

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2320-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din New-	Pin N	umber	Pin	Buffer	Description
Pin Name	PDIP	SOIC	Туре	Туре	Description
MCLR/VPP MCLR	1	1	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Rese to the device.
VPP			Р		Programming voltage input.
OSC1/CLKI/RA7 OSC1 CLKI	9	9	1	ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise.
RA7			ı 1/0	TTL	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins. General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	10	10	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator
CLKO			0	—	in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6			I/O	TTL	General purpose I/O pin.
RA0/AN0 RA0 AN0	2	2	I/O I	TTL Analog	PORTA is a bidirectional I/O port. Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	3	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	4	I/O 0	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/Vref+ RA3 AN3 Vref+	5	5	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	6	I/O I O	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/LVDIN/C2OUT RA5 AN4 SS LVDIN C2OUT	7	7	I/O 0	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output.
RA6					See the OSC2/CLKO/RA6 pin.
RA7					See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL comp ST = Schmitt Tr O = Output			ith CM	OS levels	CMOS = CMOS compatible input or output I = Input P = Power

TABLE 1-2: PIC18F2220/2320 PINOUT I/O DESCRIPTIONS

O = Output OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

Din Norre	Pin Number			Pin Buffe	Buffer	Description		
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description		
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/AN12/INT0 RB0 AN12 INT0	33	8	9	I/O I I	TTL Analog ST	Digital I/O. Analog input 12. External interrupt 0.		
RB1/AN10/INT1 RB1 AN10 INT1	34	9	10	I/O I I	TTL Analog ST	Digital I/O. Analog input 10. External interrupt 1.		
RB2/AN8/INT2 RB2 AN8 INT2	35	10	11	I/O I I	TTL Analog ST	Digital I/O. Analog input 8. External interrupt 2.		
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	11	12	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input, Compare 2 output, PWM2 output.		
RB4/AN11/KBI0 RB4 AN11 KBI0	37	14	14	I/O I I	TTL Analog TTL	Digital I/O. Analog input 11. Interrupt-on-change pin.		
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-voltage ICSP™ programming enable pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		

Ρ

= Power

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

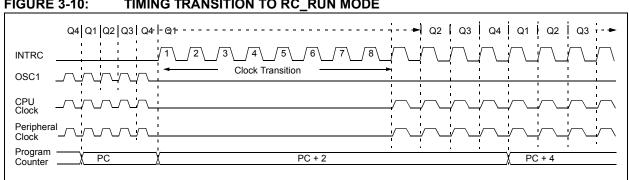
3.4.3 RC_RUN MODE

In RC RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either of the INTIO1 or INTIO2 oscillators), there are no distinguishable differences between PRI RUN and RC RUN modes during execution. However, a clock switch delay will occur during entry to, and exit from, RC RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The IRCF bits may select the clock frequency before the **SLEEP** instruction is executed. When the clock source is switched to the INTOSC multiplexer (see Figure 3-10), the primary oscillator is shut down and the OSTS bit is cleared.

The IRCF bits may be modified at any time to immediately change the system clock speed. Executing a SLEEP instruction is not required to select a new clock frequency from the INTOSC multiplexer.


Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.

If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear: there will be no indication of the current clock source. The INTRC source is providing the system clocks.

If the IRCF bits are changed from all clear (thus enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the system continue while the INTOSC source stabilizes in approximately 1 ms.

If the IRCF bits were previously at a non-zero value before the **SLEEP** instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set.

When a wake-up event occurs, the system continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

5.8 Look-up Tables

Look-up tables are implemented two ways:

- Computed GOTO
- Table Reads

5.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-4.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW $0 \times nn$ instructions. WREG is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW $0 \times nn$ instructions that returns the value $0 \times nn$ to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSB = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 5-4: COMPUTED GOTO USING AN OFFSET VALUE

	MOVFW	OFFSET
	CALL	TABLE
ORG	0xnn00	
TABLE	ADDWF	PCL
	RETLW	0xnn
	RETLW	0xnn
	RETLW	0xnn
	•	
	•	
	•	

5.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory, one byte at a time.

The Table Read/Table Write operation is discussed further in Section 6.1 "Table Reads and Table Writes".

5.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. Figure 5-6 shows the data memory organization for the PIC18F2X20/4X20 devices.

