
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VFQFN Exposed Pad
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f506-i-mg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	5
2.0	PIC12F510/16F506 Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	15
5.0	I/O Port	27
6.0	TMR0 Module and TMR0 Register	39
7.0	Comparator(s)	43
8.0	Comparator Voltage Reference Module (PIC16F506 only)	49
9.0	Analog-to-Digital (A/D) Converter	51
10.0	Special Features Of The CPU	55
	Instruction Set Summary	
12.0	Development Support	79
13.0	Electrical Characteristics	83
14.0	DC and AC Characteristics Graphs and Charts	97
15.0	Packaging	. 105
Index		. 117
The N	ficrochip Web Site	. 119
Custo	mer Change Notification Service	. 119
	mer Support	
Read	er Response	. 120
Produ	Ict Identification System	. 121

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

NOTES:

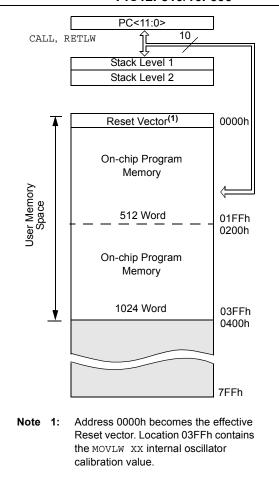
Name	Function	Input Type	Output Type	Description
RB0/AN0/C1IN+/ICSPDAT	RB0	TTL	CMOS	Bidirectional I/O port. Can be software pro- grammed for internal weak pull-up and wake-up from Sleep on pin change.
	AN0	AN	—	ADC channel input.
	C1IN+	AN	—	Comparator 1 input.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming data pin.
RB1/AN1/C1IN-/ICSPCLK	RB1	TTL	CMOS	Bidirectional I/O port. Can be software pro- grammed for internal weak pull-up and wake-up from Sleep on pin change.
	AN1	AN		ADC channel input.
	C1IN-	AN		Comparator 1 input.
	ICSPCLK	ST	_	In-Circuit Serial Programming clock pin.
RB2/AN2/C1OUT	RB2	TTL	CMOS	Bidirectional I/O port.
	AN2	AN		ADC channel input.
	C10UT	_	CMOS	Comparator 1 output.
RB3/MCLR/Vpp	RB3	TTL	_	Standard TTL input. Can be software programmed for internal weak pull-up and wake-up from Sleep on pin change.
	MCLR	ST	—	MCLR input – weak pull-up always enabled in this mode.
	Vpp	HV		Programming voltage input.
RB4/OSC2/CLKOUT	RB4	TTL	CMOS	Bidirectional I/O port. Can be software pro- grammed for internal weak pull-up and wake-up from Sleep on pin change.
	OSC2	_	XTAL	XTAL oscillator output pin.
	CLKOUT	_	CMOS	EXTRC/INTOSC CLKOUT pin (Fosc/4).
RB5/OSC1/CLKIN	RB5	TTL	CMOS	Bidirectional I/O port.
	OSC1	XTAL	_	XTAL oscillator input pin.
	CLKIN	ST	_	EXTRC/EC Schmitt Trigger input.
RC0/C2IN+	RC0	TTL	CMOS	Bidirectional I/O port.
	C2IN+	AN	_	Comparator 2 input.
RC1/C2IN-	RC1	TTL	CMOS	Bidirectional I/O port.
	C2IN-	AN	_	Comparator 2 input.
RC2/CVREF	RC2	TTL	CMOS	Bidirectional I/O port.
	CVREF		AN	Programmable Voltage Reference output.
RC3	RC3	TTL	CMOS	Bidirectional I/O port.
RC4/C2OUT	RC4	TTL	CMOS	Bidirectional I/O port.
	C2OUT		CMOS	Comparator 2 output.
RC5/T0CKI	RC5	TTL	CMOS	Bidirectional I/O port.
	T0CKI	ST	_	Timer0 clock input.
Vdd	Vdd	Р		Positive supply for logic and I/O pins.
Vss	Vss	Р	_	Ground reference for logic and I/O pins.

TABLE 3-3: PIN DESCRIPTIONS – PIC16F506

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input, AN = Analog Voltage, HV = High Voltage

4.0 MEMORY ORGANIZATION

The PIC12F510/16F506 memories are organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using STATUS register bit PA0. For the PIC12F510 and PIC16F506, with data memory register files of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Select Register (FSR).


