

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	38 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f510-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5
2.0	PIC12F510/16F506 Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	15
5.0	I/O Port	27
6.0	TMR0 Module and TMR0 Register	39
7.0	Comparator(s)	43
8.0	Comparator Voltage Reference Module (PIC16F506 only)	49
9.0	Analog-to-Digital (A/D) Converter	51
10.0	Special Features Of The CPU	55
	Instruction Set Summary	
12.0	Development Support	79
13.0	Electrical Characteristics	83
14.0	DC and AC Characteristics Graphs and Charts	97
15.0	Packaging	. 105
Index		. 117
The N	ficrochip Web Site	. 119
Custo	mer Change Notification Service	. 119
	mer Support	
Read	er Response	. 120
Produ	Ict Identification System	. 121

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

4.2 **Data Memory Organization**

Data memory is composed of registers or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers (SFRs) and General Purpose Registers (GPRs).

The Special Function Registers include the TMR0 register, the Program Counter (PCL), the STATUS register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Function Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC12F510, the register file is composed of 10 Special Function Registers, 6 General Purpose Registers and 32 General Purpose Registers accessed by banking (see Figure 4-2).

For the PIC16F506, the register file is composed of 13 Special Function Registers, 3 General Purpose Registers and 64 General Purpose Registers, accessed by banking (see Figure 4-3).

GENERAL PURPOSE REGISTER 4.2.1 FILE

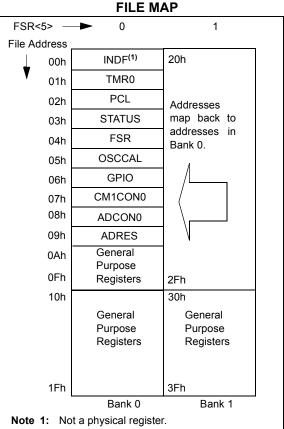

The General Purpose Register file is accessed either directly or indirectly through the File Select Register (FSR). See Section 4.8 "Indirect Data Addressing: INDF and FSR Registers".

FIGURE 4-3: PIC16F506 REGISTER FILE MAP

FSR<6:5> 00 01 10 11 File Address INDF⁽¹⁾ 00h 20h 40h 60h TMR0 01h 02h PCL 03h STATUS 04h FSR OSCCAL 05h Addresses map back to addresses in Bank 0. PORTB 06h PORTC 07h CM1CON0 08h ADCON0 09h ADRES 0Ah CM2CON0 0Bh 0Ch VRCON 0Dh General Purpose Registers 0Fh 2Fh 4Fh 6Fh 10h 30h 50h 70h General General General General Purpose Purpose Purpose Purpose Registers Registers Registers Registers 5Fh 7Fh 1Fh 3Fh Bank 0 Bank 1 Bank 2 Bank 3

Note 1: Not a physical register.

FIGURE 4-2: PIC12F510 REGISTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset			
N/A	TRIS	I/O Control	Registers (TR	ISB, TRISC	;)					11 1111			
N/A	OPTION	Contains co	ontrol bits to co	onfigure Tim	er0 and Time	r0/WDT Pre	scaler			1111 1111			
00h	INDF	Uses conte	nts of FSR to	address dat	a memory (no	t a physical	register)			xxxx xxxx			
01h	TMR0	Timer0 Mod	r0 Module Register										
02h ⁽¹⁾	PCL	Low Order	w Order 8 bits of PC										
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx			
04h	FSR	Indirect Dat	a Memory Ad	dress Pointe	er					100x xxxx			
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—	1111 111-			
06h	PORTB	_	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx			
07h	PORTC	—	_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx			
08h	CM1CON0	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111			
09h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100			
0Ah	ADRES	ADC Conve	ersion Result							xxxx xxxx			
0Bh	CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111			
0Ch	VRCON	VREN	VROE	VRR	(2)	VR3	VR2	VR1	VR0	0011 1111			

TABLE 4-2: SPECIAL FUNCTION REGISTER SUMMARY – PIC16F506

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused.
 Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to access these bits.

2: Unimplemented bit VRCON<4> read as '1'.

4.3 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see **Section 11.0 "Instruction Set Summary"**.

