

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32jg1b100f128gm32-c0r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

The EFM32JG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated dc-dc buck regulator can be utilized to further reduce the current consumption. The dc-dc regulator requires one external inductor and one external capacitor.

AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the dc-dc to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.3 General Purpose Input/Output (GPIO)

EFM32JG1 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.4 Clocking

3.4.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFM32JG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.4.2 Internal and External Oscillators

The EFM32JG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.5 Counters/Timers and PWM

3.5.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.5.2 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes.

3.5.3 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.4 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.5 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.6 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- 1²S

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Max load current	I _{LOAD_MAX}	Low noise (LN) mode, Heavy Drive ⁴ , T _{amb} ≤ 85 °C	_	—	200	mA
		Low noise (LN) mode, Heavy Drive ⁴ , T _{amb} > 85 °C	_	_	100	mA
		Low noise (LN) mode, Medium Drive ⁴	_	_	100	mA
		Low noise (LN) mode, Light Drive ⁴	_	_	50	mA
		Low power (LP) mode, LPCMPBIAS ³ = 0	_	_	75	μA
		Low power (LP) mode, LPCMPBIAS ³ = 3	_		10	mA
DCDC nominal output ca- pacitor	C _{DCDC}	25% tolerance	1	1	1	μF
DCDC nominal output induc- tor	L _{DCDC}	20% tolerance	4.7	4.7	4.7	μH
Resistance in Bypass mode	R _{BYP}		_	1.2	2.5	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VREGVDD}

2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits

3. In EMU_DCDCMISCCTRL register

4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.

Table 4.11. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{HFXO}		38	38.4	40	MHz
Supported crystal equivalent series resistance (ESR)	ESR _{HFXO}	Crystal frequency 38.4 MHz	—	_	60	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		6	_	12	pF
On-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	9	20	25	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.04		pF
Startup time	t _{HFXO}	38.4 MHz, ESR = 50 Ω, C _L = 10 pF	—	300	_	μs
Frequency Tolerance for the crystal	FT _{HFXO}	38.4 MHz, ESR = 50 Ω, CL = 10 pF	-40	—	40	ppm

Note:

1. Total load capacitance as seen by the crystal

 The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.8.3 LFRCO

Table 4.12. LFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} ≤ 85 °C	30.474	32.768	34.243	kHz
		ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} > 85 °C	30.474	_	39.7	kHz
		ENVREF = 0 in CMU_LFRCOCTRL	30.474	32.768	33.915	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	342		nA
		ENVREF = 0 in CMU_LFRCOCTRL	_	494	_	nA

Note:

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register

4.1.9 Flash Memory Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash erase cycles before failure	EC _{FLASH}		10000	_	_	cycles
Flash data retention	RET _{FLASH}	T _{AMB} ≤ 85 °C	10	_	_	years
		T _{AMB} ≤ 125 °C	10	_	_	years
Word (32-bit) programming time	t _{W_PROG}		20	26	40	μs
Page erase time	t _{PERASE}		20	27	40	ms
Mass erase time	t _{MERASE}		20	27	40	ms
Device erase time ²	t _{DERASE}	T _{AMB} ≤ 85 °C	_	60	74	ms
		T _{AMB} ≤ 125 °C	—	60	78	ms
Page erase current ³	I _{ERASE}		_	_	3	mA
Mass or Device erase cur- rent ³			-	—	5	mA
Write current ³	I _{WRITE}		—	_	3	mA

Table 4.15. Flash Memory Characteristics¹

Note:

1. Flash data retention information is published in the Quarterly Quality and Reliability Report.

2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW)

