E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	67 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f506-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Міскоснір PIC12F510/16F506

8/14-Pin, 8-Bit Flash Microcontroller

Devices Included In This Data Sheet:

- PIC16F506
- PIC12F510

High-Performance RISC CPU:

- · Only 33 Single-Word Instructions to Learn
- All Single-Cycle Instructions except for Program Branches, which are Two-Cycle
- 12-Bit Wide Instructions
- Two-Level Deep Hardware Stack
- Direct, Indirect and Relative Addressing modes for Data and Instructions
- · 8-Bit Wide Data Path
- 10 Special Function Hardware Registers (PIC12F510)
- 13 Special Function Hardware Registers (PIC16F506)
- · Operating Speed:
 - DC 8 MHz Crystal Oscillator (PIC12F510)
 - DC 500 ns instruction cycle (PIC12F510)
 - DC 20 MHz Crystal Oscillator (PIC16F506)
 - DC 200 ns instruction cycle (PIC16F506)

Special Microcontroller Features:

- 4 or 8 MHz Selectable Precision Internal Oscillator:
 - Factory calibrated to ±1%
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Debugging (ICD) Support
- Power-on Reset (POR)
- Device Reset Timer (DRT):
- Short DRT (1.125 ms, typical) for INTOSC, EXTRC and EC
- DRT (18 ms, typical) for HS, XT and LP
- Watchdog Timer (WDT) with Dedicated On-Chip RC Oscillator for Reliable Operation
- Programmable Code Protection
- Multiplexed MCLR Input Pin
- · Selectable Internal Weak Pull-Ups on I/O Pins
- · Power-Saving Sleep mode
- Wake-up from Sleep on Pin Change
- · Wake-up from Sleep on Comparator Change

- · Selectable Oscillator Options:
 - INTOSC: 4/8 MHz precision Internal oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - LP: Power-saving, low-frequency crystal
 - HS: High-speed crystal/resonator (PIC16F506 only)
 - EC: High-speed external clock input (PIC16F506 only)
- Analog-to-Digital (A/D) Converter:
 - 8-bit resolution
 - 4-input channels (1 channel is dedicated to conversion of the internal 0.6V absolute voltage reference)
- High Current Sink/Source for Direct LED Drive
- 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit Programmable Prescaler

Low-Power Features/CMOS Technology:

- Operating Current:
 - < 175 μA @ 2V, 4 MHz, typical
- Standby Current:
 - 100 nA @ 2V, typical
- · Low-Power, High-Speed Flash Technology:
 - 100,000 cycle Flash endurance
 - > 40-year retention
- Fully Static Design
- Wide Operating Voltage Range: 2.0V to 5.5V
- Wide Temperature Range:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Peripheral Features (PIC12F510):

- 6 I/O Pins:
- 5 I/O pins with individual direction control
- 1 input only pin
- 1 Analog Comparator with Absolute Reference

Peripheral Features (PIC16F506):

- 12 I/O Pins:
 - 11 I/O pins with individual direction control
- 1 input only pin
- 2 Analog Comparators with Absolute Reference and Programmable Reference

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12F510/16F506 devices can be attributed to a number of architectural features commonly found in RISC microprocessors. The PIC12F510/16F506 devices use a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architectures where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single-word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200 ns @ 20 MHz, 1 µs @ 4 MHz) except for program branches.

Table 3-1 lists program memory (Flash) and data memory (RAM) for the PIC12F510/16F506 devices.

TABLE 3-1: PIC12F510/16F506 MEMORY

Device	Men	nory
Device	Program	Data
PIC12F510	1024 x 12	38 x 8
PIC16F506	1024 x 12	67 x 8

The PIC12F510/16F506 devices can directly or indirectly address its register files and data memory. All Special Function Registers (SFRs), including the PC, are mapped in the data memory. The PIC12F510/ 16F506 devices have a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of "special optimal situations" make programming with the PIC12F510/16F506 devices simple, yet efficient. In addition, the learning curve is reduced significantly.

The PIC12F510/16F506 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file. The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single-operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1 for PIC12F510 with the corresponding device pins described in Table 3-2. A simplified block diagram for PIC16F506 is shown in Figure 3-2 with the corresponding device pins described in Table 3-3.