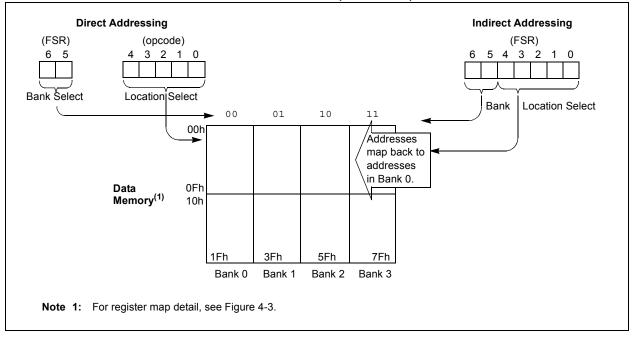
R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x						
GPWUF	CWUF	PA0	TO	PD	Z	DC	С						
bit 7	•				•		bit						
Legend:													
R = Readable		W = Writable b	it	•	mented bit, read a								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn						
bit 7	GPWUF : GPIC		Sleep on pin c	hange									
		1 = Reset due to wake-up from Sleep on pin change0 = After power-up or other Reset											
bit 6	CWUF: Compa	arator Reset bit											
		to wake-up from er-up or other Res	• •	parator change									
bit 5	1 = Page 1 (20 0 = Page 0 (00 Each page is 5 Using the PA0	00h-1FFh) 512 bytes. bit as a general	purpose read/v		es which do not us with future produc	se it for program p cts.	age preselect						
bit 4		er-up, CLRWDT ins	struction, or SL	EEP instruction									
L:1. 0		ne-out occurred											
bit 3		wn bit er-up or by the CL on of the SLEEP		on									
bit 2	Z : Zero bit 1 = The result	of an arithmetic of an arithmetic of	or logic operation										
bit 1	<u>ADDWF:</u> 1 = A carry fro 0 = A carry fro <u>SUBWF:</u> 1 = A borrow fr	y/Borrow bit (for <i>i</i> m the 4th low-ord m the 4th low-ord rom the 4th low-or rom the 4th low-or	ler bit of the re ler bit of the re order bit of the i	sult occurred sult did not occu result did not oc	ır								
bit 0	C: Carry/Borro ADDWF : 1 = A carry occ 0 = A carry did	curred 1	SUBWF and RR UBWF : = A borrow did = A borrow oc	not occur	RRF OF RLF:	or MSb, respectiv	ely						

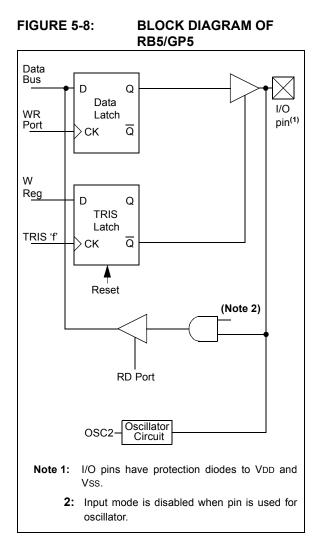
REGISTER 4-1: STATUS: STATUS REGISTER (PIC12F510)

4.4 **OPTION Register**

The OPTION register is a 8-bit wide, write-only register, that contains various control bits to configure the Timer0/WDT prescaler and Timer0.

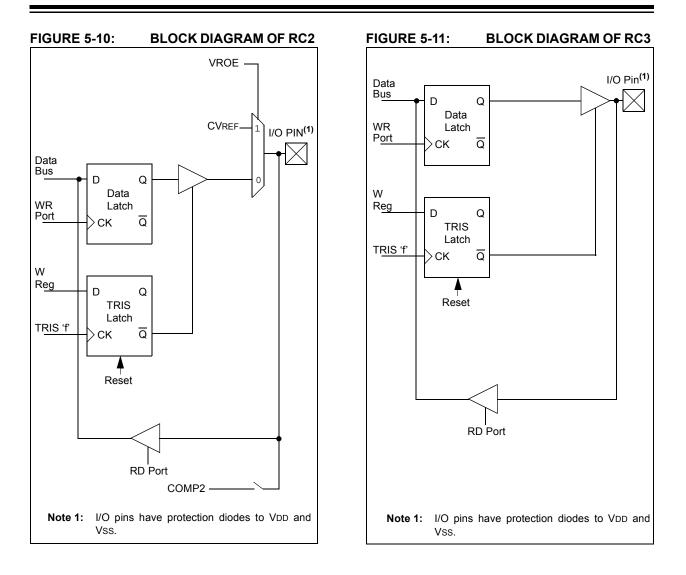
By executing the OPTION instruction, the contents of the W register will be transferred to the OPTION register. A Reset sets the OPTION<7:0> bits.