3. Measured at 25°C

Table 4.16. GPIO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IOIL}		—	_	IOVDD*0.3	V
Input high voltage	V _{IOIH}		IOVDD*0.7	_	_	V
Output high voltage relative	V _{IOOH}	Sourcing 3 mA, IOVDD ≥ 3 V,	IOVDD*0.8	_	_	V
to IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD \ge 3 V,	IOVDD*0.8	_	_	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to	V _{IOOL}	Sinking 3 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD \ge 3 V,	_	_	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD, T _{amb} ≤ 85 °C	_	0.1	30	nA
		LFXO Pins, GPIO ≤ IOVDD, T _{amb} ≤ 85 °C	_	0.1	50	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T _{AMB} > 85 °C	_	_	110	nA
		LFXO Pins, GPIO ≤ IOVDD, T _{AMB} > 85 °C	_		250	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	_	3.3	15	μA
I/O pin pull-up resistor	R _{PU}		30	43	65	kΩ
I/O pin pull-down resistor	R _{PD}		30	43	65	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	tioglitch		20	25	35	ns

Table 4.18. ADC

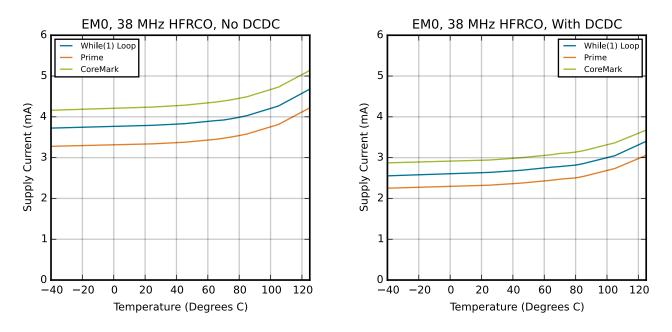
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	VRESOLUTION		6		12	Bits
Input voltage range	VADCIN	Single ended	0	_	2*V _{REF}	V
		Differential	-V _{REF}	_	V _{REF}	V
Input range of external refer- ence voltage, single ended and differential	Vadcrefin_p		1	_	V _{AVDD}	V
Power supply rejection ¹	PSRR _{ADC}	At DC	_	80	_	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80	_	dB
Current from all supplies, us-	I _{ADC_CONTI-}	1 Msps / 16 MHz ADCCLK,	_	301	350	μA
ing internal reference buffer. Continous operation. WAR- MUPMODE ² = KEEPADC-	NOUS_LP	BIASPROG = 0, GPBIASACC = 1				
WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ³	_	149	_	μA
		62.5 ksps / 1 MHz ADCCLK,	_	91	_	μA
		BIASPROG = 15, GPBIASACC = 1 ³				
Current from all supplies, us-		35 ksps / 16 MHz ADCCLK,	_	51	_	μA
ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ² = NORMAL		BIASPROG = 0, GPBIASACC = 1				
		5 ksps / 16 MHz ADCCLK	_	9	_	μA
		BIASPROG = 0, GPBIASACC = 1				
Current from all supplies, us-	IADC_STAND-	125 ksps / 16 MHz ADCCLK,	_	117	_	μA
ing internal reference buffer. Duty-cycled operation. AWARMUPMODE ² = KEEP-	BY_LP	BIASPROG = 0, GPBIASACC = 1				
INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK,	_	79	_	μA
		BIASPROG = 0, GPBIASACC = 1				
Current from all supplies, us-	IADC_CONTI-	1 Msps / 16 MHz ADCCLK,	_	345	_	μA
ing internal reference buffer. Continous operation. WAR- MUPMODE ² = KEEPADC-	NOUS_HP	BIASPROG = 0, GPBIASACC = 0				
WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 0 ³	_	191	-	μA
		62.5 ksps / 1 MHz ADCCLK,	_	132	_	μA
		BIASPROG = 15, GPBIASACC = 0 ³				

