E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	32
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32jg1b200f256gm48-b0r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

The EFM32JG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated dc-dc buck regulator can be utilized to further reduce the current consumption. The dc-dc regulator requires one external inductor and one external capacitor.

AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the dc-dc to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.3 General Purpose Input/Output (GPIO)

EFM32JG1 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.4 Clocking

3.4.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFM32JG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.4.2 Internal and External Oscillators

The EFM32JG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.8.4 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 μ A and 64 μ A with several ranges consisting of various step sizes.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32JG1. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M3 RISC processor achieving 1.25 Dhrystone MIPS/MHz
- · Memory Protection Unit (MPU) supporting up to 8 memory segments
- · Up to 256 kB flash program memory
- Up to 32 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire debug interface

3.10.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.10.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.

4.1.5.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T_{OP} = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T_{OP} = 25 °C. See Figure 5.2 EFM32JG1 Typical Application Circuit Using the DC-DC Converter on page 48.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 Active mode with all periph-	IACTIVE	38.4 MHz crystal, CPU running while loop from flash ²	_	86	_	µA/MHz
Noise DCM mode ¹ .		38 MHz HFRCO, CPU running Prime from flash	_	63	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	71	_	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	78	—	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	—	76	—	µA/MHz
Current consumption in EM0 Active mode with all periph-		38.4 MHz crystal, CPU running while loop from flash ²		96	_	µA/MHz
Noise CCM mode ³ .		38 MHz HFRCO, CPU running Prime from flash	_	75	_	µA/MHz
		38 MHz HFRCO, CPU running while loop from flash	_	81	_	µA/MHz
		38 MHz HFRCO, CPU running CoreMark from flash	_	88	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	94	_	µA/MHz
Current consumption in EM1	I _{EM1}	38.4 MHz crystal ²	_	47	_	µA/MHz
als disabled, DCDC in Low		38 MHz HFRCO	_	32	_	µA/MHz
Noise DCM mode ¹ .		26 MHz HFRCO	_	38	—	µA/MHz
Current consumption in EM1		38.4 MHz crystal ²	_	59	_	µA/MHz
als disabled, DCDC in Low		38 MHz HFRCO	_	45	_	µA/MHz
Noise CCM mode ³ .		26 MHz HFRCO	_	58	—	µA/MHz
Current consumption in EM2 Deep Sleep mode. DCDC in	I _{EM2}	Full RAM retention and RTCC running from LFXO	_	2.5	_	μA
Low Power mode ⁴ .		4 kB RAM retention and RTCC running from LFRCO	_	2.2	_	μA
Current consumption in EM3 Stop mode	I _{EM3}	Full RAM retention and CRYO- TIMER running from ULFRCO	_	2.1	_	μA
Current consumption in EM4H Hibernate mode	I _{EM4}	128 byte RAM retention, RTCC running from LFXO	—	0.86		μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	_	0.58		μA
		128 byte RAM retention, no RTCC	_	0.58		μA

Table 4.6. Current Consumption 3.3V with DC-DC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Current consumption in EM4S Shutoff mode	I _{EM4S}	no RAM retention, no RTCC	_	0.04		μA		
Note:	Note:							

1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD

2. CMU_HFXOCTRL_LOWPOWER=1

3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD

4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD

4.1.6 Wake up times

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Wake up from EM2 Deep	t _{EM2_WU}	Code execution from flash	_	10.7	—	μs
Sleep		Code execution from RAM	_	3	_	μs
Wakeup time from EM1 Sleep	t _{EM1_WU}	Executing from flash	-	3	_	AHB Clocks
		Executing from RAM	-	3	_	AHB Clocks
Wake up from EM3 Stop	t _{EM3_WU}	Executing from flash	_	10.7	—	μs
		Executing from RAM	_	3	_	μs
Wake up from EM4H Hiber- nate ¹	t _{EM4H_WU}	Executing from flash	_	60	_	μs
Wake up from EM4S Shut- off ¹	t _{EM4S_WU}		_	290	_	μs
Note:				1		1

Table 4.8. Wake up times

1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.