- Note 1: If TRIS bit is set to '0', the wake-up on change and pull-up functions are disabled for that pin (i.e., note that TRIS overrides Option control of GPPU/RBPU and GPWU/RBWU).
 - **2:** If the TOCS bit is set to '1', it will override the TRIS function on the TOCKI pin.


REGISTER 4-3: OPTION_REG: OPTION REGISTER (PIC12F510)

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1
GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:					
R = Reada	ble bit W = V	Writable bit	U	= Unimplemented bit	, read as '0'
-n = Value	at POR '1' =	Bit is set	'0'	= Bit is cleared	x = Bit is unknown
bit 7	GPWU: Enable Wake-u 1 = Disabled 0 = Enabled	p On Pin Chang	e bit (GP0, GP	1, GP3)	
bit 6	GPPU: Enable Weak Pu 1 = Disabled 0 = Enabled	ull-Ups bit (GP0,	GP1, GP3)		
bit 5	TOCS: Timer0 Clock So 1 = Transition on TOCI 0 = Internal instruction	KI pin	KOUT)		
bit 4	T0SE: Timer0 Source E 1 = Increment on high 0 = Increment on low-1	-to-low transition			
bit 3	 PSA: Prescaler Assignr 1 = Prescaler assigner 0 = Prescaler assigner 	d to the WDT			
bit 2-0	PS<2:0>: Prescaler Rat	e Select bits			
	Bit Value	Timer0 Rate	WDT Rate		
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128		


FIGURE 5-9: **BLOCK DIAGRAM OF** RC0/RC1 Data Bus D Q Data I/O WR Latch pin⁽¹⁾ P<u>ort</u> Q СК W Reg D Q TRIS Latch TRIS 'f' CK Q Reset Comp Pin Enable

RD Port

Vss.

COMP2

Note 1: I/O pins have protection diodes to VDD and

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISGPIO ⁽¹⁾			I/O Contr	ol Registe	r				11 1111	11 1111
N/A	TRISB ⁽²⁾	_	—	I/O Contr	ol Registe	r				11 1111	11 1111
N/A	TRISC ⁽²⁾	_	_	I/O Contr	ol Registe	r		11 1111	11 1111		
N/A	OPTION ⁽¹⁾	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	OPTION ⁽²⁾	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS ⁽¹⁾	GPWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu (3)
03h	STATUS ⁽²⁾	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu ⁽³⁾
06h	GPIO ⁽¹⁾	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	PORTB ⁽²⁾	—	—	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC ⁽²⁾	_		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

 $\label{eq:logend: Legend: Legend: -= unimplemented read as `0', x = unknown, u = unchanged, q = depends on condition.$

Note 1: PIC12F510 only.

2: PIC16F506 only.

3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

TABLE 5-2: I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC16F506)

Priority	RB0	RB1	RB2	RB3	RB4	RB5
1	AN0/C1IN+	AN1/C1IN-	AN2	Input/MCLR	OSC2/CLKOUT	OSC1/CLKIN
2	TRISB	TRISB	C10UT	—	TRISB	TRISB
3	_		TRISB	_	_	

TABLE 5-3: I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC16F506)

Priority	RC0	RC1	RC2	RC3	RC4	RC5
1	C2IN+	C2IN-	CVREF	TRISC	C2OUT	TOCKI
2	TRISC	TRISC	TRISC		TRISC	TRISC

TABLE 5-4:I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC12F510)

Priority	GP0	GP1	GP2	GP3	GP4	GP5
1	AN0/C1IN+	AN1/C1IN-	AN2	Input/MCLR	OSC2	OSC1/CLKIN
2	TRISIO	TRISIO	C10UT	_	TRISIO	TRISIO
3	_	_	TOCKI	_	_	_
4		—	TRISIO	—	_	_