REGISTER 4-2:	STATUS: STATUS REGISTER (PIC16F506)
---------------	-------------------------------------

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
RBWUF	CWUF	PA0	TO	PD	Z	DC	С
bit 7					·	•	bit
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read as	s '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn
bit 7	RBWUF : POR	TP Dooot bit					
	1 = Reset due	to wake-up from er-up or other Res		hange			
bit 6	•	arator Reset bit					
	•	to wake-up from	Sleep on com	parator change			
	0 = After powe	er-up or other Res	set	-			
bit 5	-	Page Preselect I	oit				
	1 = Page 1 (20	,					
	0 = Page 0 (00 Each page is 5	,					
			purpose read/v	vrite bit in device	es which do not us	e it for program p	age preselect
	not recommen	ided, since this m	ay affect upwa	rd compatibility	with future produc	ts.	
bit 4	TO : Time-Out						
		er-up, CLRWDT ins	struction, or SL	EEP instruction			
		ne-out occurred					
bit 3	PD: Power-Do						
	•	er-up or by the CL ion of the SLEEP		on			
bit 2	Z : Zero bit	on of the Sheer	instruction				
		of an arithmetic	or logic operatio	on is zero			
		of an arithmetic of	• •				
bit 1	DC: Digit Carr	y/Borrow bit (for a	ADDWF and SUE	WF instructions)		
	ADDWF:						
		m the 4th low-ord					
	,	m the 4th low-ord	der bit of the re	sult did not occu	ır		
	$\frac{\text{SUBWF}}{1 = A \text{ borrow f}}$	rom the 4th low-c	order bit of the	result did not oc	cur		
		rom the 4th low-o					
bit 0	C: Carry/Borro	w bit (for ADDWF,	SUBWF and RR	F, RLF instruction	ons)		
	ADDWF:		UBWF:	-	RRF or RLF:		
	1 = A carry oc 0 = A carry did		= A borrow did = A borrow oc		Load bit with LSb	or MSb, respectiv	ely
	0 - A carry uit			ouncu			

4.8 Indirect Data Addressing: INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

4.8.1 INDIRECT ADDRESSING EXAMPLE

- · Register file 07 contains the value 10h
- · Register file 08 contains the value 0Ah
- · Load the value 07 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 08)
- A read of the INDR register now will return the value of 0Ah.

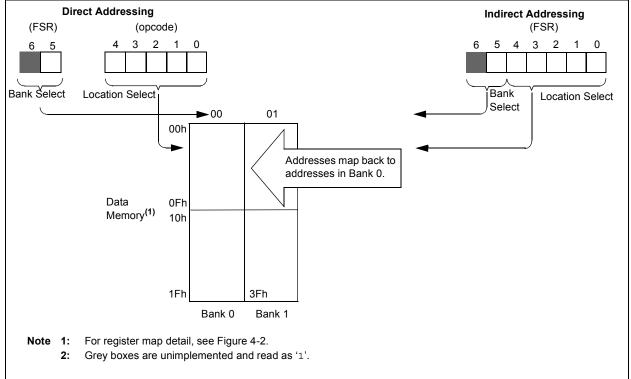
Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected).

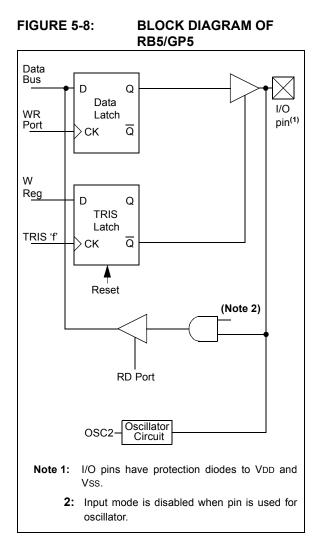
A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1:

-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	MOVLW MOVWF CLRF INCF BTFSC GOTO	0x10 FSR INDF FSR,F FSR,4 NEXT	;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;NO, clear next
CONTIN	UE		
	:		;YES, continue
	:		


The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.


The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F506 – Uses FSR<6:5>. Selects from Bank 0 to Bank 3. FSR<7> is unimplemented, read as '1'.

PIC12F510 – Uses FSR<5>. Selects from Bank 0 to Bank 1. FSR<7:6> are unimplemented, read as '11'.