The data memory map is divided into as many as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits of the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratch pad operations in the user's application. The SFRs start at the last location of Bank 15 (FFFh) and extend towards F80h. Any remaining space beyond the SFRs in the bank may be implemented as GPRs. GPRs start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and a corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be used to access any location in the data memory map without banking. See Section 5.12 "Indirect Addressing, INDF and FSR Registers" for indirect addressing details.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access RAM. **Section 5.10 "Access Bank"** provides a detailed description of the Access RAM.

5.9.1 GENERAL PURPOSE REGISTER FILE

Enhanced MCU devices may have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

Data RAM is available for use as GPR registers by all instructions. The second half of Bank 15 (F80h to FFFh) contains SFRs. All other banks of data memory contain GPRs, starting with Bank 0.

REGISTER 6-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only
L:1 0	
bit 3	WRERR: EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation was prematurely terminated (any Reset during self-timed programming) 0 = The write operation completed normally
bit 2	WREN: Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle completed
bit 0	RD: Read Control bit
	 1 = Initiates a memory read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)
	0 = Read completed
Note 1:	When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error

condition.

6.4 Erasing Flash Program Memory

The minimum erase block size is 32 words or 64 bytes under firmware control. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in Flash memory is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased; TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The CFGS bit must be clear to access program Flash and data EEPROM memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation. The WR bit is set as part of the required instruction sequence (as shown in Example 6-2) and starts the actual erase operation. It is not necessary to load the TABLAT register with any data as it is ignored.

For protection, the write initiate sequence using EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Execute a NOP.
- 9. Re-enable interrupts.

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW

	MOVLW MOVWF MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW	; load TBLPTR with the base ; address of the memory block
	MOVWF	TBLPTRL	
ERASE_ROW			
	BSF	EECON1,EEPGD	; point to Flash program memory
	BSF	EECON1,WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
		,	-
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
	MOVWF	EECON2	; write 55H
Required	MOVLW	AAh	,
-			
Sequence	MOVWF	EECON2	; write AAH
	BSF	EECON2,WR	; start erase (CPU stall)
	NOP		
	BSF	INTCON, GIE	; re-enable interrupts

PIC18F2220/2320/4220/4320

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	—	RBIP
bit 7		•					bit 0
Legend:							
R = Readable		W = Writable		-	mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7		B Pull-up Enal	hla hit				
		B pull-ups are					
		oull-ups are en		idual port latch	n values		
bit 6		ternal Interrup					
		on rising edge					
	0 = Interrupt	on falling edge	•				
bit 5		ternal Interrup	t 1 Edge Seleo	ct bit			
		on rising edge on falling edge					
bit 4	•	ternal Interrup		ct bit			
		on rising edge	0				
	0 = Interrupt	on falling edge	•				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2		R0 Overflow In	terrupt Priority	' bit			
	1 = High prio						
bit 1	0 = Low prior	-	o '				
bit 0	Unimplemented: Read as '0' RBIP: RB Port Change Interrupt Priority bit						
	1 = High prio	•	rupt Friority D	it.			
	0 = Low prior						
		-					
Note: Inte			• • •		regardless of t		

REGISTER 9-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

9.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from powermanaged mode. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 9-10: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	_	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:								
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7 IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (F				mode)				
bit 6-5	Unimplemented: Read as '0'							
bit 4	RI: RESET Instruction Flag bit							
0 = T		 The RESET instruction was not executed (set by firmware only) The RESET instruction was executed causing a device Reset (must be set in software after a Brown-out Reset occurs) 						

	Brown out (coot occurry)
bit 3	TO: Watchdog Time-out Flag bit
	1 = Set by power-up, CLRWDT instruction or SLEEP instruction
	0 = A WDT time-out occurred
bit 2	PD: Power-Down Detection Flag bit
	1 = Set by power-up or by the CLRWDT instruction
	0 = Cleared by execution of the SLEEP instruction
bit 1	POR: Power-on Reset Status bit
	1 = A Power-on Reset has not occurred (set by firmware only)
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = A Brown-out Reset has not occurred (set by firmware only)
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit 0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit 1	ST	Input/output port pin, Timer1 oscillator input or Capture 2 input/ Compare 2 output/PWM output when CCP2MX Configuration bit is disabled.
RC2/CCP1/P1A ⁽¹⁾	bit 2	ST	Input/output port pin, Capture 1 input/Compare 1 output/PWM1 output or Enhanced PWM output A ⁽¹⁾ .
RC3/SCK/SCL	bit 3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C^{TM} modes.
RC4/SDI/SDA	bit 4	ST	RC4 can also be the SPI data in (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit 5	ST	Input/output port pin or Master Synchronous Serial Port data output.
RC6/TX/CK	bit 6	ST	Input/output port pin, addressable USART asynchronous transmit or addressable USART synchronous clock.
RC7/RX/DT	bit 7	ST	Input/output port pin, addressable USART asynchronous receive or addressable USART synchronous data.