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current from all supplies, us-	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK,	_	102	_	μA
ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ² = NORMAL		BIASPROG = 0, GPBIASACC = 0				
		5 ksps / 16 MHz ADCCLK	_	17	_	μA
		$\begin{array}{l} BIASPROG = 0, \ GPBIASACC = 0\\ 3 \end{array}$				
Current from all supplies, us-	IADC_STAND-	125 ksps / 16 MHz ADCCLK,	_	162	_	μA
ing internal reference buffer. Duty-cycled operation. AWARMUPMODE ² = KEEP-	BY_HP	BIASPROG = 0, GPBIASACC = 0				
INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK,	—	123	_	μA
		BIASPROG = 0, GPBIASACC = 0				
Current from HFPERCLK	I _{ADC_CLK}	HFPERCLK = 16 MHz		140		μA
ADC Clock Frequency	f _{ADCCLK}		_	_	16	MHz
Throughput rate	f ADCRATE		—	—	1	Msps
Conversion time ⁴	t _{ADCCONV}	6 bit	—	7	_	cycles
		8 bit	—	9	_	cycles
		12 bit		13		cycles
Startup time of reference generator and ADC core	t _{ADCSTART}	WARMUPMODE ² = NORMAL	—	—	5	μs
		WARMUPMODE ² = KEEPIN- STANDBY	—	_	2	μs
		WARMUPMODE ² = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{in} = 10kHz	SNDR _{ADC}	Internal reference, 2.5 V full-scale, differential (-1.25, 1.25)	58	67	—	dB
		vrefp_in = 1.25 V direct mode with 2.5 V full-scale, differential	—	68	—	dB
Spurious-Free Dynamic Range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	_	75	_	dB
Input referred ADC noise, rms	V _{REF_NOISE}	Including quantization noise and distortion		380		μV
Offset Error	V _{ADCOFFSETERR}		-3	0.25	3	LSB
Gain error in ADC	V _{ADC_GAIN}	Using internal reference	_	-0.2	5	%
		Using external reference	—	-1		%
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No Missing Co- des	-1	_	2	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	-6	_	6	LSB
Temperature Sensor Slope	V _{TS_SLOPE}		—	-1.84		mV/°C

4.1.15 I2C

I2C Standard-mode (Sm)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7			μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU,DAT}		250		_	ns
SDA hold time ³	t _{HD,DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU,STA}		4.7			μs
(Repeated) START condition hold time	t _{HD,STA}		4			μs
STOP condition set-up time	t _{SU,STO}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	_		μs


Table 4.21. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW})

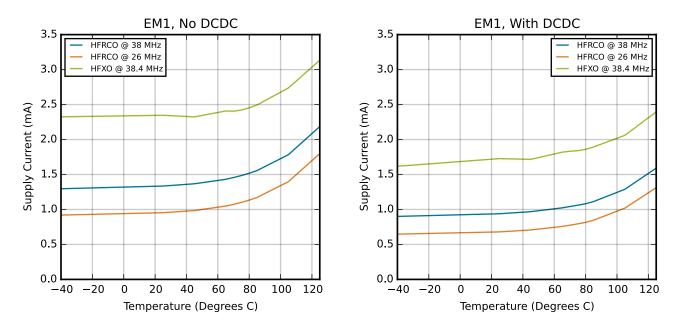


Figure 4.4. EM1 Sleep Mode Typical Supply Current

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 1.0 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

