

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32jg1b200f256gm32-b0r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

The EFM32JG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated dc-dc buck regulator can be utilized to further reduce the current consumption. The dc-dc regulator requires one external inductor and one external capacitor.

AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the dc-dc to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.3 General Purpose Input/Output (GPIO)

EFM32JG1 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.4 Clocking

3.4.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFM32JG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.4.2 Internal and External Oscillators

The EFM32JG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance	THETA _{JA}	QFN32 Package, 2-Layer PCB, Air velocity = 0 m/s	—	79	_	°C/W
		QFN32 Package, 2-Layer PCB, Air velocity = 1 m/s	_	62.2	_	°C/W
		QFN32 Package, 2-Layer PCB, Air velocity = 2 m/s	_	54.1	_	°C/W
		QFN32 Package, 4-Layer PCB, Air velocity = 0 m/s	_	32	_	°C/W
		QFN32 Package, 4-Layer PCB, Air velocity = 1 m/s	_	28.1	_	°C/W
		QFN32 Package, 4-Layer PCB, Air velocity = 2 m/s	_	26.9	_	°C/W
		QFN48 Package, 2-Layer PCB, Air velocity = 0 m/s	_	64.5		°C/W
		QFN48 Package, 2-Layer PCB, Air velocity = 1 m/s	_	51.6	_	°C/W
		QFN48 Package, 2-Layer PCB, Air velocity = 2 m/s	_	47.7	_	°C/W
		QFN48 Package, 4-Layer PCB, Air velocity = 0 m/s	_	26.2	_	°C/W
		QFN48 Package, 4-Layer PCB, Air velocity = 1 m/s	-	23.1	_	°C/W
		QFN48 Package, 4-Layer PCB, Air velocity = 2 m/s	-	22.1	_	°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Max load current	I _{LOAD_MAX}	Low noise (LN) mode, Heavy Drive ⁴ , T _{amb} ≤ 85 °C	_	—	200	mA
		Low noise (LN) mode, Heavy Drive ⁴ , T _{amb} > 85 °C	_	_	100	mA
		Low noise (LN) mode, Medium Drive ⁴	_	_	100	mA
	Low noise (LN) mode, Drive ⁴	Low noise (LN) mode, Light Drive ⁴	_	_	50	mA
		Low power (LP) mode, LPCMPBIAS ³ = 0	_	_	75	μA
		Low power (LP) mode, LPCMPBIAS ³ = 3	_		10	mA
DCDC nominal output ca- pacitor	C _{DCDC}	25% tolerance	1	1	1	μF
DCDC nominal output induc- tor	L _{DCDC}	20% tolerance	4.7	4.7	4.7	μH
Resistance in Bypass mode	R _{BYP}		_	1.2	2.5	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VREGVDD}

2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits

3. In EMU_DCDCMISCCTRL register

4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.

Table 4.11. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{HFXO}		38	38.4	40	MHz
Supported crystal equivalent series resistance (ESR)	ESR _{HFXO}	Crystal frequency 38.4 MHz	—	_	60	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		6	_	12	pF
On-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	9	20	25	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.04		pF
Startup time	t _{HFXO}	38.4 MHz, ESR = 50 Ω, C _L = 10 pF	—	300	_	μs
Frequency Tolerance for the crystal	FT _{HFXO}	38.4 MHz, ESR = 50 Ω, CL = 10 pF	-40	—	40	ppm

Note:

1. Total load capacitance as seen by the crystal

 The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.8.3 LFRCO

Table 4.12. LFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} ≤ 85 °C	30.474	32.768	34.243	kHz
		ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} > 85 °C	30.474	_	39.7	kHz
		ENVREF = 0 in CMU_LFRCOCTRL	30.474	32.768	33.915	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	342		nA
		ENVREF = 0 in CMU_LFRCOCTRL	_	494	_	nA

Note:

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register

4.1.8.4 HFRCO and AUXHFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency Accuracy	f _{HFRCO_ACC}	Any frequency band, across sup- ply voltage and temperature	-2.5	_	2.5	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	—	300	_	ns
		4 < f _{HFRCO} < 19 MHz	_	1	_	μs
		f _{HFRCO} ≤ 4 MHz	—	2.5	_	μs
Current consumption on all supplies	I _{HFRCO}	f _{HFRCO} = 38 MHz	_	204	228	μA
supplies		f _{HFRCO} = 32 MHz		171	190	μA
		f _{HFRCO} = 26 MHz		147	164	μA
		f _{HFRCO} = 19 MHz	_	126	138	μA
		f _{HFRCO} = 16 MHz		110	120	μA
		f _{HFRCO} = 13 MHz		100	110	μA
		f _{HFRCO} = 7 MHz	_	81	91	μA
		f _{HFRCO} = 4 MHz		33	35	μA
		f _{HFRCO} = 2 MHz		31	35	μA
		f _{HFRCO} = 1 MHz		30	35	μA
Step size	SS _{HFRCO}	Coarse (% of period)	_	0.8		%
		Fine (% of period)	—	0.1	—	%
Period Jitter	PJ _{HFRCO}		_	0.2	_	% RMS