FIGURE 5-9: **BLOCK DIAGRAM OF** RC0/RC1 Data Bus D Q Data I/O WR Latch pin⁽¹⁾ P<u>ort</u> Q СК W Reg D Q TRIS Latch TRIS 'f' CK Q Reset Comp Pin Enable

RD Port

Vss.

COMP2

Note 1: I/O pins have protection diodes to VDD and

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISGPIO ⁽¹⁾			I/O Contr	ol Registe	r				11 1111	11 1111
N/A	TRISB ⁽²⁾	_	—	I/O Contr	ol Registe	r				11 1111	11 1111
N/A	TRISC ⁽²⁾	_	_	I/O Contr	ol Registe	r				11 1111	11 1111
N/A	OPTION ⁽¹⁾	GPWU	GPPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	OPTION ⁽²⁾	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS ⁽¹⁾	GPWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu (3)
03h	STATUS ⁽²⁾	RBWUF	CWUF	PA0	TO	PD	Z	DC	С	0001 1xxx	qq0q quuu ⁽³⁾
06h	GPIO ⁽¹⁾	_	_	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	PORTB ⁽²⁾	—	—	RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC ⁽²⁾	_		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

 $\label{eq:logend: Legend: Legend: -= unimplemented read as `0', x = unknown, u = unchanged, q = depends on condition.$

Note 1: PIC12F510 only.

2: PIC16F506 only.

3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.

TABLE 5-2: I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC16F506)

Priority	RB0	RB1	RB2	RB3	RB4	RB5
1	AN0/C1IN+	AN1/C1IN-	AN2	Input/MCLR	OSC2/CLKOUT	OSC1/CLKIN
2	TRISB	TRISB	C10UT	—	TRISB	TRISB
3	_		TRISB	_	_	

TABLE 5-3: I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC16F506)

Priority	RC0	RC1	RC2	RC3	RC4	RC5
1	C2IN+	C2IN-	CVREF	TRISC	C2OUT	TOCKI
2	TRISC	TRISC	TRISC		TRISC	TRISC

TABLE 5-4:I/O PIN FUNCTION ORDER OF PRECEDENCE (PIC12F510)

Priority	GP0	GP1	GP2	GP3	GP4	GP5
1	AN0/C1IN+	AN1/C1IN-	AN2	Input/MCLR	OSC2	OSC1/CLKIN
2	TRISIO	TRISIO	C10UT	_	TRISIO	TRISIO
3	_	—	TOCKI	_	_	_
4		—	TRISIO	—	_	_

TABLE 5-6: RE	EQUIREMENTS FOR DIGITAL PIN OPERATION (PIC16F506 PORTB)(1), (2)												
	RB0	RB0	RB0	RB1	RB1	RB2	RB2	RB3	RB4	RB5			
CM1CON0													
C10N	—	0	1	0	1	0	1		—	_			
C1PREF	_	_	0				_						
C1NREF	—	_	_	—	0		_	_	—				
C1T0CS	—	_		_	—		_		—	_			
C1OUTEN	—	_		_	—	—	1	—	_	_			
CM2CON0													
C2ON	1	—	—	—	—	_	_		—	_			
C2PREF1	0	_	_	_	_		_	_	—				
C2PREF2	1	—	_	_	—	_	—	_	—	_			
C2NREF	—	_	—	_	—		_	_	—	_			
C2OUTEN	—	_	_	_	_	_	_	_	-	_			
OPTION													
TOCS	—					_			—				
ADCON0													
ANS<1:0>	00, 01	00,01	00,01	00,01,10	00,01,10	00	00	_	—				
CONFIG													
MCLRE	—	_	—	—	—		_	0	—	_			
INTOSC	—	_	—	_	—		_	_	—	_			
LP	_	_	_	_	_		_	_	Disabled	Disabled			
EXTRC		—	_	_	—	_	—	_	—	Disabled			
ХТ							—	—	Disabled	Disabled			
EC		—	—	—	—	_	—	—	—	Disabled			
HS		—		—	—	_	—	—	Disabled	Disabled			
INTOSC CLKOUT		—	—	—	—	_	—	—		Disabled			
EXTRC CLOCKOUT	—	—		—		_			Disabled	Disabled			

TABLE 5-6: REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC16F506 PORTB)^{(1), (2)}

Note 1: Multiple column entries for a pin demonstrate the different permutations to arrive at digital functionality for the pin.