TABLE 5-5:	REQUIR	REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC12F510)											
	GP0	GP0	GP1	GP1	GP2	GP2	GP3	GP4	GP5				
CM1CON0													
C1ON	0	1	0	1	0	1		—	—				
C1PREF	_	0	_	1	—	—	—	-	—				
C1NREF	_		_	0		_		_	_				
C1T0CS		_	_	_	_	1	_	_	_				
C1OUTEN	_	—	_	—	_	1	_	_	—				
CM2CON0													
C2ON	_	_	—	_	—	—		—	—				
C2PREF1	_	_	—	—	—	_		_	—				
C2PREF2	_	_	—	—	—		—	_	—				
C2NREF	—		—	—			_	—	—				
C2OUTEN		—	_	_	_	_	—	_	_				
VRCON0													
VROE	—	_	—	—	—	_	_	—	—				
VREN	—	—	—	—	—	—	—	—	—				
OPTION													
TOCS	—	_	—	_		0	_	—	—				
ADCON0													
ANS<1:0>	00, 01	00, 01	00,01,10	00,01,10	00	00		—	—				
CONFIG							-						
MCLRE	—		—	—	_	_	—	—	—				
INTOSC	—		—	—	_	—	_	—	—				
LP	—		—	—	_	_	_	Disabled	Disabled				
EXTRC	—		—	—	_	—	—		Disabled				
XT	—	_	—					Disabled	Disabled				

TABLE 5-5: REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC12F510)

Note 1: Multiple column entries for a pin demonstrate the different permutations to arrive at digital functionality for the pin.

2: Shaded cells indicate the bit status does not affect the pins digital functionality.

ABLE 5-6: REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC16F506 PORTB)(1), (2)											
	RB0	RB0	RB0	RB1	RB1	RB2	RB2	RB3	RB4	RB5	
CM1CON0											
C10N	—	0	1	0	1	0	1		—	_	
C1PREF	_	_	0				_				
C1NREF	—	_	_	—	0		_	_	—		
C1T0CS	—	_		_	—		_		_	_	
C1OUTEN	—	_		_	—	—	1	—	_	_	
CM2CON0											
C2ON	1	—	—	—	—	_	_		—	_	
C2PREF1	0	_	_	_	_		_	_	—		
C2PREF2	1	—	_	_	—	_	—	_	—	_	
C2NREF	—	_	—	_	—		_	_	—	_	
C2OUTEN	—	_	_	_	_	_	_	_	-	_	
OPTION											
TOCS	—					_			—		
ADCON0											
ANS<1:0>	00, 01	00,01	00,01	00,01,10	00,01,10	00	00	_	—		
CONFIG											
MCLRE	—	—	—	—	—			0	—	_	
INTOSC	—	_	—	_	—		_	_	—	_	
LP	_	_	_	_	_		_	_	Disabled	Disabled	
EXTRC		—	_	_	—	_	—	_	—	Disabled	
ХТ							—	—	Disabled	Disabled	
EC		—	—		—	_	—	—	—	Disabled	
HS		—		—	—	_	—	—	Disabled	Disabled	
INTOSC CLKOUT		—	—	—	—	_	—	—		Disabled	
EXTRC CLOCKOUT	—	—		—		_			Disabled	Disabled	

TABLE 5-6: REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC16F506 PORTB)^{(1), (2)}

Note 1: Multiple column entries for a pin demonstrate the different permutations to arrive at digital functionality for the pin.

2: Shaded cells indicate the bit status does not affect the pins digital functionality.

TABLE 5-7: REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC16F506 PORTC)^{(1), (2)}

						•			,	
	RC0	RC0	RC1	RC1	RC2	RC3	RC4	RC4	RC5	RC5
CM2CON0										
C2ON	0	1	0	1			0	1		
C2PREF1		0			_				_	
C2PREF2	—	0	—		—	—	—	—	—	—
C2NREF	—	—	—	0	—	—	—	—	—	—
C2OUTEN		—	_	_	_	_	_	1	_	
VRCON0			•							
VROE					0				_	
OPTION	•	-	•	•						
TOCS	—	—	—		_	—	_	—	0	—
Note 1: Multiple	column entr	ies for a r	in demon	strata tha	different	normutati	one to arri	ve at digit	al function	nality for

Note 1: Multiple column entries for a pin demonstrate the different permutations to arrive at digital functionality for the pin.

2: Shaded cells indicate the bit status does not affect the pins digital functionality.