Table 4.13. HFRCO and AUXHFRCO

4.1.8.5 ULFRCO

Table 4.14. ULFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{ULFRCO}		0.95	1	1.07	kHz

4.1.9 Flash Memory Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash erase cycles before failure	EC _{FLASH}		10000	_	_	cycles
Flash data retention	RET _{FLASH}	T _{AMB} ≤ 85 °C	10	_	_	years
		T _{AMB} ≤ 125 °C	10	_	_	years
Word (32-bit) programming time	t _{W_PROG}		20	26	40	μs
Page erase time	t _{PERASE}		20	27	40	ms
Mass erase time	t _{MERASE}		20	27	40	ms
Device erase time ²	t _{DERASE}	T _{AMB} ≤ 85 °C	_	60	74	ms
		T _{AMB} ≤ 125 °C	—	60	78	ms
Page erase current ³	I _{ERASE}		_	_	3	mA
Mass or Device erase cur- rent ³			-	—	5	mA
Write current ³	I _{WRITE}		—	_	3	mA

Table 4.15. Flash Memory Characteristics¹

Note:

1. Flash data retention information is published in the Quarterly Quality and Reliability Report.

2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW)

3. Measured at 25°C

Table 4.16. GPIO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IOIL}		—	_	IOVDD*0.3	V
Input high voltage	V _{IOIH}		IOVDD*0.7	_	_	V
Output high voltage relative	V _{IOOH}	Sourcing 3 mA, IOVDD ≥ 3 V,	IOVDD*0.8	_	_	V
to IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6	10.7 — — 10.8 — — 10.6 — — 10.8 — — 10.8 — — 10.8 — — 10.8 — — 10.6 — — 10.6 — — 10.6 — — 10.6 — — 10.7 IOVDD*0 $1000000000000000000000000000000000000$	_	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD \ge 3 V,	IOVDD*0.8	_	_	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to	V _{IOOL}	Sinking 3 mA, IOVDD ≥ 3 V,	_	_	IOVDD*0.2	V
IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD \ge 3 V,	_	_	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD, T _{amb} ≤ 85 °C	_	0.1	30	nA
		LFXO Pins, GPIO ≤ IOVDD, T _{amb} ≤ 85 °C	_	0.1	50	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T _{AMB} > 85 °C	_	_	110	nA
		LFXO Pins, GPIO ≤ IOVDD, T _{AMB} > 85 °C	_		250	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	_	3.3	15	μA
I/O pin pull-up resistor	R _{PU}		30	43	65	kΩ
I/O pin pull-down resistor	R _{PD}		30	43	65	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	tioglitch		20	25	35	ns

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current from all supplies, us-	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK,	_	102	_	μA
ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ² = NORMAL		BIASPROG = 0, GPBIASACC = 0				
		5 ksps / 16 MHz ADCCLK	_	17	_	μA
		$\begin{array}{l} BIASPROG = 0, \ GPBIASACC = 0\\ 3 \end{array}$				
Current from all supplies, us-	IADC_STAND-	125 ksps / 16 MHz ADCCLK,	_	162	_	μA
ing internal reference buffer. Duty-cycled operation. AWARMUPMODE ² = KEEP-	BY_HP	BIASPROG = 0, GPBIASACC = 0				
INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK,	—	123	_	μA
SLOWAGG		BIASPROG = 0, GPBIASACC = 0				
Current from HFPERCLK	I _{ADC_CLK}	HFPERCLK = 16 MHz		140		μA
ADC Clock Frequency	f _{ADCCLK}		_	_	16	MHz
Throughput rate	f ADCRATE		—	—	1	Msps
Conversion time ⁴	t _{ADCCONV}	6 bit	—	7	_	cycles
		8 bit	—	9	_	cycles
		12 bit		13		cycles
Startup time of reference generator and ADC core	tadcstart	WARMUPMODE ² = NORMAL	—	—	5	μs
		WARMUPMODE ² = KEEPIN- STANDBY	—	_	2	μs
		WARMUPMODE ² = KEEPINSLO- WACC	_	_	1	μs
SNDR at 1Msps and f _{in} = 10kHz	SNDR _{ADC}	Internal reference, 2.5 V full-scale, differential (-1.25, 1.25)	58	67	—	dB
		vrefp_in = 1.25 V direct mode with 2.5 V full-scale, differential	—	68	—	dB
Spurious-Free Dynamic Range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	_	75	_	dB
Input referred ADC noise, rms	V _{REF_NOISE}	Including quantization noise and distortion		380		μV
Offset Error	V _{ADCOFFSETERR}		-3	0.25	3	LSB
Gain error in ADC	V _{ADC_GAIN}	Using internal reference	_	-0.2	5	%
		Using external reference	—	-1		%
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No Missing Co- des	-1	_	2	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	-6	_	6	LSB
Temperature Sensor Slope	V _{TS_SLOPE}		—	-1.84		mV/°C