4.1 Program Memory Organization for the PIC12F510/16F506

The PIC12F510/16F506 devices have a 10-bit Program Counter (PC) capable of addressing a 2K x 12 program memory space.

Only the first 1K x 12 (0000h-03FFh) are physically implemented (see Figure 4-1). Accessing a location above these boundaries will cause a wraparound within the 1K x 12 space. The effective Reset vector is a 0000h (see Figure 4-1). Location 03FFh contains the internal clock oscillator calibration value. This value should never be overwritten.

FIGURE 4-1:

PROGRAM MEMORY MAP AND STACK FOR THE PIC12F510/16F506

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	
N/A	TRIS	I/O Control Registers (TRISB, TRISC)									
N/A	OPTION	Contains co	Contains control bits to configure Timer0 and Timer0/WDT Prescaler								
00h	INDF	Uses conte	nts of FSR to	address dat	a memory (no	t a physical	register)			xxxx xxxx	
01h	TMR0	Timer0 Mod	l'imer0 Module Register								
02h ⁽¹⁾	PCL	Low Order	8 bits of PC							1111 1111	
03h	STATUS	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	
04h	FSR	Indirect Dat	a Memory Ad	dress Pointe	er					100x xxxx	
05h	OSCCAL	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	—	1111 111-	
06h	PORTB	_	_	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	
07h	PORTC	—	_	RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	
08h	CM1CON0	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	
09h	ADCON0	ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON	1111 1100	
0Ah	ADRES	ADC Conve	ersion Result							xxxx xxxx	
0Bh	CM2CON0	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111	
0Ch	VRCON	VREN	VROE	VRR	(2)	VR3	VR2	VR1	VR0	0011 1111	

TABLE 4-2: SPECIAL FUNCTION REGISTER SUMMARY – PIC16F506

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused.
 Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.6 "Program Counter" for an explanation of how to access these bits.

2: Unimplemented bit VRCON<4> read as '1'.

4.3 STATUS Register

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bit.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF and MOVWF instructions be used to alter the STATUS register. These instructions do not affect the Z, DC or C bits from the STATUS register. For other instructions which do affect Status bits, see **Section 11.0 "Instruction Set Summary"**.

REGISTER 4-2:	STATUS: STATUS REGISTER (PIC16F506)
---------------	-------------------------------------

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
RBWUF	CWUF	PA0	TO	PD	Z	DC	С					
bit 7					·		bit					
Legend:												
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read as	s '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn					
bit 7	RBWUF : POR	TP Dooot bit										
	1 = Reset due	to wake-up from er-up or other Res		hange								
bit 6	•	arator Reset bit										
	•	to wake-up from	Sleep on com	parator change								
	0 = After powe	er-up or other Res	set	-								
bit 5	-	Page Preselect I	oit									
	0 (1 = Page 1 (200h-3FFh)										
	0 = Page 0 (000h-1FFh) Each page is 512 bytes.											
	Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program page preselect i											
	not recommended, since this may affect upward compatibility with future products.											
bit 4	TO : Time-Out											
	1 = After power-up, CLRWDT instruction, or SLEEP instruction											
		ne-out occurred										
bit 3	PD: Power-Do											
	1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction											
bit 2	Z : Zero bit	on of the Sheer	instruction									
		of an arithmetic	or logic operatio	on is zero								
		of an arithmetic of	• •									
bit 1	DC: Digit Carry/Borrow bit (for ADDWF and SUBWF instructions)											
	ADDWF:											
	1 = A carry from the 4th low-order bit of the result occurred											
	0 = A carry from the 4th low-order bit of the result did not occur											
	<u>SUBWF :</u> 1 = A borrow from the 4th low-order bit of the result did not occur											
		rom the 4th low-o										
bit 0	C: Carry/Borro	w bit (for ADDWF,	SUBWF and RR	F, RLF instruction	ons)							
	ADDWF:		UBWF:	-	RRF or RLF:							
	1 = A carry oc 0 = A carry did		= A borrow did = A borrow oc		Load bit with LSb	or MSb, respectiv	ely					
	0 – A carry uit			ouncu								

