

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f506-e-mg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5		
2.0	PIC12F510/16F506 Device Varieties	7		
3.0	Architectural Overview	9		
4.0	Memory Organization	15		
5.0	I/O Port	27		
6.0	TMR0 Module and TMR0 Register	39		
7.0	Comparator(s)	43		
8.0	Comparator Voltage Reference Module (PIC16F506 only)	49		
9.0	Analog-to-Digital (A/D) Converter	51		
10.0	Special Features Of The CPU	55		
11.0	Instruction Set Summary	71		
12.0	Development Support	79		
13.0	Electrical Characteristics	83		
14.0	DC and AC Characteristics Graphs and Charts	97		
15.0	Packaging	. 105		
Index		. 117		
The N	ficrochip Web Site	. 119		
Custo	mer Change Notification Service	. 119		
Custo	mer Support	. 119		
Read	eader Response			
Produ	Ict Identification System	. 121		

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12F510/16F506 devices can be attributed to a number of architectural features commonly found in RISC microprocessors. The PIC12F510/16F506 devices use a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architectures where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200 ns @ 20 MHz, 1 µs @ 4 MHz) except for program branches.

Table 3-1 lists program memory (Flash) and data memory (RAM) for the PIC12F510/16F506 devices.

TABLE 3-1: PIC	12F510/16F506 MEMORY
----------------	----------------------

Dovico	Memory		
Device	Program	Data	
PIC12F510	1024 x 12	38 x 8	
PIC16F506	1024 x 12	67 x 8	

The PIC12F510/16F506 devices can directly or indirectly address its register files and data memory. All Special Function Registers (SFRs), including the PC, are mapped in the data memory. The PIC12F510/ 16F506 devices have a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of "special optimal situations" make programming with the PIC12F510/16F506 devices simple, yet efficient. In addition, the learning curve is reduced significantly.

The PIC12F510/16F506 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file. The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single-operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1 for PIC12F510 with the corresponding device pins described in Table 3-2. A simplified block diagram for PIC16F506 is shown in Figure 3-2 with the corresponding device pins described in Table 3-3.

FIGURE 5-9: **BLOCK DIAGRAM OF** RC0/RC1 Data Bus D Q Data I/O WR Latch pin⁽¹⁾ P<u>ort</u> Q СК W Reg D Q TRIS Latch TRIS 'f' CK Q Reset Comp Pin Enable

RD Port

Vss.

COMP2

Note 1: I/O pins have protection diodes to VDD and

7.1 Comparator Operation

A single comparator is shown in Figure 7-3 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. The shaded area of the output of the comparator in Figure 7-3 represent the uncertainty due to input offsets and response time. See Table 13-1 for Common Mode Voltage.

FIGURE 7-3: SINGLE COMPARATOR

7.2 Comparator Reference

An internal reference signal may be used depending on the comparator operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-3). Please see **Section 8.0 "Comparator Voltage Reference Module (PIC16F506 only)"** for internal reference specifications.

7.3 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage or input source before the comparator output is to have a valid level. If the comparator inputs are changed, a delay must be used to allow the comparator to settle to its new state. Please see Table 13-1 for comparator response time specifications.

7.4 Comparator Output

The comparator output is read through the CM1CON0 or CM2CON0 register. This bit is read-only. The comparator output may also be used externally, see Figure 7-3.

Note:	Analog levels on any pin that is defined as
	a digital input may cause the input buffer to
	consume more current than is specified.

7.5 Comparator Wake-up Flag

The Comparator Wake-up Flag is set whenever all of the following conditions are met:

- C1WU = 0 (CM1CON0<0>) or C2WU = 0 (CM2CON0<0>)
- CM1CON0 or CM2CON0 has been read to latch the last known state of the C1OUT and C2OUT bit (MOVF CM1CON0, W)
- · Device is in Sleep
- The output of a comparator has changed state

The wake-up flag may be cleared in software or by another device Reset.

7.6 Comparator Operation During Sleep

When the comparator is enabled it is active. To minimize power consumption while in Sleep mode, turn off the comparator before entering Sleep.

7.7 Effects of Reset

A Power-on Reset (POR) forces the CM2CON0 register to its Reset state. This forces the Comparator input pins to analog Reset mode. Device current is minimized when analog inputs are present at Reset time.