2: Shaded cells indicate the bit status does not affect the pins digital functionality.

TABLE 5-7: REQUIREMENTS FOR DIGITAL PIN OPERATION (PIC16F506 PORTC)^{(1), (2)}

						•			,	
	RC0	RC0	RC1	RC1	RC2	RC3	RC4	RC4	RC5	RC5
CM2CON0										
C2ON	0	1	0	1			0	1		
C2PREF1		0			_				_	
C2PREF2	—	0	—		—	—	—	—	—	—
C2NREF	—	—	—	0	—	—	—	—	—	—
C2OUTEN		—	_	_	_	_	_	1	_	
VRCON0			•							
VROE					0				_	
OPTION	•	-	•	•						
TOCS	—	—	—		_	—	_	—	0	—
Note 1: Multiple	column entr	ies for a r	in demon	strata tha	different	normutati	one to arri	ve at digit	al function	nality for

Note 1: Multiple column entries for a pin demonstrate the different permutations to arrive at digital functionality for the pin.

2: Shaded cells indicate the bit status does not affect the pins digital functionality.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

PC (Program Counter) Instruction Fetch	Q1 Q2 Q3 Q4 (<u>Х РС </u>	(PC + 1	PC + 2	Y PC + 3	PC + 4	Q1 Q2 Q3 Q4 (<u>PC+5</u>) MOVF TMR0,W	Q1 Q2 Q3 Q4; X PC + 6
Timer0 Instruction Executed	()	Τ0 + 1)	T0 + 2) Write TMR0 executed	Read TMR0 reads NT0	NT0 Read TMR0 reads NT0	Read TMR0 reads NT0	NT0 + 1)	NT0 + 2 Read TMR0 reads NT0 + 2

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

(Program Counter)	(PC - 1		↓ Q1 Q2 Q3 Q4 X PC + 1	PC + 2	PC + 3	PC + 4	PC+5	(PC + 6)
Instruction Fetch	, ! !	MOVWF TMR0	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	,,,
Timer0	χ	T0 + 1		, , ,	NT0			NT0 + 1
Instruction Executed	1 1 1				Read TMR0		Read TMR0	
	1	•	Write TMR0 executed	Read TMR0 reads NT0	reads NT0	Read TMR0 reads NT0		Read TMR0 reads NT0 + 2

TABLE 6-1: **REGISTERS ASSOCIATED WITH TIMER0**

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
01h	TMR0	Timer0 – 8	Fimer0 – 8-bit Real-Time Clock/Counter						XXXX XXXX	uuuu uuuu	
07h	CM1CON0 ⁽²⁾	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	uuuu uuuu
08h	CM1CON0 ⁽³⁾	C10UT	C10UTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU	1111 1111	uuuu uuuu
N/A	OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	TRISGPIO ⁽¹⁾	_	_	I/O Contr	ol Register					1111	11 1111

Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged. **Note 1:** The TRIS of the TOCKI pin is overridden when TOCS = 1. Legend:

2: For PIC12F510.

3: For PIC16F506.

R-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
C10U	T C1OUTEN	C1POL	C1T0CS	C10N	C1NREF	C1PREF	C1WU
bit 7							bit (
Legend:							
R = Reada		W = Writable			mented bit, rea		
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkn	own
bit 7	C1OUT: Com	parator Output	t bit				
	1 = VIN + > VII	-					
	0 = VIN + < VII			(4) (2)			
bit 6		Comparator Ou					
		comparator is comparator is			pin		
bit 5	•	parator Output	•	•			
DIUD		comparator is	•				
		comparator is					
bit 4	C1T0CS: Cor	nparator TMR	Clock Source	e bit ⁽²⁾			
	1 = TMR0 clo	ck source sele	cted by T0CS	control bit			
	0 = Compara	tor output used	d as TMR0 clo	ck source			
bit 3		arator Enable	bit				
	1 = Compara						
	0 = Compara			2 1 1 1 1 (2)			
bit 2	1 = C1IN- pin	mparator Nega	ative Reference	e Select bit(-)			
	0 = 0.6V inter						
bit 1			ive Reference	Select bit ⁽²⁾			
	C1PREF: Comparator Positive Reference Select bit ⁽²⁾ 1 = C1IN+ pin						
	0 = C1IN- pin						
bit 0	C1WU: Comparator Wake-up On Change Enable bit ⁽²⁾						
	 Wake-up On Comparator Change is disabled Wake-up On Comparator Change is enabled 						
	•	•	•	nabled			
Note 1:	Overrides T0CS b						
2:	When comparator is turned on, these control bits assert themselves. Otherwise, the other registers have precedence.						

