E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32jg1b200f128gm48-b0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.5 Current Consumption

4.1.5.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T_{OP} = 25 °C. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T_{OP} = 25 °C. See Figure 5.1 EFM32JG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 48.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 Active mode with all periph-	IACTIVE	38.4 MHz crystal, CPU running while loop from flash ¹	_	127	-	µA/MHz
		38 MHz HFRCO, CPU running Prime from flash	—	88	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	100	105	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	112	-	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	102	106	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	222	350	µA/MHz
Current consumption in EM1	I _{EM1}	38.4 MHz crystal ¹	_	61	_	µA/MHz
als disabled		38 MHz HFRCO		35	38	µA/MHz
		26 MHz HFRCO	_	37	41	µA/MHz
		1 MHz HFRCO	_	157	275	µA/MHz
Current consumption in EM2 Deep Sleep mode.	I _{EM2}	Full RAM retention and RTCC running from LFXO	_	3.3	_	μΑ
		4 kB RAM retention and RTCC running from LFRCO	_	3	6.3	μΑ
Current consumption in EM3 Stop mode	I _{EM3}	Full RAM retention and CRYO- TIMER running from ULFRCO	_	2.8	6	μΑ
Current consumption in EM4H Hibernate mode	I _{EM4}	128 byte RAM retention, RTCC running from LFXO	_	1.1	-	μΑ
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	_	0.65	_	μΑ
		128 byte RAM retention, no RTCC		0.65	1.3	μA
Current consumption in EM4S Shutoff mode	I _{EM4S}	no RAM retention, no RTCC	_	0.04	0.11	μΑ

Table 4.5. Current Consumption 3.3V without DC/DC

Note:

1. CMU_HFXOCTRL_LOWPOWER=1

4.1.6 Wake up times

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Wake up from EM2 Deep	t _{EM2_WU}	Code execution from flash	_	10.7	—	μs
Sleep		Code execution from RAM	_	3	_	μs
Wakeup time from EM1 Sleep	tem1_wu	Executing from flash	-	3	_	AHB Clocks
		Executing from RAM	-	3	_	AHB Clocks
Wake up from EM3 Stop	t _{EM3_WU}	Executing from flash	_	10.7	—	μs
		Executing from RAM	_	3	_	μs
Wake up from EM4H Hiber- nate ¹	t _{EM4H_WU}	Executing from flash	_	60	_	μs
Wake up from EM4S Shut- off ¹	t _{EM4S_WU}		_	290	_	μs
Note:				1		1

Table 4.8. Wake up times

1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.

4.1.7 Brown Out Detector

Table 4.9. Brown Out Detector

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DVDDBOD threshold	V _{DVDDBOD}	DVDD rising	_	_	1.62	V
		DVDD falling	1.35	_	—	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	24	_	mV
DVDD response time	t _{DVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	_	μs
AVDD BOD threshold	VAVDDBOD	AVDD rising	—	—	1.85	V
		AVDD falling	1.62	—	—	V
AVDD BOD hysteresis	V _{AVDDBOD_HYST}		_	21	_	mV
AVDD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	_	μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	—	—	1.7	V
		AVDD falling	1.45	_	_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}			46	_	mV
EM4 response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	—	300	_	μs

Table 4.11. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{HFXO}		38	38.4	40	MHz
Supported crystal equivalent series resistance (ESR)	ESR _{HFXO}	Crystal frequency 38.4 MHz	_	_	60	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		6	—	12	pF
On-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	9	20	25	pF
On-chip tuning capacitance step	SS _{HFXO}		—	0.04	—	pF
Startup time	t _{HFXO}	38.4 MHz, ESR = 50 Ω , C _L = 10 pF	_	300	_	μs
Frequency Tolerance for the crystal	FT _{HFXO}	38.4 MHz, ESR = 50 Ω, CL = 10 pF	-40	_	40	ppm

Note:

1. Total load capacitance as seen by the crystal

 The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.8.3 LFRCO

Table 4.12. LFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} ≤ 85 °C	30.474	32.768	34.243	kHz
		ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} > 85 °C	30.474	_	39.7	kHz
		ENVREF = 0 in CMU_LFRCOCTRL	30.474	32.768	33.915	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	342	_	nA
		ENVREF = 0 in CMU_LFRCOCTRL	_	494	_	nA

Note:

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register

4.1.8.4 HFRCO and AUXHFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency Accuracy	f _{HFRCO_ACC}	Any frequency band, across sup- ply voltage and temperature	-2.5		2.5	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	—	300	_	ns
		4 < f _{HFRCO} < 19 MHz	—	1	_	μs
		f _{HFRCO} ≤ 4 MHz	—	2.5	_	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 38 MHz	—	204	228	μA
supplies		f _{HFRCO} = 32 MHz	—	171	190	μA
		f _{HFRCO} = 26 MHz	—	147	164	μA
		f _{HFRCO} = 19 MHz	—	126	138	μA
		f _{HFRCO} = 16 MHz	—	110	120	μA
		f _{HFRCO} = 13 MHz	—	100	110	μA
		f _{HFRCO} = 7 MHz	—	81	91	μA
		f _{HFRCO} = 4 MHz	—	33	35	μA
		f _{HFRCO} = 2 MHz	—	31	35	μA
		f _{HFRCO} = 1 MHz	—	30	35	μA
Step size	SS _{HFRCO}	Coarse (% of period)	—	0.8	_	%
		Fine (% of period)	—	0.1	—	%
Period Jitter	PJ _{HFRCO}		_	0.2	_	% RMS

Table 4.13. HFRCO and AUXHFRCO

4.1.8.5 ULFRCO

Table 4.14. ULFRCO

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Oscillation frequency	f _{ULFRCO}		0.95	1	1.07	kHz

4.1.9 Flash Memory Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		10000		_	cycles
Flash data retention	RET _{FLASH}	T _{AMB} ≤ 85 °C	10	_	_	years
		T _{AMB} ≤ 125 °C	10	_	_	years
Word (32-bit) programming time	tw_prog		20	26	40	μs
Page erase time	t _{PERASE}		20	27	40	ms
Mass erase time	t _{MERASE}		20	27	40	ms
Device erase time ²	t _{DERASE}	T _{AMB} ≤ 85 °C	—	60	74	ms
		T _{AMB} ≤ 125 °C	_	60	78	ms
Page erase current ³	I _{ERASE}		—	_	3	mA
Mass or Device erase cur- rent ³	_		_	_	5	mA
Write current ³	I _{WRITE}		_	—	3	mA

Table 4.15. Flash Memory Characteristics¹

Note:

1. Flash data retention information is published in the Quarterly Quality and Reliability Report.

2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW)

3. Measured at 25°C

Table 4.18. ADC

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	VRESOLUTION		6	_	12	Bits
Input voltage range	V _{ADCIN}	Single ended	0	_	2*V _{REF}	V
		Differential	-V _{REF}		V _{REF}	V
Input range of external refer- ence voltage, single ended and differential	V _{ADCREFIN_P}		1	_	V _{AVDD}	V
Power supply rejection ¹	PSRR _{ADC}	At DC	_	80	_	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80		dB
Current from all supplies, us-	IADC_CONTI-	1 Msps / 16 MHz ADCCLK,	_	301	350	μA
Continous operation. WAR- MUPMODE ² = KEEPADC-	NOUS_LP	BIASPROG = 0, GPBIASACC = 1 3				
WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ³	_	149	_	μA
		62.5 ksps / 1 MHz ADCCLK,	_	91	_	μA
		BIASPROG = 15, GPBIASACC = 1 ³				
Current from all supplies, us-	Iadc_normal_lp	35 ksps / 16 MHz ADCCLK,	_	51		μA
Duty-cycled operation. WAR- MUPMODE ² = NORMAL		BIASPROG = 0, GPBIASACC = 1 3				
		5 ksps / 16 MHz ADCCLK		9	_	μA
		BIASPROG = 0, GPBIASACC = 1 3				
Current from all supplies, us-	IADC_STAND-	125 ksps / 16 MHz ADCCLK,	_	117	—	μA
Duty-cycled operation. AWARMUPMODE ² = KEEP-	BY_LP	BIASPROG = 0, GPBIASACC = 1 3				
INSTANDBY or KEEPIN-		35 ksps / 16 MHz ADCCLK,	—	79	—	μA
		BIASPROG = 0, GPBIASACC = 1 3				
Current from all supplies, us-	IADC_CONTI-	1 Msps / 16 MHz ADCCLK,	—	345	_	μA
Continuus operation. WAR- MUPMODE ² = KEEPADC-	NOUS_HP	BIASPROG = 0, GPBIASACC = 0 3				
WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 0 ³	_	191	_	μA
		62.5 ksps / 1 MHz ADCCLK,	—	132	_	μA
		BIASPROG = 15, GPBIASACC = 0^{3}				

