 are unimplemented and read as '0's. Please note that RB3/ GP3 is an input only pin. The Configuration Word can set several I/O's to alternate functions. When acting as alternate functions, the pins will read as '0' during a port read. Pins RB0/GP0, RB1/GP1, RB3/GP3 and RB4 (PIC16F506 only) can be configured with weak pull-up and also for wake-up on change. The wake-up on change and weak <u>pull-up</u> functions are not pin selectable. If RB3/GP3/MCLR is configured as MCLR, weak pull-up is always on and wake-up on change for this pin is not enabled.

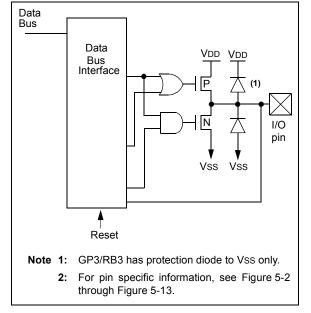
5.2 PORTC (PIC16F506 Only)

PORTC is an 8-bit I/O register. Only the low-order 6 bits are used (RC<5:0>). Bits 7 and 6 are unimplemented and read as '0's.

5.3 TRIS Registers

The Output Driver Control register is loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a High-Impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exception is RB3/GP3, which are input only, and the TOCKI pin, which may be controlled by the OPTION register. See Register 4-3.

Note:	A read of the port reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high
	but the external system is holding it low, a read of the port will indicate that the pin is low.


Note: The TRIS registers are write-only and are set (output drivers disabled) upon Reset.

5.4 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 5-1. All port pins, except RB3/GP3 which is input only, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except RB3/GP3) can be programmed individually as input or output.

FIGURE 5-1:

PIC12F510/16F506 EQUIVALENT CIRCUIT FOR PIN DRIVE⁽²⁾

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISGPIO ⁽¹⁾			I/O Contr	ol Registe	r				11 1111	11 1111
N/A	TRISB ⁽²⁾	_	—	I/O Contr	I/O Control Register			11 1111	11 1111		
N/A	TRISC ⁽²⁾	_	_	I/O Contr	ol Registe	r				11 1111	11 1111
N/A	OPTION ⁽¹⁾	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	OPTION ⁽²⁾	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS ⁽¹⁾	GPWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu (3)
03h	STATUS ⁽²⁾	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu ⁽³⁾
06h	GPIO ⁽¹⁾	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	PORTB ⁽²⁾	—	—	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC ⁽²⁾	_		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

 $\label{eq:logend: Legend: Legend: -= unimplemented read as `0', x = unknown, u = unchanged, q = depends on condition.$

Note 1: PIC12F510 only.

2: PIC16F506 only.

3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

TABLE 5-2: I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC16F506)

Priority	RB0	RB1	RB2	RB3	RB4	RB5
1	AN0/C1IN+	AN1/C1IN-	AN2	Input/MCLR	OSC2/CLKOUT	OSC1/CLKIN
2	TRISB	TRISB	C10UT	—	TRISB	TRISB
3	_		TRISB	_	_	

TABLE 5-3: I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC16F506)

Priority	RC0	RC1	RC2	RC3	RC4	RC5
1	C2IN+	C2IN-	CVREF	TRISC	C2OUT	TOCKI
2	TRISC	TRISC	TRISC		TRISC	TRISC

TABLE 5-4:I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC12F510)

Priority	GP0	GP1	GP2	GP3	GP4	GP5
1	AN0/C1IN+	AN1/C1IN-	AN2	Input/MCLR	OSC2	OSC1/CLKIN
2	TRISIO	TRISIO	C10UT	_	TRISIO	TRISIO
3	_	—	TOCKI	_	_	_
4		—	TRISIO	—	_	_

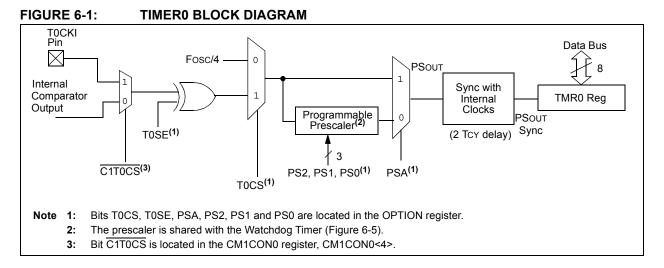
6.0 TMR0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select:
- Edge select for external clock
- External clock from either the T0CKI pin or from the output of the comparator

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.