REGISTER 7-2: CM1CON0: COMPARATOR C1 CONTROL REGISTER (PIC16F506)

9.0 ANALOG-TO-DIGITAL (A/D) CONVERTER

The A/D Converter allows conversion of an analog signal into an 8-bit digital signal.

9.1 Clock Divisors

The ADC has 4 clock source settings ADCS<1:0>. There are 3 divisor values 16, 8 and 4. The fourth setting is INTOSC with a divisor of 4. These settings will allow a proper conversion when using an external oscillator at speeds from 20 MHz to 350 kHz. Using an external oscillator at a frequency below 350 kHz (TAD > 50 μ s) requires the ADC oscillator setting to be INTOSC/4 for valid ADC results.

The ADC requires 13 TAD periods to complete a conversion. The divisor values do not affect the number of TAD periods required to perform a conversion. The divisor values determine the length of the TAD period.

When the ADCS<1:0> bits are changed while an ADC conversion is in process, the new ADC clock source will not be selected until the next conversion is started. This clock source selection will be lost when the device enters Sleep.

9.1.1 VOLTAGE REFERENCE

There is no external voltage reference for the ADC. The ADC reference voltage will always be VDD.

9.1.2 ANALOG MODE SELECTION

The ANS<1:0> bits are used to configure pins for analog input. Upon any Reset, ANS<1:0> defaults to 11. This configures pins ANO, AN1 and AN2 as analog inputs. Pins configured as analog inputs are not available for digital output. Users should not change the ANS bits while a conversion is in process. ANS bits are active regardless of the condition of ADON.

9.1.3 ADC CHANNEL SELECTION

The CHS bits are used to select the analog channel to be sampled by the ADC. The CHS<1:0> bits can be changed at any time without adversely effecting a conversion. To acquire an analog signal the CHS<1:0> selection must match one of the pin(s) selected by the ANS<1:0> bits. When the ADC is on (ADON = 1) and a channel is selected that is also being used by the comparator, then both the comparator and the ADC will see the analog voltage on the pin.

Note: It is the users responsibility to ensure that use of the ADC and comparator simultaneously on the same pin, does not adversely affect the signal being monitored or adversely effect device operation. When the CHS<1:0> bits are changed during an ADC conversion, the new channel will not be selected until the current conversion is completed. This allows the current conversion to complete with valid results. All channel selection information will be lost when the device enters Sleep.

TABLE 9-1 :	CHANNEL SELECT (ADCS)
	BITS AFTER AN EVENT

Event	ADCS<1:0>
MCLR	11
Conversion completed	CS<1:0>
Conversion terminated	CS<1:0>
Power-on	11
Wake from Sleep	11

9.1.4 THE GO/DONE BIT

The GO/DONE bit is used to determine the status of a conversion, to start a conversion and to manually halt a conversion in process. Setting the GO/DONE bit starts a conversion. When the conversion is complete, the ADC module clears the GO/DONE bit. A conversion can be terminated by manually clearing the GO/DONE bit while a conversion is in process. Manual termination of a conversion may result in a partially converted result in ADRES.

The GO/DONE bit is cleared when the device enters Sleep, stopping the current conversion. The ADC does not have a dedicated oscillator, it runs off of the instruction clock. Therefore, no conversion can occur in sleep.

The GO/DONE bit cannot be set when ADON is clear.

^{© 2007} Microchip Technology Inc.

9.1.6 ANALOG CONVERSION RESULT REGISTER

The ADRES register contains the results of the last conversion. These results are present during the sampling period of the next analog conversion process. After the sampling period is over, ADRES is cleared (= 0). A 'leading one' is then right shifted into the ADRES to serve as an internal conversion complete bit. As each bit weight, starting with the MSB, is converted, the leading one is shifted right and the converted bit is stuffed into ADRES. After a total of 9 right

shifts of the 'leading one' have taken place, the conversion is complete; the 'leading one' has been shifted out and the GO/DONE bit is cleared.