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Settling time, (output settled	t _{IDAC_SETTLE}	Range setting is changed	—	5	_	μs
ue)		Step value is changed	—	1	_	μs
Current consumption in EM0 or EM1 ²	I _{IDAC}	Source mode, excluding output current	—	8.9	13	μA
		Sink mode, excluding output cur- rent	—	12	16	μA
Current consumption in EM2 or EM3 ²	-	Source mode, excluding output current, duty cycle mode, T = 25 °C	_	1.04	_	μA
		Sink mode, excluding output cur- rent, duty cycle mode, T = 25 °C	—	1.08	_	μA
		Source mode, excluding output current, duty cycle mode, $T \ge 85$ °C	_	8.9	_	μA
		Sink mode, excluding output cur- rent, duty cycle mode, $T \ge 85 \degree C$	—	12	_	μA
Output voltage compliance in source mode, source current change relative to current	ICOMP_SRC	RANGESEL1=0, output voltage = min(V _{IOVDD} , V _{AVDD} ² -100 mv)	_	0.04	_	%
sourced at 0 V		RANGESEL1=1, output voltage = min(V _{IOVDD} , V _{AVDD} ² -100 mV)	_	0.02	_	%
		RANGESEL1=2, output voltage = min(V _{IOVDD} , V _{AVDD} ² -150 mV)	_	0.02	_	%
		RANGESEL1=3, output voltage = min(V _{IOVDD} , V _{AVDD} ² -250 mV)	_	0.02	_	%
Output voltage compliance in sink mode, sink current	I _{COMP_SINK}	RANGESEL1=0, output voltage = 100 mV	_	0.18		%
sunk at IOVDD		RANGESEL1=1, output voltage = 100 mV	—	0.12	—	%
		RANGESEL1=2, output voltage = 150 mV	_	0.08		%
		RANGESEL1=3, output voltage = 250 mV	—	0.02		%

Note:

1. In IDAC_CURPROG register

2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).

4.1.14 Analog Comparator (ACMP)

Table 4.20. ACMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range		ACMPVDD = ACMPn_CTRL_PWRSEL ¹	0	_	V _{ACMPVDD}	V
Supply Voltage	V _{ACMPVDD}	BIASPROG ² \leq 0x10 or FULL- BIAS ² = 0	1.85		V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^2 \le 0x20$ and FULLBIAS ² = 1	2.1		V _{VREGVDD} MAX	V
Active current not including	I _{ACMP}	$BIASPROG^2 = 1$, $FULLBIAS^2 = 0$	_	50	_	nA
voltage reference		$BIASPROG^{2} = 0x10, FULLBIAS^{2}$ $= 0$	_	306	_	nA
		$BIASPROG^{2} = 0x20, FULLBIAS^{2}$ $= 1$	_	74	95	μA
Current consumption of inter- nal voltage reference	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	_	nA
		VLP selected as input using VDD	—	20	_	nA
		VBDIV selected as input using 1.25 V reference / 1	—	4.1	_	μA
		VADIV selected as input using VDD/1	—	2.4	_	μA
Hysteresis (V_{CM} = 1.25 V,	VACMPHYST	HYSTSEL ³ = HYST0	-1.75	0	1.75	mV
$BIASPROG^{2} = 0x10, FULL-$ $BIAS^{2} = 1)$		HYSTSEL ³ = HYST1	10	18	26	mV
		HYSTSEL ³ = HYST2	21	32	46	mV
		HYSTSEL ³ = HYST3	27	44	63	mV
		HYSTSEL ³ = HYST4	32	55	80	mV
		HYSTSEL ³ = HYST5	38	65	100	mV
		HYSTSEL ³ = HYST6	43	77	121	mV
		HYSTSEL ³ = HYST7	47	86	148	mV
		HYSTSEL ³ = HYST8	-4	0	4	mV
		HYSTSEL ³ = HYST9	-27	-18	-10	mV
		HYSTSEL ³ = HYST10	-47	-32	-18	mV
		HYSTSEL ³ = HYST11	-64	-43	-27	mV
		HYSTSEL ³ = HYST12	-78	-54	-32	mV
		HYSTSEL ³ = HYST13	-93	-64	-37	mV
		HYSTSEL ³ = HYST14	-113	-74	-42	mV
		HYSTSEL ³ = HYST15	-135	-85	-47	mV