There are two types of Counter mode. The first Counter mode uses the T0CKI pin to increment Timer0. It is selected by setting the T0CKI bit (OPTION<5>), setting the $\overline{C1T0CS}$ bit (CM1CON0<4>) and setting the $\overline{C1OUTEN}$ bit (CM1CON0<6>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.1 "Using Timer0 With An External Clock".

The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in two different ways. The first way is selected by setting the TOCS bit (OPTION<5>), and clearing the C1TOCS bit (CM1CON0<4>) (C1OUTEN [CM1CON0<6>] does not affect this mode of operation). This enables an internal connection between the comparator and the Timer0.

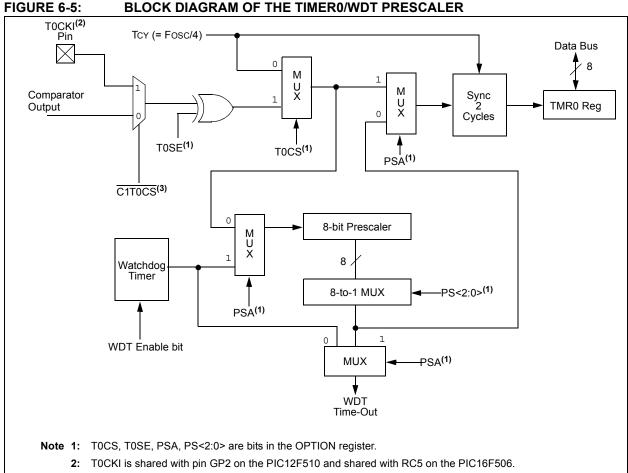
The second way is selected by setting the T0CS bit (OPTION<5>), setting the C1T0CS bit (CM1CON0) and clearing the C10UTEN bit (CM1CON0<6>). This allows the output of the comparator onto the T0CKI pin, while keeping the T0CKI input active. Therefore, any comparator change on the COUT pin is fed back into the T0CKI input. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input as discussed in Section 6.1 "Using Timer0 With An External Clock".

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 6.2 "Prescaler"** details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 6-1.

6.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.


EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

	•	
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & Prescaler
MOVLW	`00xx1111'b	;These 3 lines (5, 6, 7)
OPTION		;are required only if
		;desired
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	`00xx1xxx'b	;Set Postscaler to
OPTION		;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 6-2:	CHANGING PRESCALER
	(WDT→TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	`xxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

3: Bit C1T0CS is located in the CM1CON0 register.

8.0 COMPARATOR VOLTAGE REFERENCE MODULE (PIC16F506 ONLY)

The comparator voltage reference module also allows the selection of an internally generated voltage reference for one of the C2 comparator inputs. The VRCON register (Register 8-1) controls the voltage reference module shown in Figure 8-1.

8.1 Configuring The Voltage Reference

The voltage reference can output 32 voltage levels; 16 in a high range and 16 in a low range.

Equation 8-1 determines the output voltages:

EQUATION 8-1:

 $VRR = 1 (low range): CVREF = (VR < 3:0 > /24) \times VDD$ VRR = 0 (high range):CVREF = (VDD/4) + (VR < 3:0 > x VDD/32)

8.2 Voltage Reference Accuracy/Error

The full range of VSS to VDD cannot be realized due to construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 8-1) keep CVREF from approaching VSS or VDD. The exception is when the module is disabled by clearing the VREN bit (VRCON<7>). When disabled, the reference voltage is VSS when VR<3:0> is '0000' and the VRR (VRCON<5>) bit is set. This allows the comparator to detect a zero-crossing and not consume the CVREF module current.