If the GO/DONE bit is cleared in software during a conversion, the conversion stops. The data in ADRES is the partial conversion result. This data is valid for the bit weights that have been converted. The position of the 'leading one' determines the number of bits that have been converted. The bits that were not converted before the GO/DONE was cleared are unrecoverable.

REGISTER 9-1: ADCON0: A/D CONTROL REGISTER (PIC12F510)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
ANS1	ANS0	ADCS1	ADCS0	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:					
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7-6	00 = No 01 = AN 10 = AN	0>: ADC Analog Input Pin S pins configured for analog in 2 configured as an analog ir 2 and AN0 configured as an 2, AN1 and AN0 configured	nput iput alog inputs		
bit 5-4	ADCS< 00 = FO 01 = FO 10 = FO 11 = IN	sc/8 sc/4	s Select bits		
bit 3-2	00 = Ch 01 = Ch 10 = Ch	0>: ADC Channel Select bits annel AN0 annel AN1 annel AN2 V absolute voltage reference			
bit 1	1 = AD0 auto 0 = AD0	omatically cleared by hardwa	Setting this bit starts an Al are when the ADC is done con in progress. Manually clearin	DC conversion cycle. This bit verting. Ig this bit while a conversion is	
bit 0	1 = AD0	ADC Enable bit C module is operating C module is shut-off and con	sumes no power		
Note 1: 2:	less of the pir input to the co that the ADC	n function previously defined omparator and the ADC will b	. The only exception to this is be active at the same time. It is nput does not affect their appli	forced into Analog mode, regard- the comparator, where the analog the users responsibility to ensur- cation.	
3:		s default to 11 after any Res			
<u></u> <i>A</i> .		hit is clear the GO/DONE hit	cannot ha sat		

4: If the ADON bit is clear, the GO/DONE bit cannot be set.

10.3 Reset

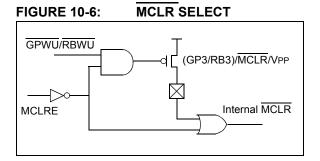
The device differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- · WDT Time-out Reset during normal operation
- · WDT Time-out Reset during Sleep
- Wake-up from Sleep Reset on pin change
- Wake-up from Sleep Reset on comparator change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other Reset. Most other registers are reset to "Reset state" on Power-on Reset (POR), MCLR, WDT or Wake-up from Sleep Reset on pin change or wake-up from Sleep Reset on comparator change. The exceptions are TO, PD, CWUF and RBWUF/GPWUF bits. They are set or cleared differently in different Reset situations. These bits are used in software to determine the nature of Reset. See Table 10-4 for a full description of Reset states of all registers.

Register	Address	Power-on Reset	MCLR Reset, WDT Time-out, Wake-up On Pin Change, Wake-up on Comparator Change
W	—	qqqq qqqu ⁽¹⁾	qqqq qqqu ⁽¹⁾
INDF	00h	xxxx xxxx	<u>uuuu</u> uuuu
TMR0	01h	xxxx xxxx	uuuu uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	qq0q quuu ⁽²⁾
FSR	04h	110x xxxx	11uu uuuu
OSCCAL	05h	1111 111-	uuuu uuu-
GPIO	06h	xx xxxx	uu uuuu
CM1CON0	07h	1111 1111	uuuu uuuu
ADCON0	08h	1111 1100	uull 1100
ADRES	09h	xxxx xxxx	uuuu uuuu
OPTION		1111 1111	1111 1111
TRISIO		11 1111	11 1111

TABLE 10-3: RESET CONDITIONS FOR REGISTERS – PIC12F510


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.

2: See Table 10-5 for Reset value for specific conditions.

10.3.1 MCLR ENABLE

This Configuration bit, when unprogrammed (left in the '1' state), enables the external MCLR function. When programmed, the MCLR function is tied to the internal VDD and the pin is assigned to be a I/O. See Figure 10-6.

10.4 Power-on Reset (POR)

The PIC12F510/16F506 devices incorporate an onchip Power-on Reset (POR) circuitry, which provides an internal chip Reset for most power-up situations.