5.5 I/O Programming Considerations

5.5.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. For example, the BCF and BSF instructions read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB/GPIO will cause all eight bits of PORTB/GPIO to be read into the CPU, bit 5 to be set and the PORTB/GPIO value to be written to the output latches. If another bit of PORTB/ GPIO is used as a bidirectional I/O pin (say bit '0') and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit '0' is switched into Output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential Read-Modify-Write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired OR", "wired AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT (e.g., PIC16F506)

		-							
;Initial PORTB Settings									
;PORTB<5:3> Inputs									
;PORTB<2:0> Outputs									
;									
;	PORTB latch	PORTB pins							
;									
BCF PORTB, 5	;01 -ppp	11 pppp							
BCF PORTB, 4	;10 -ppp	11 pppp							
MOVLW 007h;									
TRIS PORTB	;10 -ppp	11 pppp							
;									
Note: The user	may have expecte	ed the pin values to							
		•							
		BCF caused RB5 to							
be latched	d as the pin value	(High).							

5.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

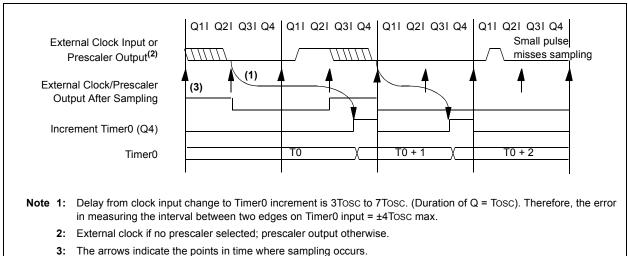
The actual write to an I/O port happens at the end of an instruction cycle. Whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-14). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes the file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-14: SUCCESSIVE I/O OPERATION (PIC16F506)

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 ;	Q1 Q2 Q3 Q4	;
Instruction	PC PC	X PC + 1	X PC + 2	X PC + 3	This example shows a write to PORTB followed by a read from PORTB.
Fetched	MOVWF PORTB	MOVF PORTB, W	NOP	NOP	Data setup time = (0.25 TCY – TPD)
RB<5:0>		ı ı • • • •	/		where: TCY = instruction cycle
110 10.02	l	<u> </u>	<u> </u>		TPD = propagation delay
Instruction Executed		Port pin written here	Port pin sampled here		Therefore, at higher clock frequencies, a write followed by a read may be problematic.
		MOVWF PORTB (Write to PORTB)	MOVF PORTB,W (Read PORTB)	NOP	
1					

6.1 Using Timer0 With An External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.


6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of an external clock with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for TOCKI or the comparator output to be high for at least 2Tosc (and a small RC delay of 2Tt0H) and low for at least 2Tosc (and a small RC delay of 2Tt0H). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI or the comparator output to have a period of at least 4Tosc (and a small RC delay of 4Tt0H) divided by the prescaler value. The only requirement on TOCKI or the comparator output high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

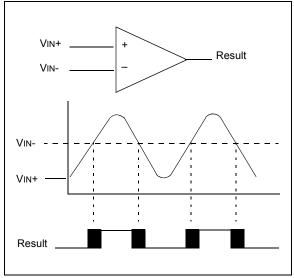
6.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

6.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see Figure 10-12). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note:	The prescaler may be used by either the							
	Timer0 module or the WDT, but not both.							
	Thus, a prescaler assignment for the							
	Timer0 module means that there is no							
	prescaler for the WDT and vice-versa.							


The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

7.1 Comparator Operation

A single comparator is shown in Figure 7-3 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. The shaded area of the output of the comparator in Figure 7-3 represent the uncertainty due to input offsets and response time. See Table 13-1 for Common Mode Voltage.

FIGURE 7-3: SINGLE COMPARATOR

7.2 Comparator Reference

An internal reference signal may be used depending on the comparator operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 7-3). Please see **Section 8.0 "Comparator Voltage Reference Module (PIC16F506 only)"** for internal reference specifications.

7.3 Comparator Response Time

Response time is the minimum time after selecting a new reference voltage or input source before the comparator output is to have a valid level. If the comparator inputs are changed, a delay must be used to allow the comparator to settle to its new state. Please see Table 13-1 for comparator response time specifications.

7.4 Comparator Output

The comparator output is read through the CM1CON0 or CM2CON0 register. This bit is read-only. The comparator output may also be used externally, see Figure 7-3.