4.1.14 Analog Comparator (ACMP)

Table 4.20. ACMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{ACMPIN}	ACMPVDD = ACMPn_CTRL_PWRSEL ¹	0	_	V _{ACMPVDD}	V
Supply Voltage	V _{ACMPVDD}	BIASPROG ² \leq 0x10 or FULL- BIAS ² = 0	1.85	_	V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^2 \le 0x20$ and FULLBIAS ² = 1	2.1	_	V _{VREGVDD} MAX	V
Active current not including	I _{ACMP}	$BIASPROG^2 = 1$, $FULLBIAS^2 = 0$	_	50	_	nA
voltage reference		$BIASPROG^{2} = 0x10, FULLBIAS^{2} = 0$	_	306	-	nA
		$BIASPROG^{2} = 0x20, FULLBIAS^{2}$ $= 1$	_	74	95	μA
Current consumption of inter- al voltage reference	I _{ACMPREF}	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	_	nA
		VLP selected as input using VDD	_	20		nA
		VBDIV selected as input using 1.25 V reference / 1	_	4.1	_	μA
		VADIV selected as input using VDD/1	_	2.4	_	μA
Hysteresis (V_{CM} = 1.25 V,	VACMPHYST	HYSTSEL ³ = HYST0	-1.75	0	1.75	mV
$BIASPROG^2 = 0x10, FULL-$ $BIAS^2 = 1)$		HYSTSEL ³ = HYST1	10	18	26	mV
		HYSTSEL ³ = HYST2	21	32	46	mV
		HYSTSEL ³ = HYST3	27	44	63	mV
		HYSTSEL ³ = HYST4	32	55	80	mV
		HYSTSEL ³ = HYST5	38	65	100	mV
		HYSTSEL ³ = HYST6	43	77	121	mV
		HYSTSEL ³ = HYST7	47	86	148	mV
		HYSTSEL ³ = HYST8	-4	0	4	mV
		HYSTSEL ³ = HYST9	-27	-18	-10	mV
		HYSTSEL ³ = HYST10	-47	-32	-18	mV
		HYSTSEL ³ = HYST11	-64	-43	-27	mV
		HYSTSEL ³ = HYST12	-78	-54	-32	mV
		HYSTSEL ³ = HYST13	-93	-64	-37	mV
		HYSTSEL ³ = HYST14	-113	-74	-42	mV
		HYSTSEL ³ = HYST15	-135	-85	-47	mV

4.1.15 I2C

I2C Standard-mode (Sm)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7			μs
SCL clock high time	t _{HIGH}		4	_	_	μs
SDA set-up time	t _{SU,DAT}		250		_	ns
SDA hold time ³	t _{HD,DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU,STA}		4.7			μs
(Repeated) START condition hold time	t _{HD,STA}		4			μs
STOP condition set-up time	t _{SU,STO}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	_		μs

Table 4.21. I2C Standard-mode (Sm)¹

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW})