TABLE 10-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

Note 1: Enhanced PWM output is available only on PIC18F4X20 devices.

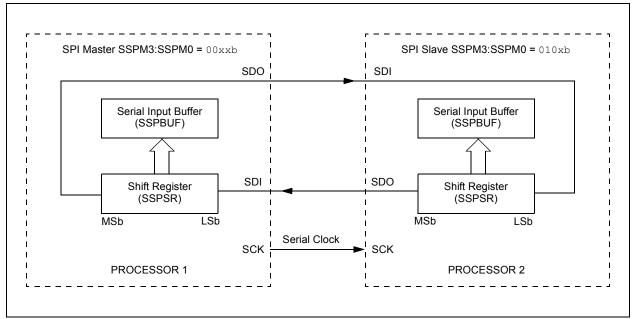
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
LATC	LATC D	ata Latch	Register						XXXX XXXX	uuuu uuuu
TRISC	PORTC	Data Dire	ection Reg	ister					1111 1111	1111 1111

Legend: x = unknown, u = unchanged

17.3.3 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI must have TRISC<4> bit cleared
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

17.3.4 TYPICAL CONNECTION

Register 17-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 17-2: SPI MASTER/SLAVE CONNECTION

18.2 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free-running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 18-1. From this, the error in baud rate can be determined.

Example 18-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks, because the Fosc/(16 (X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.2.1 POWER-MANAGED MODE OPERATION

The system clock is used to generate the desired baud rate; however, when a power-managed mode is entered, the clock source may be operating at a different frequency than in PRI_RUN mode. In Sleep mode, no clocks are present and in PRI_IDLE, the primary clock source continues to provide clocks to the baud rate generator; however, in other power-managed modes, the clock frequency will probably change. This may require the value in SPBRG to be adjusted.

18.2.2 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

Desired Baud Rate	= Fosc/(64 (X + 1))
Solving for X:	
Х	= ((Fosc/Desired Baud Rate)/64) – 1
Х	= ((1600000/9600)/64) - 1
Х	= [25.042] = 25
Calculated Baud Rate	$e = \frac{16000000}{(64 (25 + 1))}$ = 9615
Error	= (Calculated Baud Rate – Desired Baud Rate)
Desired Baud Rate	
	= (9615 - 9600)/9600
	= 0.16%

TABLE 18-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0 (Asynchronous)	Baud Rate = Fosc/(64 (X + 1))	Baud Rate = Fosc/(16 (X + 1))
1 (Synchronous)	Baud Rate = Fosc/(4 (X + 1))	N/A

Legend: X = value in SPBRG (0 to 255)

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRG	Baud Ra	0000 0000	0000 0000							
					1 (1) 0					

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

			-					•	•, =• •		,	
BAUD	Foso	c = 40.000) MHz	Foso	; = 20.00	0 MHz	Fos	c = 16.000) MHz	Fos	c = 10.000) MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	_			_	_	_	0.98	225.52	255	0.61	103.45	255
1.2	_	_	_	1.22	1.73	255	1.20	0.16	207	1.20	0.16	129
2.4	2.44	1.73	255	2.40	0.16	129	2.40	0.16	103	2.40	0.16	64
9.6	9.62	0.16	64	9.47	-1.36	32	9.62	0.16	25	9.77	1.73	15
19.2	18.94	-1.36	32	19.53	1.73	15	19.23	0.16	12	19.53	1.73	7
38.4	39.06	1.73	15	39.06	1.73	7	35.71	-6.99	6	39.06	1.73	3
57.6	56.82	-1.36	10	62.50	8.51	4	62.50	8.51	3	52.08	-9.58	2
76.8	78.13	1.73	7	78.13	1.73	3	83.33	8.51	2	78.13	1.73	1
96.0	89.29	-6.99	6	104.17	8.51	2	_	_	—	—	_	—
115.2	125.00	8.51	4	—	—	—	125.00	8.51	1	78.13	-32.18	1
250.0	208.33	-16.67	2	—	—		250.00	0.00	0	—	_	—
300.0	312.50	4.17	1	312.50	4.17	0	—		—	—	—	—
625.0	625.00	0.00	0	—	—	—	_		—	_		—