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. The POR is active regardless of the state of the MCLR enable bit. An internal weak pull-up resistor is implemented using a transistor (refer to Table 13-3 for the pull-up resistor ranges). This will eliminate external RC components usually needed to create an external Power-on Reset. A maximum rise time for VDD is specified. See **Section 13.0 "Electrical Characteristics"** for details.

When the devices start normal operation (exit the Reset condition), device operating parameters (volt-age, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the devices must be held in Reset until the operating parameters are met.

A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 10-7.

The Power-on Reset circuit and the Device Reset Timer (see Section 10.5 "Device Reset Timer (DRT)") circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR, internal or external, to be high. After the time-out period, it will reset the Reset latch and thus end the on-chip Reset signal.

A power-up example where $\overline{\text{MCLR}}$ is held low is shown in Figure 10-8. VDD is allowed to rise and stabilize before bringing $\overline{\text{MCLR}}$ high. The chip will actually come out of Reset TDRT msec after $\overline{\text{MCLR}}$ goes high.

In Figure 10-9, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together or the pin is programmed to be (GP3/RB3). The VDD is stable before the Start-up timer times out and there is no problem in getting a proper Reset. However, Figure 10-10 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses that MCLR is high and when MCLR and VDD actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip may not function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 10-9).

Note:	When the devices start normal operation (exit the Reset condition), device operat-
	ing parameters (voltage, frequency,
	temperature, etc.) must be met to ensure
	operation. If these conditions are not met,
	the device must be held in Reset until the
	operating conditions are met.

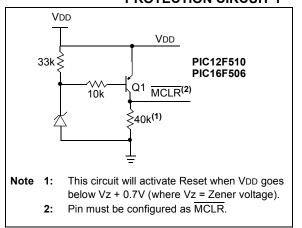
For additional information, refer to Application Notes AN522, *"Power-Up Considerations"* (DS00522) and AN607, *"Power-up Trouble Shooting"* (DS00607).

10.7 Time-out Sequence, Power-down and <u>Wake-up</u> from Sleep Status Bits (TO, PD, GPWUF/RBWUF)

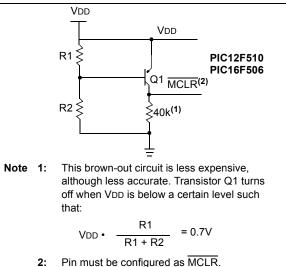
The $\overline{\text{TO}}$, $\overline{\text{PD}}$ and (GPWUF/RBWUF) bits in the STATUS register can be tested to determine if a Reset condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) Reset.

TABLE 10-8: TO/PD/(GPWUF/RBWUF) STATUS AFTER RESET

CWUF	GPWUF/ RBWUF	то	PD	Reset Caused By
0	0	0	0	WDT wake-up from Sleep
0	0	0	u	WDT time-out (not from Sleep)
0	0	1	0	MCLR wake-up from Sleep
0	0	1	1	Power-up
0	0	u	u	MCLR not during Sleep
0	1	1	0	Wake-up from Sleep on pin change
1	0	1	0	Wake-up from Sleep on comparator change


Legend: u = unchanged

10.8 Reset on Brown-out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC12F510/16F506 devices when a brownout occurs, external brown-out protection circuits may be built, as shown in Figure 10-12 and Figure 10-13.

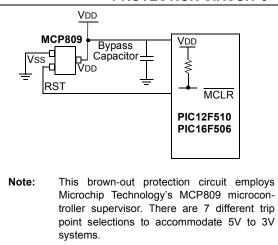

FIGURE 10-12: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 10-14: BROWN-OUT PROTECTION CIRCUIT 3

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f) - 1 \rightarrow (dest)$
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 'o', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	(f) – 1 \rightarrow d; skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.

GOTO	Unconditional Branch				
Syntax:	[<i>label</i>] GOTO k				
Operands:	$0 \le k \le 511$				
Operation:	$k \rightarrow PC<8:0>;$ STATUS <6:5> $\rightarrow PC<10:9>$				
Status Affected:	None				
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS <6:5>. GOTO is a two- cycle instruction.				