4.1.7 Brown Out Detector

Table 4.9. Brown Out Detector

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DVDDBOD threshold	V _{DVDDBOD}	DVDD rising	_	_	1.62	V
		DVDD falling	1.35	_	—	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	24	_	mV
DVDD response time	t _{DVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	_	μs
AVDD BOD threshold	VAVDDBOD	AVDD rising	—	—	1.85	V
		AVDD falling	1.62	—	—	V
AVDD BOD hysteresis	V _{AVDDBOD_HYST}		_	21	_	mV
AVDD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4	_	μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	—	—	1.7	V
		AVDD falling	1.45	_	_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}			46	_	mV
EM4 response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	—	300	_	μs

4.1.8 Oscillators

4.1.8.1 LFXO

Table 4.10. LFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{LFXO}		_	32.768	_	kHz
Supported crystal equivalent series resistance (ESR)	ESR _{LFXO}		_	_	70	kΩ
Supported range of crystal load capacitance ¹	C _{LFXO_CL}		6	_	18	pF
On-chip tuning cap range ²	C _{LFXO_T}	On each of LFXTAL_N and LFXTAL_P pins	8	_	40	pF
On-chip tuning cap step size	SS _{LFXO}		_	0.25	_	pF
Current consumption after startup ³	I _{LFXO}	ESR = 70 kΩ, C_L = 7 pF, GAIN ⁴ = 3, AGC ⁴ = 1	_	273	_	nA
Start- up time	t _{LFXO}	ESR=70 kΩ, C _L = 7 pF, GAIN ⁴ = 2	_	308	—	ms

Note:

1. Total load capacitance as seen by the crystal

2. The effective load capacitance seen by the crystal will be C_{LFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register

4. In CMU_LFXOCTRL register

Table 4.11. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{HFXO}		38	38.4	40	MHz
Supported crystal equivalent series resistance (ESR)	ESR _{HFXO}	Crystal frequency 38.4 MHz	_	_	60	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		6	—	12	pF
On-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	9	20	25	pF
On-chip tuning capacitance step	SS _{HFXO}		—	0.04	—	pF
Startup time	t _{HFXO}	38.4 MHz, ESR = 50 Ω , C _L = 10 pF	_	300	_	μs
Frequency Tolerance for the crystal	FT _{HFXO}	38.4 MHz, ESR = 50 Ω, CL = 10 pF	-40	_	40	ppm

Note:

1. Total load capacitance as seen by the crystal

 The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.8.3 LFRCO

Table 4.12. LFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} ≤ 85 °C	30.474	32.768	34.243	kHz
		ENVREF = 1 in CMU_LFRCOCTRL, T _{AMB} > 85 °C	30.474	—	39.7	kHz
		ENVREF = 0 in CMU_LFRCOCTRL	30.474	32.768	33.915	kHz
Startup time	t _{LFRCO}		_	500	_	μs
Current consumption ¹	I _{LFRCO}	ENVREF = 1 in CMU_LFRCOCTRL	_	342	_	nA
		ENVREF = 0 in CMU_LFRCOCTRL	_	494	_	nA

Note:

1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register

4.1.14 Analog Comparator (ACMP)

Table 4.20. ACMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range		ACMPVDD = ACMPn_CTRL_PWRSEL ¹	0	_	V _{ACMPVDD}	V
Supply Voltage	V _{ACMPVDD}	BIASPROG ² \leq 0x10 or FULL- BIAS ² = 0	1.85		V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^2 \le 0x20$ and FULLBIAS ² = 1	2.1		V _{VREGVDD} MAX	V
Active current not including	I _{ACMP}	$BIASPROG^2 = 1$, $FULLBIAS^2 = 0$	_	50	_	nA
voltage reference		$BIASPROG^{2} = 0x10, FULLBIAS^{2}$ $= 0$	_	306	_	nA
		$BIASPROG^{2} = 0x20, FULLBIAS^{2}$ $= 1$	_	74	95	μA
Current consumption of inter- nal voltage reference	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	_	nA
		VLP selected as input using VDD	—	20	_	nA
		VBDIV selected as input using 1.25 V reference / 1	—	4.1	_	μA
		VADIV selected as input using VDD/1	—	2.4	_	μA
Hysteresis (V_{CM} = 1.25 V,	VACMPHYST	HYSTSEL ³ = HYST0	-1.75	0	1.75	mV
$BIASPROG^{2} = 0x10, FULL-$ $BIAS^{2} = 1)$		HYSTSEL ³ = HYST1	10	18	26	mV
		HYSTSEL ³ = HYST2	21	32	46	mV
		HYSTSEL ³ = HYST3	27	44	63	mV
		HYSTSEL ³ = HYST4	32	55	80	mV
		HYSTSEL ³ = HYST5	38	65	100	mV
		HYSTSEL ³ = HYST6	43	77	121	mV
		HYSTSEL ³ = HYST7	47	86	148	mV
		HYSTSEL ³ = HYST8	-4	0	4	mV
		HYSTSEL ³ = HYST9	-27	-18	-10	mV
		HYSTSEL ³ = HYST10	-47	-32	-18	mV
		HYSTSEL ³ = HYST11	-64	-43	-27	mV
		HYSTSEL ³ = HYST12	-78	-54	-32	mV
		HYSTSEL ³ = HYST13	-93	-64	-37	mV
		HYSTSEL ³ = HYST14	-113	-74	-42	mV
		HYSTSEL ³ = HYST15	-135	-85	-47	mV