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0, LOW SPEED)

BAUD	Fosc	= 8.0000	00 MHz	Fosc	= 7.15909	90 MHz	Fosc	= 5.06880	00 MHz	Fosc	= 4.00000	0 MHz
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.49	62.76	255	0.44	45.65	255	0.31	3.13	255	0.30	0.16	207
1.2	1.20	0.16	103	1.20	0.23	92	1.20	0.00	65	1.20	0.16	51
2.4	2.40	0.16	51	2.38	-0.83	46	2.40	0.00	32	2.40	0.16	25
9.6	9.62	0.16	12	9.32	-2.90	11	9.90	3.13	7	8.93	-6.99	6
19.2	17.86	-6.99	6	18.64	-2.90	5	19.80	3.13	3	20.83	8.51	2
38.4	41.67	8.51	2	37.29	-2.90	2	39.60	3.13	1	31.25	-18.62	1
57.6	62.50	8.51	1	55.93	-2.90	1	_	_	_	62.50	8.51	0
—	—	_	—	—	_	_	79.20	3.13	0	—	—	—
115.2	125.00	8.51	0	111.86	-2.90	0	_	_	—	—	_	—

DAUD	Fosc	= 3.57954	15 MHz	Fosc	= 2.00000	00 MHz	Fosc	= 1.00000	0 MHz	Fosc	= 0.03276	68 MHz
BAUD RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)									
0.3	0.30	0.23	185	0.30	0.16	103	0.30	0.16	51	0.26	-14.67	1
1.2	1.19	-0.83	46	1.20	0.16	25	1.20	0.16	12	—	_	_
2.4	2.43	1.32	22	2.40	0.16	12	2.23	-6.99	6	—	_	_
9.6	9.32	-2.90	5	10.42	8.51	2	7.81	-18.62	1	—	_	_
19.2	18.64	-2.90	2	15.63	-18.62	1	15.63	-18.62	0	—	_	_
38.4	_	_	_	31.25	-18.62	0	_	_	_	—	_	_
57.6	55.93	-2.90	0	—	_	_	—	—	—	—	—	_

U-0	U-0		R/W-0		R/W-0	F	R/W-0 ⁽¹)	R/W ⁽	1)	R/W	/(1)	R	/W(1)
_	—		VCFG1		VCFG0		PCFG3		PCFG	62	PCF	G1	PC	CFGC
oit 7														b
Legend:														
R = Readab	le hit	W :	= Writal	nle hit		11:	= Unim	olemer	nted hit	read a	as 'O'			
-n = Value a			= Bit is				= Bit is				x = Bit	is unkr	nown	
		1	- Dit 13	301		0	- Dit 13	cicarc	u	,			100011	
bit 7-6	Unimplem	ented:	Read a	as '0'										
bit 5	-	VCFG1: Voltage Reference Configuration bit (VREF- source)												
	1 = VREF-	•			0	(,	,					
	0 = V SS	. /												
bit 4	VCFG0: V	VCFG0: Voltage Reference Configuration bit (VREF+ source)												
	1 = VREF+	(AN3)												
	0 = V DD													
bit 3-0	PCFG3:PC	CFG0: /	A/D Por	t Confi	guration	Contr								
	PCFG3:	12	11	10	6	~	7(2)	3 ⁽²⁾	5 ⁽²⁾	4	8	2	-	0
	PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
	₀₀₀₀ (1)	А	А	А	Α	А	Α	А	Α	Α	Α	Α	Α	Α
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	0010	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α
	0011	D	А	А	А	А	А	А	Α	Α	Α	Α	Α	Α
	0100	D	D	А	А	А	А	А	Α	Α	Α	Α	Α	Α
	0101	D	D	D	Α	А	Α	А	Α	Α	Α	Α	Α	Α
	0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
	0111 (1)	D	D	D	D	D	А	А	Α	Α	Α	Α	Α	A
	1000	D	D	D	D	D	D	А	Α	Α	Α	Α	Α	Α
	1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
				-	D	D	D	D	D	Α	Α	Α	Α	Α
	1010	D	D	D	5			-	D	D	Α	•	•	Α
	1010 1011	D D	D D	D	D	D	D	D	U	_	А	Α	Α	A
						D D	D D	D	D	D	D	A	A A	A
	1011	D	D D D	D D D	D D D	D D	D D	D D	D D	D D	D D	A D	A A	A A
	1011 1100	D D	D D	D D	D D	D	D	D	D	D D D	D	Α	Α	A A A
	1011 1100 1101	D D D	D D D	D D D	D D D	D D	D D	D D	D D	D D	D D	A D	A A	