FIGURE 8-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 8-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

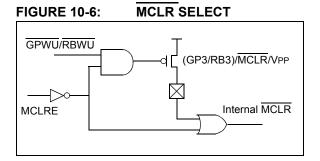
Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	001- 1111	001- 1111
08h	CM1CON0 ⁽¹⁾	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	uuuu uuuu
0Bh	CM2CON0 ⁽¹⁾	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111	uuuu uuuu

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented, read as `0`.$

Note 1: PIC16F506 only.

Γ

REGISTER 10-1: CONFIG: CONFIGURATION WORD REGISTER (PIC12F510)⁽¹⁾


—	_		_	_	—	_	—
bit 15							bit 8

			T	r <u>—</u>	r	Т	1
—		IOSCFS	MCLRE	CP	WDTE	FOSC1	FOSC0
bit 7							bit 0
bit 15-6	Unimplement	t ed : Read as '	1'				
bit 5	IOSCFS: Inter	rnal Oscillator	Frequency Se	elect bit			
	1 = 8 MHz IN	•					
	0 = 4 MHz IN	FOSC speed					
bit 4	MCLRE: Mast	ter Clear Enab	le bit				
	1 = GP3/MCL						
	0 = GP3/MCL	•	s as GP3, MC	LR internally ti	ied to VDD		
bit 3	CP: Code Pro	tection bit					
	1 = Code prot						
	0 = Code prot	ection on					
bit 2	WDTE: Watch	ndog Timer En	able bit				
	1 = WDT enat						
	0 = WDT disa						
bit 1-0	FOSC<1:0>: (Oscillator Sele	ction bits				
	00 = LP oscilla						
	01 = XT oscill 10 = INTOSC						
	10 = INTOSC 11 = EXTRC \						
		mur 1.120 IIIS					

- **Note 1:** Refer to the "*PIC12F510 Memory Programming Specification*" (DS41257) to determine how to access the Configuration Word.
 - 2: It is the responsibility of the application designer to ensure the use of the 1.125 ms (nominal) DRT will result in acceptable operation. Refer to Electrical Specifications for VDD rise time and stability requirements for this mode of operation.

10.3.1 MCLR ENABLE

This Configuration bit, when unprogrammed (left in the '1' state), enables the external MCLR function. When programmed, the MCLR function is tied to the internal VDD and the pin is assigned to be a I/O. See Figure 10-6.

10.4 Power-on Reset (POR)

The PIC12F510/16F506 devices incorporate an onchip Power-on Reset (POR) circuitry, which provides an internal chip Reset for most power-up situations.

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. The POR is active regardless of the state of the MCLR enable bit. An internal weak pull-up resistor is implemented using a transistor (refer to Table 13-3 for the pull-up resistor ranges). This will eliminate external RC components usually needed to create an external Power-on Reset. A maximum rise time for VDD is specified. See **Section 13.0 "Electrical Characteristics"** for details.

When the devices start normal operation (exit the Reset condition), device operating parameters (volt-age, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the devices must be held in Reset until the operating parameters are met.

A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 10-7.

The Power-on Reset circuit and the Device Reset Timer (see Section 10.5 "Device Reset Timer (DRT)") circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR, internal or external, to be high. After the time-out period, it will reset the Reset latch and thus end the on-chip Reset signal.

A power-up example where $\overline{\text{MCLR}}$ is held low is shown in Figure 10-8. VDD is allowed to rise and stabilize before bringing $\overline{\text{MCLR}}$ high. The chip will actually come out of Reset TDRT msec after $\overline{\text{MCLR}}$ goes high.

In Figure 10-9, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together or the pin is programmed to be (GP3/RB3). The VDD is stable before the Start-up timer times out and there is no problem in getting a proper Reset. However, Figure 10-10 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses that MCLR is high and when MCLR and VDD actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip may not function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 10-9).

Note:	When the devices start normal operation (exit the Reset condition), device operat-
	ing parameters (voltage, frequency,
	temperature, etc.) must be met to ensure
	operation. If these conditions are not met,
	the device must be held in Reset until the
	operating conditions are met.

For additional information, refer to Application Notes AN522, *"Power-Up Considerations"* (DS00522) and AN607, *"Power-up Trouble Shooting"* (DS00607).

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

SLEEP	Enter SLEEP Mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \mbox{ prescaler}; \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD, RBWUF
Description:	Time-out Status bit (TO) is set. The Power-down Status bit (PD) is cleared. RBWUF is unaffected. The WDT and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. See Section 10.9 "Power-Down Mode (Sleep)" on Sleep for more details.