7.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

9.0 ANALOG-TO-DIGITAL (A/D) CONVERTER

The A/D Converter allows conversion of an analog signal into an 8-bit digital signal.

9.1 Clock Divisors

The ADC has 4 clock source settings ADCS<1:0>. There are 3 divisor values 16, 8 and 4. The fourth setting is INTOSC with a divisor of 4. These settings will allow a proper conversion when using an external oscillator at speeds from 20 MHz to 350 kHz. Using an external oscillator at a frequency below 350 kHz (TAD > 50 μ s) requires the ADC oscillator setting to be INTOSC/4 for valid ADC results.

The ADC requires 13 TAD periods to complete a conversion. The divisor values do not affect the number of TAD periods required to perform a conversion. The divisor values determine the length of the TAD period.

When the ADCS<1:0> bits are changed while an ADC conversion is in process, the new ADC clock source will not be selected until the next conversion is started. This clock source selection will be lost when the device enters Sleep.

9.1.1 VOLTAGE REFERENCE

There is no external voltage reference for the ADC. The ADC reference voltage will always be VDD.

9.1.2 ANALOG MODE SELECTION

The ANS<1:0> bits are used to configure pins for analog input. Upon any Reset, ANS<1:0> defaults to 11. This configures pins ANO, AN1 and AN2 as analog inputs. Pins configured as analog inputs are not available for digital output. Users should not change the ANS bits while a conversion is in process. ANS bits are active regardless of the condition of ADON.

9.1.3 ADC CHANNEL SELECTION

The CHS bits are used to select the analog channel to be sampled by the ADC. The CHS<1:0> bits can be changed at any time without adversely effecting a conversion. To acquire an analog signal the CHS<1:0> selection must match one of the pin(s) selected by the ANS<1:0> bits. When the ADC is on (ADON = 1) and a channel is selected that is also being used by the comparator, then both the comparator and the ADC will see the analog voltage on the pin.

Note: It is the users responsibility to ensure that use of the ADC and comparator simultaneously on the same pin, does not adversely affect the signal being monitored or adversely effect device operation. When the CHS<1:0> bits are changed during an ADC conversion, the new channel will not be selected until the current conversion is completed. This allows the current conversion to complete with valid results. All channel selection information will be lost when the device enters Sleep.

TABLE 9-1:	CHANNEL SELECT (ADCS)
	BITS AFTER AN EVENT

Event	ADCS<1:0>
MCLR	11
Conversion completed	CS<1:0>
Conversion terminated	CS<1:0>
Power-on	11
Wake from Sleep	11

9.1.4 THE GO/DONE BIT

The GO/DONE bit is used to determine the status of a conversion, to start a conversion and to manually halt a conversion in process. Setting the GO/DONE bit starts a conversion. When the conversion is complete, the ADC module clears the GO/DONE bit. A conversion can be terminated by manually clearing the GO/DONE bit while a conversion is in process. Manual termination of a conversion may result in a partially converted result in ADRES.

The GO/DONE bit is cleared when the device enters Sleep, stopping the current conversion. The ADC does not have a dedicated oscillator, it runs off of the instruction clock. Therefore, no conversion can occur in sleep.

The GO/DONE bit cannot be set when ADON is clear.

^{© 2007} Microchip Technology Inc.

9.1.6 ANALOG CONVERSION RESULT REGISTER

The ADRES register contains the results of the last conversion. These results are present during the sampling period of the next analog conversion process. After the sampling period is over, ADRES is cleared (= 0). A 'leading one' is then right shifted into the ADRES to serve as an internal conversion complete bit. As each bit weight, starting with the MSB, is converted, the leading one is shifted right and the converted bit is stuffed into ADRES. After a total of 9 right

shifts of the 'leading one' have taken place, the conversion is complete; the 'leading one' has been shifted out and the GO/DONE bit is cleared.