Note:	Analog levels on any pin that is defined as
	a digital input may cause the input buffer to
	consume more current than is specified.

7.5 Comparator Wake-up Flag

The Comparator Wake-up Flag is set whenever all of the following conditions are met:

- <u>C1WU</u> = 0 (CM1CON0<0>) or C2WU = 0 (CM2CON0<0>)
- CM1CON0 or CM2CON0 has been read to latch the last known state of the C1OUT and C2OUT bit (MOVF CM1CON0, W)
- · Device is in Sleep
- The output of a comparator has changed state

The wake-up flag may be cleared in software or by another device Reset.

7.6 Comparator Operation During Sleep

When the comparator is enabled it is active. To minimize power consumption while in Sleep mode, turn off the comparator before entering Sleep.

7.7 Effects of Reset

A Power-on Reset (POR) forces the CM2CON0 register to its Reset state. This forces the Comparator input pins to analog Reset mode. Device current is minimized when analog inputs are present at Reset time.

7.8 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 7-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 8-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

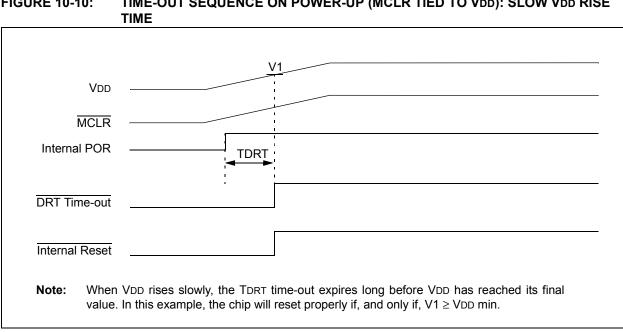


TABLE 8-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

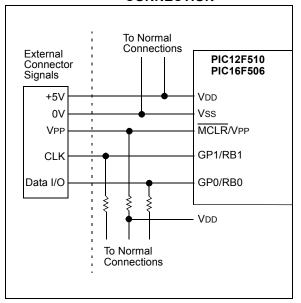
Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	001- 1111	001- 1111
08h	CM1CON0 ⁽¹⁾	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	uuuu uuuu
0Bh	CM2CON0 ⁽¹⁾	C2OUT	C2OUTEN	C2POL	C2PREF2	C2ON	C2NREF	C2PREF1	C2WU	1111 1111	uuuu uuuu

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented, read as `0`.$

Note 1: PIC16F506 only.

TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE FIGURE 10-10:

10.12 In-Circuit Serial Programming™ (ICSP™)

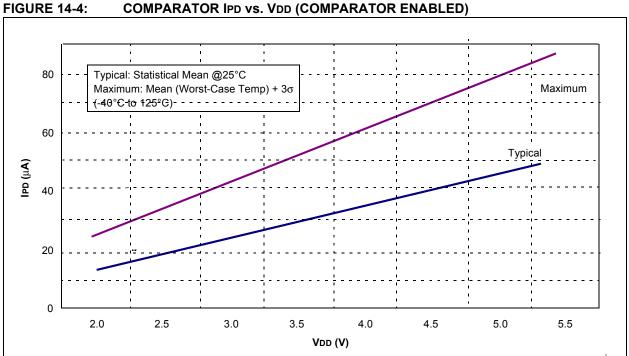

The PIC12F510/16F506 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed.

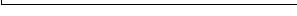
The devices are placed into a Program/Verify mode by holding the GP1/RB1 and GP0/RB0 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1/RB1 becomes the programming clock and GP0/RB0 becomes the programming data. Both GP1/RB1 and GP0/RB0 are Schmitt Trigger inputs in this mode.

After Reset, a 6-bit command is supplied to the device. Depending on the command and if the command was a Load or a Read, 14 bits of program data are then supplied to or from the device. For complete details of serial programming, please refer to the PIC12F510/16F506 Programming Specifications.