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.

SUBWF	Subtract W from f		
Syntax:	[<i>label</i>] SUBWF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$		
Operation:	$(f) - (W) \rightarrow (dest)$		
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C register 'f

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	(f<3:0>) → (dest<7:4>); (f<7:4>) → (dest<3:0>)
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.

12.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

12.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

12.13 Demonstration, Development and Evaluation Boards

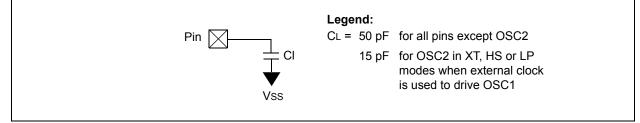
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

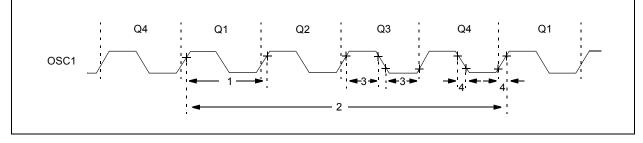
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.


13.4 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created following one of the following formats:


1. TppS2ppS

2. TppS			
Т			
F F	requency	T Time	e
Lower	case (pp) and their meanings:		
рр			
2	То	mc	MCLR
ck	CLKOUT	osc	Oscillator
су	Cycle Time	os	OSC1
drt	Device Reset Timer	tO	ТОСКІ
io	I/O port	wdt	Watchdog Timer
Uppero	case letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (high-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 13-5: LOAD CONDITIONS

FIGURE 13-6: EXTERNAL CLOCK TIMING

NOTES:

NOTES:

INDEX

Α	
ALU	9
Assembler	
MPASM Assembler	80

В

Block Diagram	
Comparator for the PIC12F510	
Comparator for the PIC16F506	
On-Chip Reset Circuit	64
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	67
Brown-Out Protection Circuit	68

С

C Compilers	
MPLAB C18	80
MPLAB C30	80
Carry	9
Clocking Scheme	
Code Protection	55, 69
Configuration Bits	
Configuration Word (PIC12F510)	
Configuration Word (PIC16F506)	
Customer Change Notification Service	
Customer Notification Service	108
Customer Support	108

D

DC	88
DC Characteristics (Extended)	87
DC Characteristics (Industrial)	86
DC Characteristics (Industrial, Extended)	88
Development Support	79
Digit Carry	9

Ε

rata3
ala

F

Family of Devices PIC12F510/16F506......5 FSR.......24

I

I/O Interfacing	
I/O Ports	
I/O Programming Considerations	
ID Locations	55, 69
INDF	
Indirect Data Addressing	
Instruction Cycle	14
Instruction Flow/Pipelining	
Instruction Set Summary	72
Internet Address	108
L	
Loading of PC	

Μ

Memory Organization 15
Data Memory 16
Program Memory (PIC12F510/16F506) 15
Microchip Internet Web Site 108
MPLAB ASM30 Assembler, Linker, Librarian 80
MPLAB ICD 2 In-Circuit Debugger 81
MPLAB ICE 2000 High-Performance Universal
In-Circuit Emulator
MPLAB ICE 4000 High-Performance Universal
In-Circuit Emulator 81
MPLAB Integrated Development Environment Software 79
MPLAB PM3 Device Programmer 81
MPLINK Object Linker/MPLIB Object Librarian 80
0
-
OPTION Register
OSC Selection
OSCCAL Register
Oscillator Configurations 58
Oscillator Types
HS58
LP 58
RC
XT58
Р
-
PIC12F510/16F506 Device Varieties7
PICSTART Plus Development Programmer 82
POR
Device Reset Timer (DRT) 55, 66
PD
Power-on Reset (POR)55
TO
PORTB
Power-down Mode
Prescaler
Program Counter
Q
Q cycles
-
R
-
R
R Oscillator
R C Oscillator
R R Space Response 109 Read-Modify-Write 37 Register File Map
R RC Oscillator
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16 Registers 16
RRC Oscillator
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16 Registers 5 Special Function 17 Reset 55
RRC Oscillator
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16 Registers 5 Special Function 17 Reset 55
R RC Oscillator