If the GO/DONE bit is cleared in software during a conversion, the conversion stops. The data in ADRES is the partial conversion result. This data is valid for the bit weights that have been converted. The position of the 'leading one' determines the number of bits that have been converted. The bits that were not converted before the GO/DONE was cleared are unrecoverable.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER (PIC12F510)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	ANS<1: 00 = No 01 = AN 10 = AN 11 = AN	D>: ADC Analog Input Pin Separate pins configured for analog in 2 configured as an analog in 2 and AN0 configured as ana 2, AN1 ana AN	elect bits ^{(1),} (2) put put alog inputs as analog inputs	
bit 5-4	ADCS<' 00 = FO: 01 = FO: 10 = FO: 11 = INT	I:0>: ADC Conversion Clock sc/16 sc/8 sc/4 'OSC/4	Select bits	
bit 3-2	CHS<1: 00 = Ch 01 = Ch 10 = Ch 11 = 0.6	0>: ADC Channel Select bits annel AN0 annel AN1 annel AN2 V absolute voltage reference		
bit 1	GO/DOM 1 = ADO auto 0 = ADO proc	IE: ADC Conversion Status to C conversion in progress. Somatically cleared by hardwa C conversion completed/not cess terminates the current c	bit ⁽⁴⁾ Setting this bit starts an AI re when the ADC is done con in progress. Manually clearin onversion.	DC conversion cycle. This bit is verting. g this bit while a conversion is ir
bit 0	ADON: 1 = ADO 0 = ADO	ADC Enable bit C module is operating C module is shut-off and cons	sumes no power	
Note 1: 2:	When the AN less of the pir input to the co that the ADC The ANS<1:0	S bits are set, the channels son function previously defined. comparator and the ADC will b loading on the comparator in bits are active regardless of	selected will automatically be The only exception to this is e active at the same time. It is put does not affect their appli of the condition of ADON.	forced into Analog mode, regard- the comparator, where the analog the users responsibility to ensure cation.
3:	CHS<1:0> bit	s default to 11 after any Res	et.	

4: If the ADON bit is clear, the GO/DONE bit cannot be set.

REGISTER 9-2: ADRES REGISTER

| R-X |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 9-1: PERFORMING AN ANALOG-TO-DIGITAL CONVERSION

;Sample	code operates o	ut of BANK0
	MOVLW 0xF1 MOVWF ADCON0	;configure A/D
	BSF ADCON0, 1	;start conversion
loop0	BTFSC ADCON0,	1;wait for `DONE'
	GOTO loop0	
	MOVF ADRES, W	;read result
	MOVWF result0	;save result
	BSF ADCON0, 2	;setup for read of ;channel 1
	BSF ADCON0, 1	;start conversion
loop1	BTFSC ADCON0,	1;wait for `DONE'
	GOTO loop1	
	MOVF ADRES, W	;read result
	MOVWF result1	;save result
	BSF ADCON0, 3	;setup for read of
loop2	BCF ADCON0, 2	;channel 2
	BSF ADCON0, 1	;start conversion
	BTFSC ADCON0,	1;wait for `DONE'
	GOTO loop2	
	MOVF ADRES, W	;read result
	MOVWF result2	;save result

EXAMPLE 9-2: CHANNEL SELECTION CHANGE DURING CONVERSION

	MOVLW 0xF1 MOVWF ADCON0	;configure A/D
	BSF ADCON0, 1	;start conversion
	BSF ADCON0, 2	;setup for read of
		;channel 1
loop0	BTFSC ADCON0,	1;wait for `DONE'
	GOTO loop0	
	MOVF ADRES, W	;read result
	MOVWF result0	;save result
	BSF ADCON0, 1	;start conversion
	BSF ADCON0, 3	;setup for read of
	BCF ADCON0, 2	;channel 2
loop1	BTFSC ADCON0,	1;wait for `DONE'
	GOTO loop1	
	MOVF ADRES, W	;read result
	MOVWF result1	;save result
	BSF ADCON0, 1	;start conversion
loop2	BTFSC ADCON0,	1;wait for `DONE'
	GOTO loop2	
	MOVF ADRES, W	;read result
	MOVWF result2	;save result
	CLRF ADCON0	;optional: returns
	;pins to Digit	al mode and turns off
	;the ADC modul	Le