4.1.16 USART SPI

SPI Master Timing

Table 4.24.	SPI	Master	Timing
-------------	-----	--------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK period ^{1 2}	t _{SCLK}		2 * t _{HFPERCLK}	_	_	ns
CS to MOSI ^{1 2}	t _{CS_MO}		0	_	8	ns
SCLK to MOSI ^{1 2}	t _{SCLK_MO}		3	_	20	ns
MISO setup time ^{1 2}	t _{SU_MI}	IOVDD = 1.62 V	56	_	—	ns
		IOVDD = 3.0 V	37	—	_	ns
MISO hold time ^{1 2}	t _{H_MI}		6	_	_	ns
Note:						

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of $V_{\text{DD}})$

Figure 4.1. SPI Master Timing Diagram

Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current

Figure 4.7. DC-DC Converter Transition Waveforms

Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz

Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz

QFN	I48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	RFVSS	Radio Ground	I	1	I
1	PF0	BUSAX BUSBY	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LE- TIM0_OUT0 #25 LE- TIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX
3	PF2	BUSAX BUSBY	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0

Table 6.1. QFN48 with DC-DC Device Pinout

Figure 6.2. EFM32JG1 QFN32 without DC-DC Pinout

QFN	32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
15	PD14	BUSCX BUSDY	TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LE- TIM0_OUT0 #22 LE- TIM0_OUT0 #22 LE- TIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21	US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21	CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4
16	PD15	BUSCY BUSDX	TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDT12 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LE- TIM0_OUT0 #23 LE- TIM0_OUT0 #23 LE- TIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22	US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22	CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2
17	PA0	ADC0_EXTN BUSCX BUSDY	TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LE- TIM0_OUT0 #0 LE- TIM0_OUT0 #0 LE- TIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31	US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31	CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0
18	PA1	ADC0_EXTP BUSCY BUSDX	TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LE- TIM0_OUT0 #1 LE- TIM0_OUT0 #1 LE- TIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0	US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0	CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1

QFN	32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
24	PB15	LFXTAL_P BUSCY BUSDX	TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LE- TIM0_OUT0 #10 LE- TIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9	US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9	CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10
25	DVDD	Digital power supply .			
26	DECOUPLE	Decouple output for on-ch	ip voltage regulator. An ext	ernal decoupling capacitor	is required at this pin.
27	IOVDD	Digital IO power supply .		-	
28	PC7	BUSAY BUSBX	TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDT12 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LE- TIM0_OUT0 #12 LE- TIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11	US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11	CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12
29	PC8	BUSAX BUSBY	TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDT12 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LE- TIM0_OUT0 #13 LE- TIM0_OUT0 #13 LE- TIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12	US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12	PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13

6.4 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate									
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
ACMP0_O	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Analog comparator ACMP0, digital out- put.
ACMP1_O	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Analog comparator ACMP1, digital out- put.
ADC0_EXTN	0: PA0								Analog to digital converter ADC0 ex- ternal reference in- put negative pin
ADC0_EXTP	0: PA1								Analog to digital converter ADC0 ex- ternal reference in- put positive pin
BOOT_RX	0: PF1								Bootloader RX
BOOT_TX	0: PF0								Bootloader TX
CMU_CLK0	0: PA1 1: PB15 2: PC6 3: PC11	4: PD9 5: PD14 6: PF2 7: PF7							Clock Management Unit, clock output number 0.
CMU_CLK1	0: PA0 1: PB14 2: PC7 3: PC10	4: PD10 5: PD15 6: PF3 7: PF6							Clock Management Unit, clock output number 1.
DBG_SWCLKTCK	0: PF0								Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this func- tion is enabled to the pin out of reset, and has a built-in pull down.

Table 6.7. Alternate functionality overview

6.5 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PAO		PD14		PD12		PD10		

Table 6.8. ACMP0 Bus and Pin Mapping

Figure 7.3. QFN48 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # Reserved for future use. Current value is 0.

Silicon Labs

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com