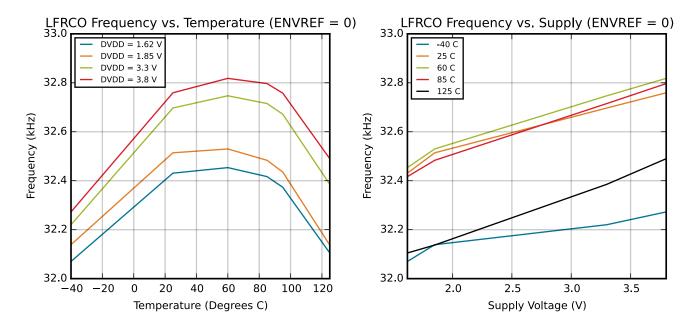


Figure 4.18. LFRCO Typical Performance at 32.768 kHz

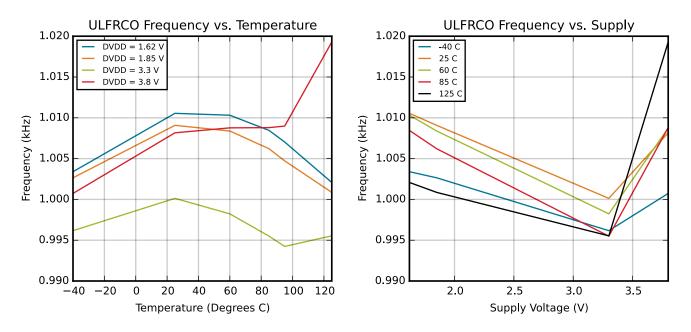


Figure 4.19. ULFRCO Typical Performance at 1 kHz

QFN	48 Pin# and Name		Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other						
24	PD15	BUSCY BUSDX	TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LE- TIM0_OUT0 #23 LE- TIM0_OUT0 #23 LE- TIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22	US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22	CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_0 #23 ACMP1_0 #23 DBG_SWO #2						
25	PA0	ADC0_EXTN BUSCX BUSDY	TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDT10 #29 TIM0_CDT11 #28 TIM0_CDT12 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LE- TIM0_OUT0 #0 LE- TIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31	US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31	CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0						
26	PA1	ADC0_EXTP BUSCY BUSDX	TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LE- TIM0_OUT0 #1 LE- TIM0_OUT0 #1 LE- TIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0	US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0	CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1						
27	PA2	BUSCX BUSDY	TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDT11 #30 TIM0_CDT12 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 LE- TIM0_OUT0 #2 LE- TIM0_OUT0 #2 LE- TIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1	US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1	PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2						

6.2.1 EFM32JG1 QFN32 without DC-DC GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA1	PA0
Port B	PB15	PB14	PB13 (5V)	PB12 (5V)	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	PC9 (5V)	PC8 (5V)	PC7 (5V)	-	-	-	-	-	-	-
Port D	PD15 (5V)	PD14 (5V)	PD13 (5V)	PD12 (5V)	PD11 (5V)	PD10 (5V)	PD9 (5V)	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	PF4 (5V)	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V)

Table 6.4. QFN32 without DC-DC GPIO Pinout

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

6.3.1 EFM32JG1 QFN32 with DC-DC GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA1	PA0
Port B	PB15	PB14	PB13 (5V)	PB12 (5V)	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	PC11 (5V)	PC10 (5V)	-	-	-	-	-	-	-	-	-	-
Port D	PD15 (5V)	PD14 (5V)	PD13 (5V)	PD12 (5V)	PD11 (5V)	PD10 (5V)	PD9 (5V)	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	PF3 (5V)	PF2 (5V)	PF1 (5V)	PF0 (5V)

Table 6.6. QFN32 with DC-DC GPIO Pinout

Note:

1. GPIO with 5V tolerance are indicated by (5V).

2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.

Alternate				LOC	ATION				
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description
TIM0_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 0 Capture Compare input / output channel 2.
TIM0_CDTI0	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 0 Compli- mentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11 13: PD9 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	Timer 0 Compli- mentary Dead Time Insertion channel 1.
TIM0_CDTI2	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11	12: PD9 13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	Timer 0 Compli- mentary Dead Time Insertion channel 2.
TIM1_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 1 Capture Compare input / output channel 2.
TIM1_CC3	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 1 Capture Compare input / output channel 3.
US0_CLK	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	USART0 clock in- put / output.
US0_CS	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	USART0 chip se- lect input / output.
US0_CTS	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11 13: PD9 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	USART0 Clear To Send hardware flow control input.
US0_RTS	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11	12: PD9 13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	USART0 Request To Send hardware flow control output.

Dimension	Min	Tvn	Мах				
		Тур					
A	0.80	0.85	0.90				
A1	0.00	0.02	0.05				
A3	0.20 REF						
b	0.18	0.25	0.30				
D/E	4.90	5.00	5.10				
D2/E2	3.40	3.50	3.60				
E	0.50 BSC						
L	0.30	0.40	0.50				
К	0.20						
R	0.09		0.14				
ааа	0.15						
bbb		0.10					
ссс	0.10						
ddd	0.05						
eee	0.08						
fff		0.10					
Noto:	1						

Table 8.1. QFN32 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QFN32 PCB Land Pattern

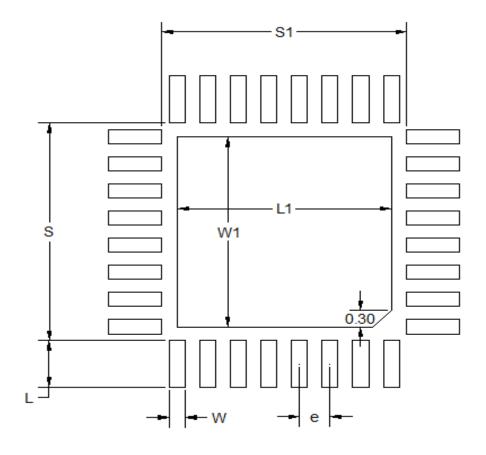


Figure 8.2. QFN32 PCB Land Pattern Drawing

Table 8.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
S1	4.01
S	4.01
L1	3.50
W1	3.50
e	0.50
W	0.26
L	0.86

Note:

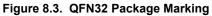
1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).


6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # Reserved for future use. Current value is 0.

9.7 Revision 0.1

Initial release.