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change, Wake-up on Comparator Change
W	_	qqqq qqqu ⁽¹⁾	qqqq qqqu ⁽¹⁾
INDF	00h	xxxx xxxx	<u>uuuu</u> uuuu
TMR0	01h	xxxx xxxx	<u>uuuu</u> uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	10uq quuu (2)
FSR	04h	100x xxxx	10uu uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
PORTB	06h	xx xxxx	uu uuuu
PORTC	07h	xx xxxx	uu uuuu
CM1CON0	08h	1111 1111	นนนน นนนน
ADCON0	09h	1111 1100	uull 1100
ADRES	0Ah	xxxx xxxx	uuuu uuuu
CM2CON0	0Bh	1111 1111	นนนน นนนน
VRCON	0Ch	0011 1111	<u>uuuu</u> uuuu
OPTION	—	1111 1111	1111 1111
TRISB		11 1111	11 1111
TRISC	_	11 1111	11 1111

TABLE 10-4: RESET CONDITIONS FOR REGISTERS – PIC16F506

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

2: See Table 10-5 for Reset value for specific conditions.

TABLE 10-5: RESET CONDITION FOR SPECIAL REGISTERS

	STATUS Addr: 03h	PCL Addr: 02h
Power-on Reset	0001 1xxx	1111 1111
MCLR Reset during normal operation	000u uuuu	1111 1111
MCLR Reset during Sleep	0001 0uuu	1111 1111
WDT Reset during Sleep	0000 0uuu	1111 1111
WDT Reset normal operation	0000 uuuu	1111 1111
Wake-up from Sleep Reset on pin change	1001 Ouuu	1111 1111
Wake from Sleep Reset on Comparator Change	0101 Ouuu	1111 1111

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

10.12 In-Circuit Serial Programming™ (ICSP™)

The PIC12F510/16F506 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed.

The devices are placed into a Program/Verify mode by holding the GP1/RB1 and GP0/RB0 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1/RB1 becomes the programming clock and GP0/RB0 becomes the programming data. Both GP1/RB1 and GP0/RB0 are Schmitt Trigger inputs in this mode.

After Reset, a 6-bit command is supplied to the device. Depending on the command and if the command was a Load or a Read, 14 bits of program data are then supplied to or from the device. For complete details of serial programming, please refer to the PIC12F510/16F506 Programming Specifications.

A typical In-Circuit Serial Programming connection is shown in Figure 10-15.

FIGURE 10-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

FIGURE 13-2: MAXIMUM OSCILLATOR FREQUENCY TABLE (PIC12F510)

AC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	
17	TosH2IoV	OSC1↑ (Q1 cycle) to Port out valid ^{(2), (3)}		_	100*	ns	
18	TosH2ıol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time) ⁽²⁾	50	—		ns	
19	TIOV20sH	Port input valid to OSC1↑ (I/O in setup time)	20	—	_	ns	
20	TIOR	Port output rise time ^{(2), (3)}	_	10	25**	ns	
21	TIOF	Port output fall time ^{(2), (3)}	_	10	25**	ns	

TABLE 13-6: TIMING REQUIREMENTS

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **2:** Measurements are taken in EXTRC mode.
- **3:** See Figure 13-5 for loading conditions.

FIGURE 13-8: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING

14.0 DC AND CHARACTERISTICS GRAPHS AND CHARTS.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where s is a standard deviation, over each temperature range.

FIGURE 14-2: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

FIGURE 14-11: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)

FIGURE 14-10: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)

15.2 Package Marking Information (Cont'd)

14-Lead SOIC (3.90 mm)

8-Lead MSOP

14-Lead TSSOP (4.4 mm)

Example

Example

Example

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX	
Number of Pins	N	8			
Pitch	е	0.50 BSC			
Overall Height	A	0.80 0.90 1.00			
Standoff	A1	0.00 0.02 0.05			
Contact Thickness		0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	E	3.00 BSC			
Exposed Pad Length	D2	1.30 – 1.75			
Exposed Pad Width	E2	1.50	-	1.90	
Contact Width	b	0.18 0.25 0.30			
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20 – –			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123B

14-Lead Plastic Small Outline (SL) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	14			
Pitch	е		1.27 BSC		
Overall Height	A	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	_	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (optional)	h	0.25 – 0.50			
Foot Length	L	0.40	—	1.27	
Footprint	L1	1.04 REF			
Foot Angle	φ	0° – 8°			
Lead Thickness	С	0.17 – 0.25			
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	α	5° – 15°			
Mold Draft Angle Bottom	β	5° – 15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B