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.

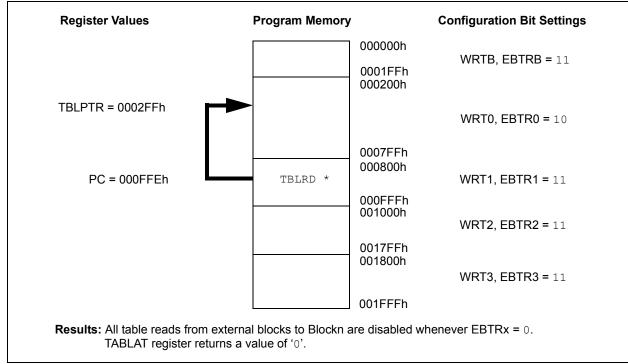
2: AN5 through AN7 are available only in PIC18F4X20 devices.

REGISTER 23-4: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1		
MCLRE	_	—	—	—	—	PBAD	CCP2MX		
bit 7							bit (
Logondu									
Legend: R = Readat	ole bit	P = Program	nable bit	U = Unimpler	nented bit, read	as '0'			
R = Readable bitP = Programmable bitU = Unimplemented bit, read as '0'-n = Value when device is unprogrammedu = Unchanged from programmed state									
bit 6-2	$0 = \overline{\text{MCLR}}$ dis		out is enabled		es only (PIC18	F4X20)			
		enabled; RE3 abled; RE3 inp			es only (PIC18	F4X20)			
bit 1			bit (Affects AD	CON1 Reset	state. ADCON1	controls POR	TB<4:0> pin		
	configuration.) 1 = PORTB<4:0> pins are configured as analog input channels on Reset 0 = PORTB<4:0> pins are configured as digital I/O on Reset								
			onfigured as d	ligital I/O on Re	eset				
bit 0		:0> pins are co	onfigured as d	ligital I/O on Re	eset				

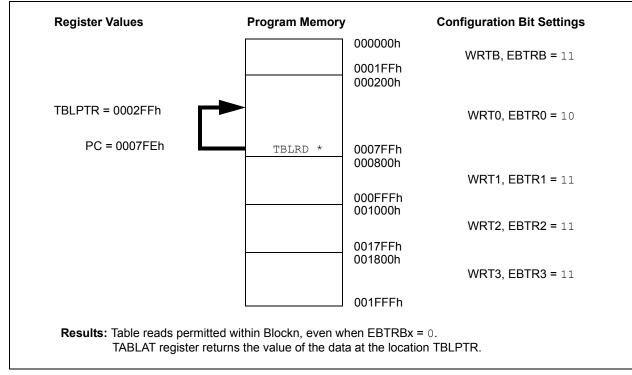
REGISTER 23-5: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG	—	—	_	_	LVP	_	STVR
bit 7							bit 0


Legend:								
R = Read	able bit P = Programmable bit	U = Unimplemented bit, read as '0'						
-n = Value	e when device is unprogrammed	u = Unchanged from programmed state						
bit 7	bit 7 DEBUG: Background Debugger Enable bit							
	1 = Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins							

- 0 = Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug

 bit 6-3
 Unimplemented: Read as '0'


 bit 2
 LVP: Single-Supply ICSP™ Enable bit

 1 = Single-Supply ICSP enabled
 0 = Single-Supply ICSP disabled
 - bit 1 Unimplemented: Read as '0'
 - bit 0 STVR: Stack Full/Underflow Reset Enable bit
 - 1 = Stack full/underflow will cause Reset
 - 0 = Stack full/underflow will not cause Reset