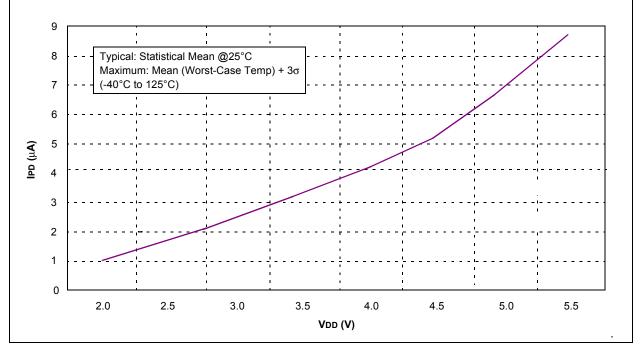
A typical In-Circuit Serial Programming connection is shown in Figure 10-15.

FIGURE 10-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

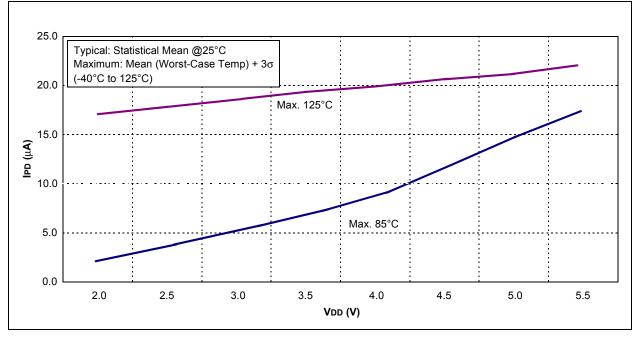

Mnem	onic,	Description	Cycles	12-1	Bit Opc	ode	Status	Notes
Opera	ands	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C, DC, Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2, 4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C, DC, Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
	·	BIT-ORIENTED FILE REGISTE	R OPER	ATIONS	;		I	
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	,
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
	,	LITERAL AND CONTROL C	PERATIO	ONS				1
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR literal to W	1	1111	kkkk	kkkk	Z	-
Note 1:		bit of the Program Counter will be forced to a 'o	' by any i					cept fo

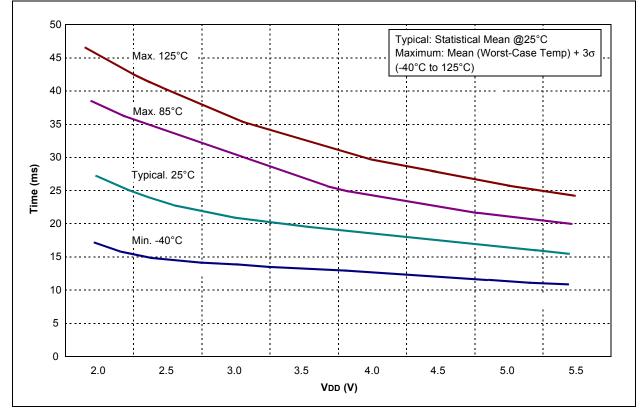

TABLE 11-2: INSTRUCTION SET SUMMARY

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.


3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of PORTB. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).





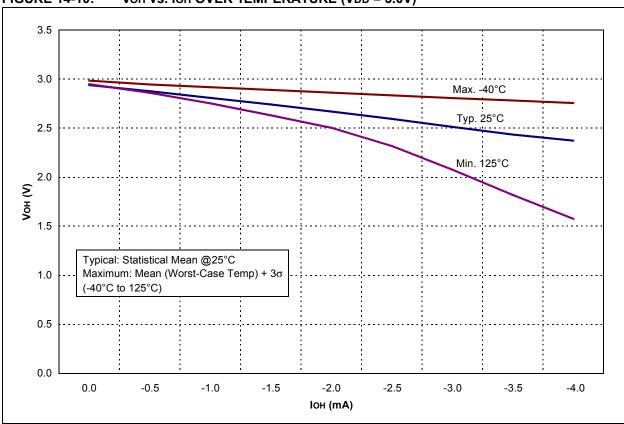


FIGURE 14-11: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)