I2C Fast-mode Plus (Fm+)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	1000	kHz
SCL clock low time	t _{LOW}		0.5	—	_	μs
SCL clock high time	t _{HIGH}		0.26	_	_	μs
SDA set-up time	t _{SU,DAT}		50	_	_	ns
SDA hold time	t _{HD,DAT}		100	_	_	ns
Repeated START condition set-up time	t _{SU,STA}		0.26	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}		0.26	_	_	μs
STOP condition set-up time	t _{SU,STO}		0.26	—	—	μs
Bus free time between a STOP and START condition	t _{BUF}		0.5	_		μs

Table 4.23. I2C Fast-mode Plus (Fm+)¹

Note:

1. For CLHR set to 0 or 1 in the I2Cn_CTRL register

2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual

Figure 4.18. LFRCO Typical Performance at 32.768 kHz

Figure 4.19. ULFRCO Typical Performance at 1 kHz

5. Typical Connection Diagrams

5.1 Power

Typical power supply connections for direct supply, without using the internal dc-dc converter, are shown in Figure 5.1 EFM32JG1 Typical Application Circuit, Direct Supply, No DC-DC Converter on page 48.

Figure 5.1. EFM32JG1 Typical Application Circuit, Direct Supply, No DC-DC Converter

A typical application circuit using the internal dc-dc converter is shown in Figure 5.2 EFM32JG1 Typical Application Circuit Using the DC-DC Converter on page 48. The MCU operates from the dc-dc converter supply.

Figure 5.2. EFM32JG1 Typical Application Circuit Using the DC-DC Converter

5.2 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).

QFN	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
46	PC9	BUSAY BUSBX	TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LE- TIM0_OUT0 #14 LE- TIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13	US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13	PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14
47	PC10	BUSAX BUSBY	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LE- TIM0_OUT0 #15 LE- TIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12
48	PC11	BUSAY BUSBX	TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LE- TIM0_OUT0 #16 LE- TIM0_OUT0 #16 LE- TIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15	US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15	CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3

QFN	32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
30	PC9	BUSAY BUSBX	TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LE- TIM0_OUT0 #14 LE- TIM0_OUT0 #14 LE- TIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13	US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13	PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14
31	PC10	BUSAX BUSBY	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LE- TIM0_OUT0 #15 LE- TIM0_OUT0 #15 LE- TIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12
32	PC11	BUSAY BUSBX	TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LE- TIM0_OUT0 #16 LE- TIM0_OUT0 #16 LE- TIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15	US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15	CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3

QFN	I32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground			
1	PF0	BUSAX BUSBY	TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LE- TIM0_OUT0 #24 LE- TIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23	US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23	PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX
2	PF1	BUSAY BUSBX	TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LE- TIM0_OUT0 #25 LE- TIM0_OUT0 #25 LE- TIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24	US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24	PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX
3	PF2	BUSAX BUSBY	TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LE- TIM0_OUT0 #26 LE- TIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25	US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25	CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0

Table 6.5. QFN32 with DC-DC Device Pinout

EFM32JG1 Data Sheet Pin Definitions

QFN	32 Pin# and Name	Pin Alternate Functionality / Description												
Pin #	Pin Name	Analog	Timers	Communication	Other									
25	VREGVSS	Voltage regulator VSS												
26	VREGSW	DCDC regulator switching node												
27	VREGVDD	Voltage regulator VDD input												
28	DVDD	Digital power supply .												
29	DECOUPLE	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.												
30	IOVDD	Digital IO power supply .	Digital IO power supply .											
31	PC10	BUSAX BUSBY	TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LE- TIM0_OUT0 #15 LE- TIM0_OUT0 #15 LE- TIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14	US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14	CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12									
32	PC11	BUSAY BUSBX	TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LE- TIM0_OUT0 #16 LE- TIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15	US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15	CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3									