FIGURE 23-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 23-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

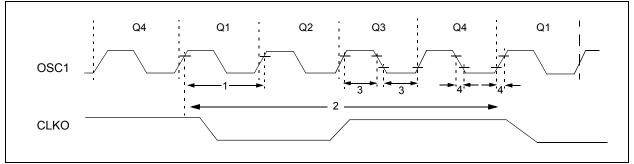
26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial) (Continued)

PIC18LF2220/2320/4220/4320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18F2220/2320/4220/4320 (Industrial, Extended)		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$						
Param No.	Device	Device Typ Max			Max Units Conditions			
	Supply Current (IDD) ^(2,3)							
	PIC18LF2X20/4X20	4.7	8	μA	-40°C			
		4.6	8	μA	+25°C	VDD = 2.0V		
		5.1	11	μA	+85°C]		
	PIC18LF2X20/4X20	6.9	11	μA	-40°C			
		6.3	11	μA	+25°C	VDD = 3.0V	Fosc = 31 kHz (RC IDLE mode,	
		6.8	15	μA	+85°C		internal oscillator source)	
	All devices	12	16	μA	-40°C		,	
		10	16	μA	+25°C	VDD = 5.0V		
		10	22	μA	+85°C	VUU = 5.0V		
	Extended devices	25	75	μA	+125°C			
	PIC18LF2X20/4X20	49	150	μA	-40°C			
		52	150	μA	+25°C	VDD = 2.0V		
		56	150	μA	+85°C			
	PIC18LF2X20/4X20	73	180	μA	-40°C	_		
		77	180	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC IDLE mode,	
		77	180	μA	+85°C		internal oscillator source)	
	All devices	130	300	μA	-40°C	VDD = 5.0V		
		130	300	μA	+25°C			
		130	300	μA	+85°C			
	Extended devices	350	435	μA	+125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

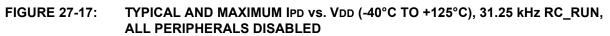
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS


FIGURE 26-6: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

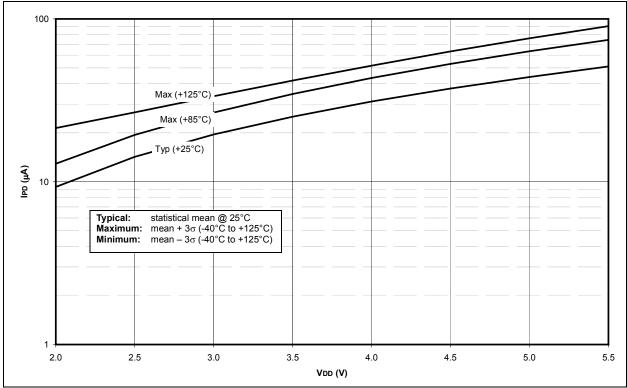
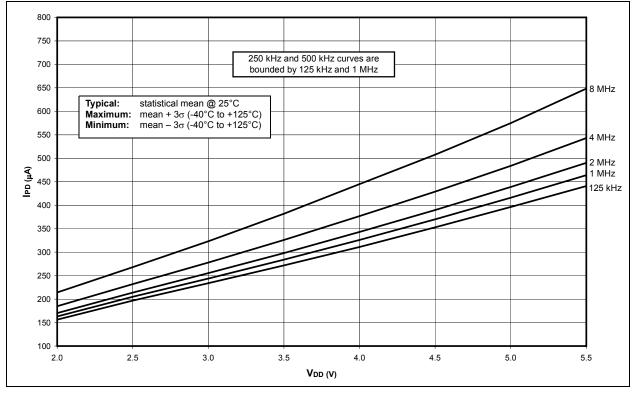


TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS


Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO (industrial)
			DC	25	MHz	EC, ECIO (extended)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC osc
			0.1	1	MHz	XT osc
			4	25	MHz	HS osc
			4	10	MHz	HS + PLL osc (industrial)
			4	6.25	MHz	HS + PLL osc (extended)
			5	33	kHz	LP Osc mode
1	Tosc	External CLKI Period ⁽¹⁾	25	_	ns	EC, ECIO (industrial)
			40	—	ns	EC, ECIO (extended)
		Oscillator Period ⁽¹⁾	250	_	ns	RC osc
			1	_	μs	XT osc
			40 100	250 250	ns ns	HS osc HS + PLL osc (industrial)
			160	250	ns	HS + PLL osc (extended)
			30	_	μS	LP osc
2	Тсү	Instruction Cycle Time ⁽¹⁾	100 160	_	ns ns	Tcy = 4/Fosc (industrial) Tcy = 4/Fosc (extended)
3	TosL,	External Clock in (OSC1)	30	_	ns	XT osc
	TosH	High or Low Time	2.5	—	μS	LP osc
			10	—	ns	HS osc
4	TosR,	External Clock in (OSC1)	_	20	ns	XT osc
	TosF	Rise or Fall Time	_	50	ns	LP osc
			_	7.5	ns	HS osc

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

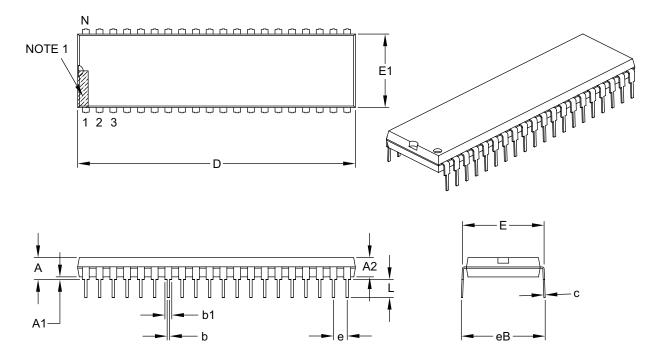


FIGURE 27-18: TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_IDLE MODE, ALL PERIPHERALS DISABLED

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	N		40	
Pitch	е	.100 BSC		
Top to Seating Plane	A	_	_	.250
Molded Package Thickness	A2	.125	_	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	_	.580
Overall Length	D	1.980	_	2.095
Tip to Seating Plane	L	.115	_	.200
Lead Thickness	С	.008	_	.015
Upper Lead Width	b1	.030	_	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	_	_	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

Timing Diagrams and Specifications	
A/D Conversion Requirements	
Capture/Compare/PWM Requirements	
CLKO and I/O Requirements	
DC Characteristics - Internal RC Accuracy	
Example SPI Mode Requirements	
(Master Mode, CKE = 0)	
Example SPI Mode Requirements	
(Master Mode, CKE = 1)	
Example SPI Mode Requirements	
(Slave Mode, CKE = 0)	
Example SPI Slave Mode	
Requirements (CKE = 1)	
External Clock Requirements	
I ² C Bus Data Requirements (Slave Mode)	
Master SSP I ² C Bus Data Requirements	
Master SSP I ² C Bus Start/Stop Bits	
Requirements	
Parallel Slave Port Requirements	
(PIC18F4X20)	
PLL Clock	
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements	
Timer0 and Timer1 External Clock	
Requirements	
USART Synchronous Receive Requirements	
USART Synchronous Transmission	
Requirements	
•	
Top-of-Stack Access 54	
Top-of-Stack Access	
TRISE Register	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register 109 TSTFSZ 298 Two-Speed Start-up 237, 248	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195 Asynchronous Mode 202	
TRISE Register PSPMODE Bit	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Associated Registers 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 U 198 U USART USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode 199 Baud Rates, Asynchronous Mode 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode 199 Baud Rates, Asynchronous Mode 199	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode 199 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) 200	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (BRGH = 1, High Speed)	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (SYNC = 1)	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U U USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (SYNC = 1) 201 High Baud Rate Select (BRGH Bit) 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (SYNC = 1)	

Serial Port Enable (SPEN Bit)	. 195
Setting Up 9-Bit Mode with Address Detect	. 204
Synchronous Master Mode	. 206
Associated Registers, Reception	. 208
Associated Registers, Transmit	. 207
Reception	. 208
Transmission	
Synchronous Slave Mode	. 209
Associated Registers, Receive	. 210
Associated Registers, Transmit	. 209
Reception	. 210
Transmission	. 209
V	
Voltage Reference Specifications	. 322
W	
Watchdog Timer (WDT)237	, 246
Associated Registers	
Control Register	. 246
During Oscillator Failure	
Programming Considerations	
WCOL	. 183
WCOL Status Flag	, 188
WWW Address	. 389
WWW, On-Line Support	5

Х

XORLW	298
XORWF	299