The voltage reference is VDD derived and, therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the comparator voltage reference can be found in Section 13.2 "DC Characteristics: PIC12F510/16F506 (Extended)".

REGISTER 8-1: VRCON: VOLTAGE REFERENCE CONTROL REGISTER (PIC16F506 ONLY)

R/W-0	R/W-0	R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1
VREN	VROE	VRR	—	VR3	VR2	VR1	VR0
bit 7							bit 0

Legend:					
R = Read	able bit	W = Writable bit	U = Unimplemented bit, otherwise	read as '0', except if denoted	
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7	VREN: C	VREF Enable bit			
		F is powered on F is powered down, no curre	ent is drawn		
bit 6	VROE: C	VROE: CVREF Output Enable bit ⁽¹⁾			
		r output is onabled			

1 = CVREF output is enabled
 0 = CVREF output is disabled

bit 5 VRR: CVREF Range Selection bit

1 = Low range

0 = High range

bit 4 Unimplemented: Read as '1'

- bit 3-0 VR<3:0> CVREF Value Selection bit
 - When VRR = 1: CVREF = (VR < 3:0 > /24)*VDD
 - When VRR = 0: CVREF = VDD/4 + (VR < 3:0 > /32)*VDD
- **Note 1:** When this bit is set, the TRIS for the CVREF pin is overridden and the analog voltage is placed on the CVREF pin.
 - 2: CVREF controls for ratio metric reference applies to Comparator 2 on the PIC16F506 only.

FIGURE 8-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 8-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	001- 1111	001- 1111
08h	CM1CON0 ⁽¹⁾	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	uuuu uuuu
0Bh	CM2CON0 ⁽¹⁾	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111	uuuu uuuu

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented, read as `0`.$

Note 1: PIC16F506 only.

9.1.6 ANALOG CONVERSION RESULT REGISTER

The ADRES register contains the results of the last conversion. These results are present during the sampling period of the next analog conversion process. After the sampling period is over, ADRES is cleared (= 0). A 'leading one' is then right shifted into the ADRES to serve as an internal conversion complete bit. As each bit weight, starting with the MSB, is converted, the leading one is shifted right and the converted bit is stuffed into ADRES. After a total of 9 right

shifts of the 'leading one' have taken place, the conversion is complete; the 'leading one' has been shifted out and the GO/DONE bit is cleared.

If the GO/DONE bit is cleared in software during a conversion, the conversion stops. The data in ADRES is the partial conversion result. This data is valid for the bit weights that have been converted. The position of the 'leading one' determines the number of bits that have been converted. The bits that were not converted before the GO/DONE was cleared are unrecoverable.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER (PIC12F510)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7-6	00 = No 01 = AN 10 = AN	0>: ADC Analog Input Pin S pins configured for analog in 2 configured as an analog ir 2 and AN0 configured as an 2, AN1 and AN0 configured	nput iput alog inputs		
bit 5-4	ADCS< 00 = FO 01 = FO 10 = FO 11 = IN	sc/8 sc/4	s Select bits		
bit 3-2	00 = Ch 01 = Ch 10 = Ch	0>: ADC Channel Select bits annel AN0 annel AN1 annel AN2 V absolute voltage reference			
bit 1	1 = AD0 auto 0 = AD0	omatically cleared by hardwa	Setting this bit starts an Al are when the ADC is done con in progress. Manually clearin	DC conversion cycle. This bit verting. Ig this bit while a conversion is	
bit 0	1 = AD0	ADC Enable bit C module is operating C module is shut-off and con	sumes no power		
Note 1: 2:	less of the pir input to the co that the ADC	n function previously defined omparator and the ADC will b	. The only exception to this is be active at the same time. It is nput does not affect their appli	forced into Analog mode, regard- the comparator, where the analog the users responsibility to ensur- cation.	
3:		s default to 11 after any Res			
<u></u> <i>A</i> .		hit is clear the GO/DONE hit	cannot ha sat		

4: If the ADON bit is clear, the GO/DONE bit cannot be set.