Alternate	ternate											
Functionality	0 - 3	4 - 7	8 - 11	12 - 15	16 - 19	20 - 23	24 - 27	28 - 31	Description			
TIM0_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 0 Capture Compare input / output channel 2.			
TIM0_CDTI0	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 0 Compli- mentary Dead Time Insertion channel 0.			
TIM0_CDTI1	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11 13: PD9 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	Timer 0 Compli- mentary Dead Time Insertion channel 1.			
TIM0_CDTI2	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11	12: PD9 13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	Timer 0 Compli- mentary Dead Time Insertion channel 2.			
TIM1_CC0	0: PA0 1: PA1 2: PA2 3: PA3	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 17: PD9 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	28: PF4 29: PF5 30: PF6 31: PF7	Timer 1 Capture Compare input / output channel 0.			
TIM1_CC1	0: PA1 1: PA2 2: PA3 3: PA4	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	16: PD9 17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Timer 1 Capture Compare input / output channel 1.			
TIM1_CC2	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	Timer 1 Capture Compare input / output channel 2.			
TIM1_CC3	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	Timer 1 Capture Compare input / output channel 3.			
US0_CLK	0: PA2 1: PA3 2: PA4 3: PA5	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15 9: PC6 10: PC7 11: PC8	12: PC9 13: PC10 14: PC11 15: PD9	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PA0 31: PA1	USART0 clock in- put / output.			
US0_CS	0: PA3 1: PA4 2: PA5 3: PB11	4: PB12 5: PB13 6: PB14 7: PB15	8: PC6 9: PC7 10: PC8 11: PC9	12: PC10 13: PC11 14: PD9 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PF0 22: PF1 23: PF2	24: PF3 25: PF4 26: PF5 27: PF6	28: PF7 29: PA0 30: PA1 31: PA2	USART0 chip se- lect input / output.			
US0_CTS	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	8: PC7 9: PC8 10: PC9 11: PC10	12: PC11 13: PD9 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	20: PF0 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	28: PA0 29: PA1 30: PA2 31: PA3	USART0 Clear To Send hardware flow control input.			
US0_RTS	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	8: PC8 9: PC9 10: PC10 11: PC11	12: PD9 13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	24: PF5 25: PF6 26: PF7 27: PA0	28: PA1 29: PA2 30: PA3 31: PA4	USART0 Request To Send hardware flow control output.			

6.5 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT1X	BUSAX										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT1Y	BUSAY									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2X	BUSBX									PF7		PF5		PF3		PF1						PC11		PC9		PC7							
APORT2Y	BUSBY										PF6		PF4		PF2		PF0						PC10		PC8		PC6						
APORT3X	BUSCX		PB14		PB12																PA4		PA2		PA0		PD14		PD12		PD10		
APORT3Y	BUSCY	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4X	BUSDX	PB15		PB13		PB11														PA5		PA3		PA1		PD15		PD13		PD11		PD9	
APORT4Y	BUSDY		PB14		PB12																PA4		PA2		PAO		PD14		PD12		PD10		

Table 6.8. ACMP0 Bus and Pin Mapping

Table 7.2. QFN48 PCB Land Pattern Dimensions

Dimension	Тур
S1	6.01
S	6.01
L1	4.70
W1	4.70
e	0.50
W	0.26
L	0.86

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Revision History

9.1 Revision 1.1

2016-Oct-26

- System Overview Sections: Minor wording and typographical error fixes.
- Electrical Characteristics: Minor wording and typographical error fixes.
- "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC.
- Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections.
- Updated APORT client map sections.

9.2 Revision 1.0

2016-Jul-22

- Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range.
- Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include:
 - Absolute Maximum Ratings
 - · General Operating Conditions
 - DC-DC Converter
 - LFRCO
 - HFRCO and AUXHFRCO
 - ADC
 - IDAC
- Updated Typical Performance Graphs.
- · Added note for 5V tolerance to pinout GPIO Overview sections.
- · Updated OPN decoder with latest revision.
- · Updated Package Marking text with latest descriptions.