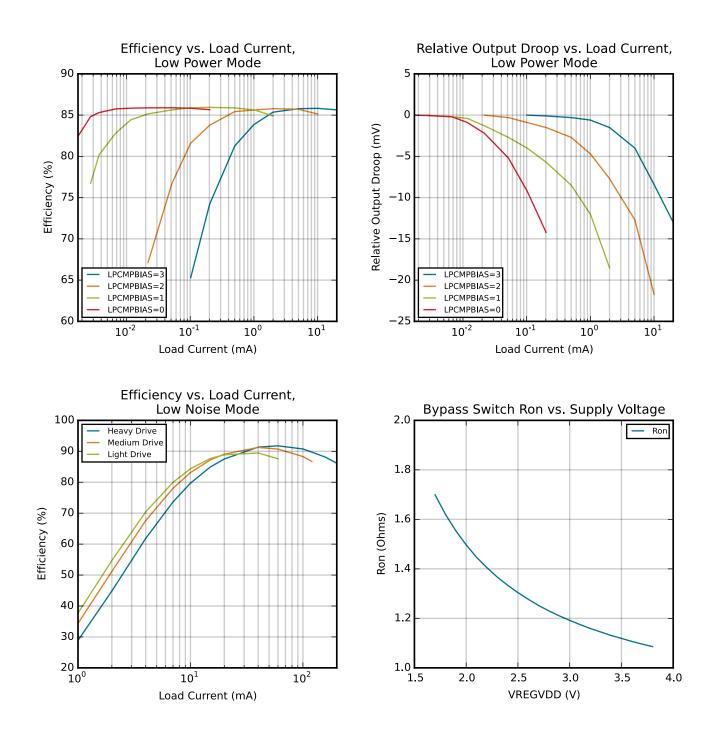


Figure 4.6. DC-DC Converter Typical Performance Characteristics

4.2.3 Internal Oscillators

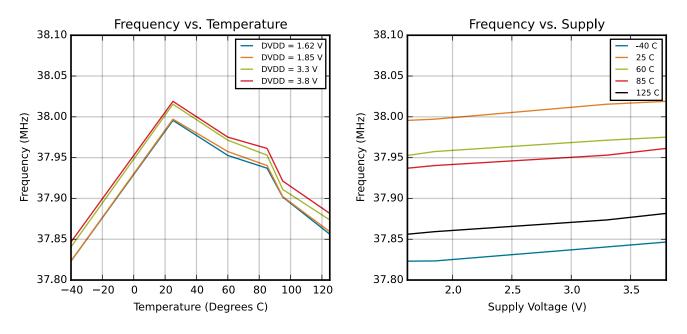
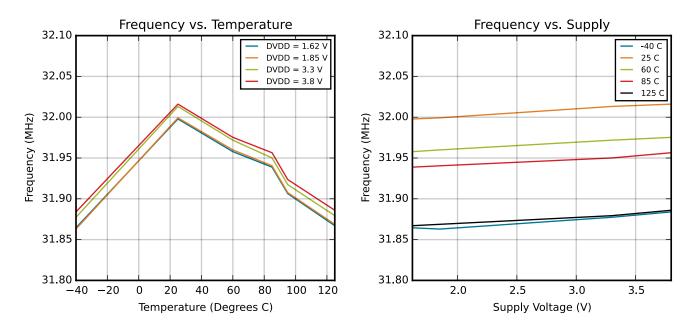



Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz

QFN	48 Pin# and Name	e Pin Alternate Functionality / Description			
Pin #	Pin Name	Analog	Timers	Communication	Other
0	RFVSS	Radio Ground			
1	PF0	BUSAX BUSBY	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LE- TIM0_OUT0 #25 LE- TIM0_OUT0 #25 LE- TIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX
3	PF2	BUSAX BUSBY	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0

Table 6.1. QFN48 with DC-DC Device Pinout

QFN	132 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VREGVSS	Voltage regulator VSS			
1	PF0	BUSAX BUSBY	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LE- TIM0_OUT0 #24 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LE- TIM0_OUT0 #25 LE- TIM0_OUT0 #25 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX
3	PF2	BUSAX BUSBY	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0

Table 6.3. QFN32 without DC-DC Device Pinout

QFN	32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
19	PB11	BUSCY BUSDX	TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LE- TIM0_OUT0 #6 LE- TIM0_OUT0 #6 LE- TIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5	US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5	PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6
20	PB12	BUSCX BUSDY	TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDT12 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LE- TIM0_OUT0 #7 LE- TIM0_OUT0 #7 LE- TIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6	US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6	PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7
21	PB13	BUSCY BUSDX	TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LE- TIM0_OUT0 #8 LE- TIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7	US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7	PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9
22	AVDD	Analog power supply .	-	-	
23	PB14	LFXTAL_N BUSCX BUSDY	TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LE- TIM0_OUT0 #9 LE- TIM0_OUT0 #9 LE- TIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8	US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8	CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9

QFN32 Pin# and Name		Pin Alternate Functionality / Description					
Pin #	Pin Name	Analog	Timers	Communication	Other		
16	PD15	BUSCY BUSDX	TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LE- TIM0_OUT0 #23 LE- TIM0_OUT0 #23 LE- TIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22	US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22	CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2		
17	PA0	ADC0_EXTN BUSCX BUSDY	TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDT10 #29 TIM0_CDT11 #28 TIM0_CDT12 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LE- TIM0_OUT0 #0 LE- TIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31	US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31	CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0		
18	PA1	ADC0_EXTP BUSCY BUSDX	TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LE- TIM0_OUT0 #1 LE- TIM0_OUT0 #1 LE- TIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0	US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0	CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1		
19	PB11	BUSCY BUSDX	TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LE- TIM0_OUT0 #6 LE- TIM0_OUT0 #6 LE- TIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5	US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5	PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6		