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

DC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $40^{\circ}C \le TA \le +125^{\circ}C$ (extended)					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
D001	Vdd	Supply Voltage	2.0		5.5	V	See Figure 14-1
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	_	1.5*		V	Device in Sleep mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss		V	See Section 10.4 "Power-on Reset (POR)" for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_		V/ms	See Section 10.4 "Power-on Reset (POR)" for details
D010	IDD	Supply Current ^(3,4)		175 0.625	275 1.1	μA mA	Fosc = 4 MHz, VDD = 2.0V Fosc = 4 MHz, VDD = 5.0V
			_	250 1.0	450 1.5	μA mA	Fosc = 8 MHz, Vdd = 2.0V Fosc = 8 MHz, Vdd = 5.0V
				1.4	2.0	mA	Fosc = 20 MHz, VDD = 5.0V
			_	11 38	16 54	μΑ μΑ	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 5.0V
D020	IPD	Power-down Current ⁽⁵⁾	_	0.1 0.35	9.0 15.0	μΑ μΑ	VDD = 2.0V VDD = 5.0V
D022	Iwdt	WDT Current ⁽⁵⁾	_	1.0 7.0	18 22	μΑ μΑ	VDD = 2.0V VDD = 5.0V
D023	ICMP	Comparator Current ⁽⁵⁾	_	15 55	25 75	μΑ μΑ	VDD = 2.0V (per comparator) VDD = 5.0V (per comparator)
D022	ICVREF	CVREF Current ⁽⁵⁾	_	30 75	65 135	μΑ μΑ	VDD = 2.0V (high range) VDD = 5.0V (high range)
D023	IFVR	Internal 0.6V Fixed Voltage Reference Current ⁽⁵⁾	_	85 175	130 220	μΑ μΑ	VDD = 2.0V (0.6V reference and 1 comparator enabled) VDD = 5.0V (0.6V reference and 1 comparator enabled)
D024	Δ IAD	A/D Conversion Current ⁽⁵⁾	_	120	150	μA	2.0V
			_	200	250	μA	5.0V

13.2 DC Characteristics: PIC12F510/16F506 (Extended)

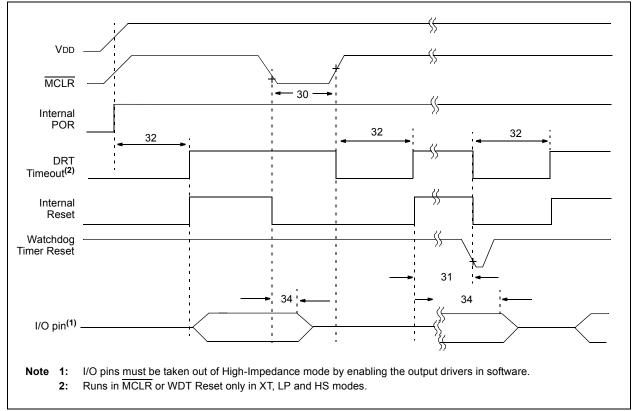
* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- 2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
- **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
- 4: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- **5:** For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.
- **6:** Does not include current through REXT. The current through the resistor can be estimated by the formula: I = VDD/2REXT (mA) with REXT in kΩ.

AC CHAR	ACTERISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial) $-40^{\circ}C \le TA \le +125^{\circ}C$ (extended)						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units		
17	TosH2IoV	OSC1↑ (Q1 cycle) to Port out valid ^{(2), (3)}		_	100*	ns		
18	TosH2ıol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time) ⁽²⁾	50	—	—	ns		
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	20	_	_	ns		
20	TIOR	Port output rise time ^{(2), (3)}	_	10	25**	ns		
21	TIOF	Port output fall time ^{(2), (3)}	-	10	25**	ns		

TABLE 13-6: TIMING REQUIREMENTS


* These parameters are characterized but not tested.

** These parameters are design targets and are not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **2:** Measurements are taken in EXTRC mode.
- **3:** See Figure 13-5 for loading conditions.

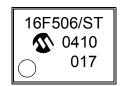
FIGURE 13-8: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING

15.2 Package Marking Information (Cont'd)

14-Lead SOIC (3.90 mm)

8-Lead MSOP

14-Lead TSSOP (4.4 mm)


Example

Example

Example

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara, CA Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820