9.3 Revision 0.95

2016-04-11

- · All OPNs changed to rev C0.
- · Electrical specification tables updated with latest characterization data and production test limits.

9.4 Revision 0.31

· Engineering samples note added to ordering information table.

9.5 Revision 0.3

- · Re-formatted ordering information table and OPN decoder.
- · Removed extraneous sections from dc-dc from system overview.
- · Updated table formatting for electrical specifications.
- · Updated electrical specifications with latest available data.
- Added I2C and USART SPI timing tables.
- Moved dc-dc graph to typical performance curves.
- · Updated APORT tables and APORT references to correct nomenclature.
- Updated top marking description.

9.6 Revision 0.2

Updated ordering table.

Changed "1.62 V to 3.8 V Single Power Supply" to "1.62 V to 3.8 V Power Supply" in the Feature List.

	4.1.2 Operating Conditions					•							•		.11
	4.1.2.1 General Operating Conditions	•	•	•	•	•	•	•	•	•	•	•	•	•	.11
	4.1.3 Thermal Characteristics	•	·	•	•	•	•	•	•	•	•	·	•	•	.12
	4.1.4 DC-DC Converter	•	•	•	•	•	·	•	•	•	•	·	•	•	.13
	4.1.5 Current Consumption 3.3 V without DC-DC Converter	•	•	·	•	•	·	•	•	·	•	·	•	•	.15
	4.1.5.2 Current Consumption 3.3 V using DC-DC Converter				÷	:	÷				:				.16
	4.1.5.3 Current Consumption 1.85 V without DC-DC Converter														.18
	4.1.6 Wake up times														.19
	4.1.7 Brown Out Detector														.19
	4.1.8 Oscillators														.20
	4.1.8.1 LFXO		•	•	•	•	•	•	•	•	•	•	•	•	.20
	$4.1.8.2 \text{ HFXO} \qquad \dots \qquad $	•	•	·	·	•	·	·	·	·	•	·	•	·	.21
	4.1.0.3 LFROU	•	•	·	•	•	•	•	•	•	•	·	•	•	.21
	4.1.8.5 ULFRCO		•		:	•	÷				:		•	•	.22
	4.1.9 Flash Memory Characteristics														.23
	4.1.10 GPIO														.24
	4.1.11 VMON														.25
	4.1.12 ADC														.26
	4.1.13 IDAC														.29
	4.1.14 Analog Comparator (ACMP)														.31
	4.1.15 I2C														.33
	4.1.16 USART SPI					•							•		.36
	4.2 Typical Performance Curves														.37
	4.2.1 Supply Current														.38
	4.2.2 DC-DC Converter														.40
	4.2.3 Internal Oscillators					•							•	•	.42
5.	Typical Connection Diagrams														48
	5.1 Power														48
		•	•	•	•	•	•	•	•	•	•	•	•	•	.40
		•	•	•	•	•	·	•	•	•	•	·	•	•	.40
6.	Pin Definitions	•	•	•	•	•	•	•	•	•	•	•	•	•	49
	6.1 EFM32JG1 QFN48 with DC-DC Definition														.49
	6.1.1 EFM32JG1 QFN48 with DC-DC GPIO Overview														.59
	6.2 EEM32JG1 QEN32 without DC-DC Definition														60
	6.2.1 EFM32JG1 QFN32 without DC-DC GPIO Overview														.68
	6.3 EEM32 IG1 OEN32 with DC-DC Definition														60
	6.3.1 EFM32.IG1 OFN32 with DC-DC GPIO Overview	•	•	•	•	•	•	•	•	•	•	•	•	•	.03
	0.0.1 El Mozor di Noz with Do-Do of to overview	•	•	•	•	•	•	•	•	•	•	•	•	•	.70
	6.4 Alternate Functionality Pinout	•	•	·	•	•	•	·	·	·	•	·	•	•	.//
	6.5 Analog Port (APORT) Client Maps	•	•	•	•	•	•	•	•	•	•	•	•	•	.83
7.	QFN48 Package Specifications.														86
	7.1 QFN48 Package Dimensions														.86
	7.2 QEN48 PCB Land Pattern														88
		•	•	•	•	•	•	•	•	•	•	•	•	•	.00
		•	•		•	•	•			•	•		•	•	.90