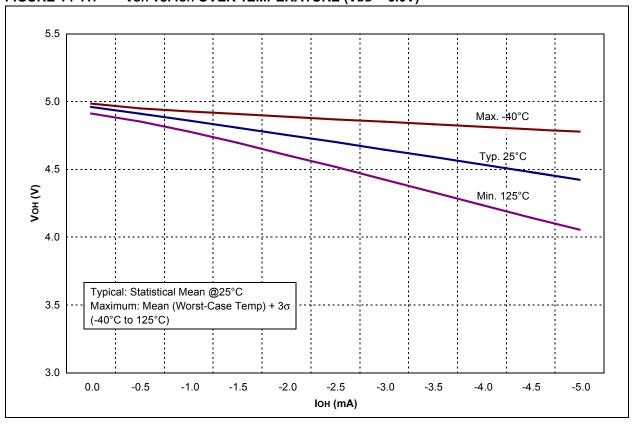
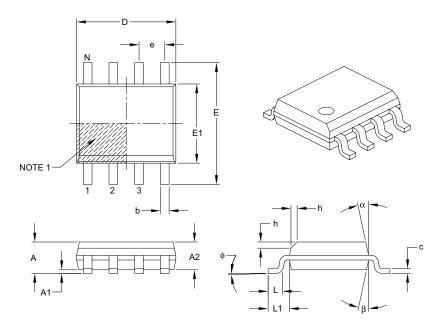



FIGURE 14-10: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
Dime	nsion Limits	MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1	1.04 REF		
Foot Angle	¢	0°	-	8°
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

INDEX

Α	
ALU	9
Assembler	
MPASM Assembler	80

В

Block Diagram	
Comparator for the PIC12F510	
Comparator for the PIC16F506	
On-Chip Reset Circuit	64
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	67
Brown-Out Protection Circuit	68

С

C Compilers	
MPLAB C18	80
MPLAB C30	80
Carry	9
Clocking Scheme	
Code Protection	55, 69
Configuration Bits	
Configuration Word (PIC12F510)	56
Configuration Word (PIC16F506)	
Customer Change Notification Service	
Customer Notification Service	108
Customer Support	108

D

DC	88
DC Characteristics (Extended)	87
DC Characteristics (Industrial)	86
DC Characteristics (Industrial, Extended)	88
Development Support	79
Digit Carry	9

Ε

rata3
ala

F

Family of Devices PIC12F510/16F506......5 FSR.......24

I

I/O Interfacing	
I/O Ports	
I/O Programming Considerations	
ID Locations	55, 69
INDF	
Indirect Data Addressing	
Instruction Cycle	14
Instruction Flow/Pipelining	
Instruction Set Summary	72
Internet Address	108
L	
Loading of PC	

Μ

Memory Organization 15
Data Memory 16
Program Memory (PIC12F510/16F506) 15
Microchip Internet Web Site 108
MPLAB ASM30 Assembler, Linker, Librarian 80
MPLAB ICD 2 In-Circuit Debugger 81
MPLAB ICE 2000 High-Performance Universal
In-Circuit Emulator
MPLAB ICE 4000 High-Performance Universal
In-Circuit Emulator
MPLAB Integrated Development Environment Software 79
MPLAB PM3 Device Programmer 81
MPLINK Object Linker/MPLIB Object Librarian 80
0
-
OPTION Register
OSC Selection
OSCCAL Register
Oscillator Configurations 58
Oscillator Types
HS58
LP 58
RC
XT58
Р
-
PIC12F510/16F506 Device Varieties7
PICSTART Plus Development Programmer82
POR
Device Reset Timer (DRT) 55, 66
PD
Power-on Reset (POR)55
TO
PORTB
Power-down Mode
Prescaler
Program Counter
Q
Q cycles
R
R
R Oscillator
R C Oscillator
R C Oscillator
R RC Oscillator
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16 Registers 16
RRC Oscillator
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16 Registers 5 Special Function 17 Reset 55
RRC Oscillator
R 59 Reader Response 109 Read-Modify-Write 37 Register File Map 16 PIC12F510 16 PIC16F506 16 Registers 5 Special Function 17 Reset 55
R RC Oscillator

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX Temperature Package Pattern Range	Examples: a) PIC16F506-E/P 301 = Extended Temp., PDIP package, QTP pattern #301 b) PIC16F506-I/SN = Industrial Temp., SOIC
Device:	PIC16F506 PIC12F510 PIC16F506T ⁽¹⁾ PIC12F510T ⁽²⁾ VDD range 2.0V to 5.5V	package c) PIC16F506T-E/P = Extended Temp., PDIP package, Tape and Reel
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Note 1: T = in tape and reel SOIC and TSSOP packages only 2: T = in tape and reel SOIC and MSOP packages only. 3: PIC12F510 only. 4: Pb-free.
Pattern:	QTP, SQTP Code or Special Requirements (blank otherwise)	