Alternate	Iternate LOCATION								
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
PRS_CH1	0: PF1 1: PF2 2: PF3 3: PF4	4: PF5 5: PF6 6: PF7 7: PF0							Peripheral Reflex System PRS, chan- nel 1.
PRS_CH2	0: PF2 1: PF3 2: PF4 3: PF5	4: PF6 5: PF7 6: PF0 7: PF1							Peripheral Reflex System PRS, chan- nel 2.
PRS_CH3	0: PF3 1: PF4 2: PF5 3: PF6	4: PF7 5: PF0 6: PF1 7: PF2	8: PD9 9: PD10 10: PD11 11: PD12	12: PD13 13: PD14 14: PD15					Peripheral Reflex System PRS, chan- nel 3.
PRS_CH4	0: PD9 1: PD10 2: PD11 3: PD12	4: PD13 5: PD14 6: PD15							Peripheral Reflex System PRS, chan- nel 4.
PRS_CH5	0: PD10 1: PD11 2: PD12 3: PD13	4: PD14 5: PD15 6: PD9							Peripheral Reflex System PRS, chan- nel 5.
PRS_CH6	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PD9	12: PD10 13: PD11 14: PD12 15: PD13	16: PD14 17: PD15				Peripheral Reflex System PRS, chan- nel 6.
PRS_CH7	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PA0						Peripheral Reflex System PRS, chan- nel 7.
PRS_CH8	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PA0 10: PA1						Peripheral Reflex System PRS, chan- nel 8.
PRS_CH9	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PA0 9: PA1 10: PA2 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11				Peripheral Reflex System PRS, chan- nel 9.
PRS_CH10	0: PC6 1: PC7 2: PC8 3: PC9	4: PC10 5: PC11							Peripheral Reflex System PRS, chan- nel 10.
PRS_CH11	0: PC7 1: PC8 2: PC9 3: PC10	4: PC11 5: PC6							Peripheral Reflex System PRS, chan- nel 11.
TIM0_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Timer 0 Capture Compare input / output channel 1.

7. QFN48 Package Specifications

7.1 QFN48 Package Dimensions

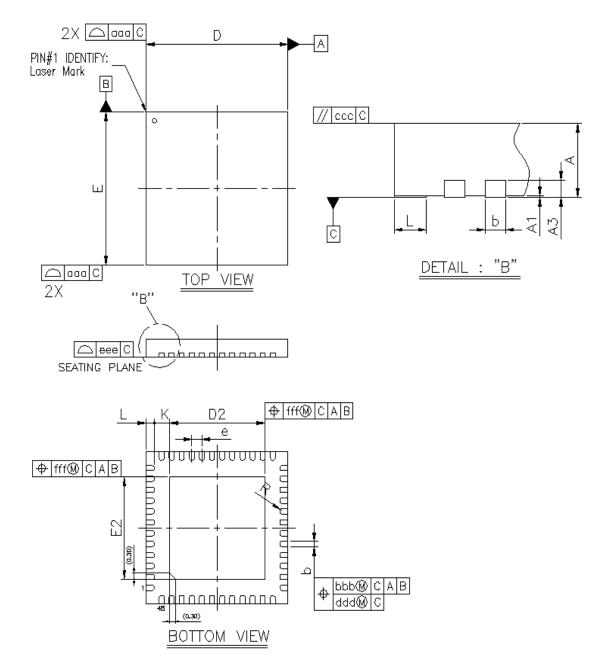


Figure 7.1. QFN48 Package Drawing

Table 8.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
S1	4.01
S	4.01
L1	3.50
W1	3.50
e	0.50
W	0.26
L	0.86

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.7 Revision 0.1

Initial release.