Mnemonic,		Description	Cycles	12-1	Bit Opc	ode	Status	Notes
Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C, DC, Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2, 4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C, DC, Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
	·	BIT-ORIENTED FILE REGISTE	R OPER	ATIONS	;		1	
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	,
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
	,	LITERAL AND CONTROL C	PERATIO	ONS				1
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR literal to W	1	1111	kkkk	kkkk	Z	-
Note 1:		bit of the Program Counter will be forced to a 'o	' by any i					cept fo

TABLE 11-2: INSTRUCTION SET SUMMARY

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 'o', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0			
Syntax:	[<i>label</i>] DECFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	(f) – 1 \rightarrow d; skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			

INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 511$
Operation:	$k \rightarrow PC<8:0>;$ STATUS <6:5> $\rightarrow PC<10:9>$
Status Affected:	None
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS <6:5>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

12.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

12.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

12.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

12.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

12.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

12.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

12.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC[®] and MCU devices. It debugs and programs PIC[®] and dsPIC[®] Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

12.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

12.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

TABLE 13-1: COMPARATOR SPECIFICATIONS

Sym	Characteristics	Min	Тур	Max	Units	Comments
Vos	Input Offset Voltage	—	±3	±10	mV	(Vdd - 1.5V)/2
Vсм	Input Common Mode Voltage	0	_	Vdd - 1.5	V	
CMRR	Common Mode Rejection Ratio	+55*	_	—	dB	
TRT	Response Time ⁽¹⁾	—	150	400*	ns	Internal
VIVRF	Internal Voltage Reference	0.550	0.6	0.650	V	

These parameters are characterized but not tested. *

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD - 1.5V.

TABLE 13-2: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Sym	Characteristics	Min	Тур	Max	Units	Comments
CVRES	Resolution	_	VDD/24*	_	LSb	Low Range (VRR = 1)
		—	VDD/32	—	LSb	High Range (VRR = 0)
	Absolute Accuracy	_		±1/2*	LSb	Low Range (VRR = 1)
		—		±1/2*	LSb	High Range (VRR = 0)
	Unit Resistor Value (R)	_	2K*	_	Ω	
		—				
	Settling Time ⁽¹⁾	_		10*	μs	
*	These parameters are characteriz	zed but no	t tested.			

These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

TABLE 13-3: A/D CONVERTER CHARACTERISTICS (PIC16F506/PIC12F510)

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution			8 bits	bit	
A03	EIL	Integral Error	_	—	± 1.5	LSb	VDD = 5.0V
A04	Edl	Differential Error	_	—	-1 < EDL ≤ 1.5	LSb	No missing codes to 8 bits VDD = 5.0V
A05	EFS	Full-scale Range	2	—	5.5*	V	Vdd
A06	EOFF	Offset Error	_	—	± 1.5	LSb	VDD = 5.0V
A07	Egn	Gain Error	-0.5	—	+1.75	LSb	VDD = 5.0V
A10		Monotonicity	_	guaranteed ⁽¹⁾	_		$Vss \leq Vain \leq Vdd$
A25	VAIN	Analog Input Voltage	Vss	—	Vdd	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	_	—	10	kΩ	

These parameters are characterized but not tested.

† Data in the "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only are not tested.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units
RB0 (GP0)/RB1	(GP1)				
2.0	-40	73K	105K	186K	Ω
	25	73K	113K	187K	Ω
	85	82K	123K	190K	Ω
	125	86K	132k	190K	Ω
5.5	-40	15K	21K	33K	Ω
	25	15K	22K	34K	Ω
	85	19K	26k	35K	Ω
	125	23K	29K	35K	Ω
RB3 (GP3)					
2.0	-40	63K	81K	96K	Ω
	25	77K	93K	116K	Ω
	85	82K	96k	116K	Ω
	125	86K	100K	119K	Ω
5.5	-40	16K	20k	22K	Ω
	25	16K	21K	23K	Ω
	85	24K	25k	28K	Ω
	125	26K	27K	29K	Ω

TABLE 13-9: PULL-UP RESISTOR RANGES