

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4220-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS

Din Nama	Pi	n Numb	ber	Pin	Buffer	Description
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description
MC <u>LR</u> /Vpp/RE3 MCLR Vpp	1	18	18	I P	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. Programming voltage input.
RE3				, i	ST	Digital input.
OSC1/CLKI/RA7 OSC1 CLKI	13	30	32		ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise. External clock source input. Always associated with
RA7				I/O	TTL	pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.) General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	31	33	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator
CLKO				ο	_	in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6				I/O	TTL	General purpose I/O pin.
RA0/AN0 RA0	2	19	19	I/O	TTL	PORTA is a bidirectional I/O port. Digital I/O.
AN0				I	Analog	Analog input 0.
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/LVDIN/	7	24	24			
C2OUT RA5 <u>AN4</u> SS LVDIN C2OUT				I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output.
RA6						See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.
O = Outp	nitt Trig out	tible inp ger inp (no dio	ut with		8 levels	CMOS = CMOS compatible input or output I = Input P = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

Pin Name	Pi	n Numl	ber	Pin	Buffer	Description
	PDIP	TQFP	QFN	Туре	Туре	Description
RE0/AN5/RD	8	25	25			PORTE is a bidirectional I/O port.
RE0 AN5 RD				I/O I I	ST Analog TTL	Digital I/O. Analog input 5. Read control for Parallel Slave Port (see also WR and CS pins).
RE1/AN6/WR RE1 AN6 WR	9	26	26	I/O I I	ST Analog TTL	Digital I/O. Analog input 6. Write <u>control for</u> Parallel Slave Port (see CS and RD pins).
RE2/AN7/CS RE2 AN7 CS	10	27	27	I/O I I	ST Analog TTL	Digital I/O. Analog input 7. Chip select c <u>ont</u> rol fo <u>r P</u> arallel Slave Port (see related RD and WR).
RE3	1	18	18		_	See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 29	6, 30, 31	Ρ		Ground reference for logic and I/O pins.
Vdd	11, 32	7, 28	7, 8 29	Ρ		Positive supply for logic and I/O pins.
NC			13, 28	NC	NC	No connect.
Legend: TTL = TTL ST = Schr		tible inp ger inp		CMOS	6 levels	CMOS = CMOS compatible input or output I = Input

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

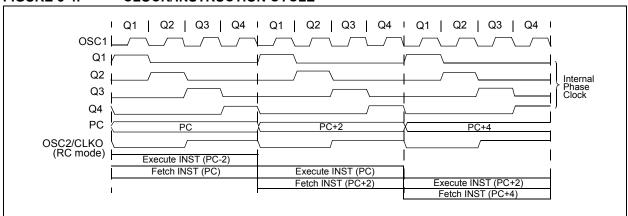
Ρ = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

5.5 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-4.

5.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-2).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 5-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 5-2: INSTRUCTION PIPELINE FLOW

		TCY0	TCY1	TCY2	TCY3	TCY4	TCY5
1. MOVLW	55h	Fetch 1	Execute 1				
2. MOVWE	PORTB		Fetch 2	Execute 2		_	
3. BRA	SUB_1			Fetch 3	Execute 3		
4. BSF	PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instr	uction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1

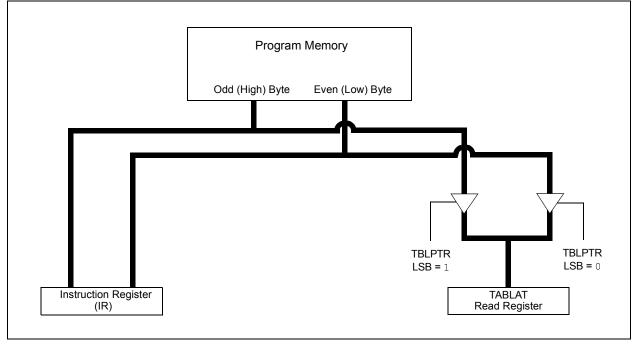
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

REGISTER 6-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only
L:1 0	
bit 3	WRERR: EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation was prematurely terminated (any Reset during self-timed programming) 0 = The write operation completed normally
bit 2	WREN: Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle completed
bit 0	RD: Read Control bit
	 1 = Initiates a memory read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)
	0 = Read completed
Note 1:	When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error


condition.

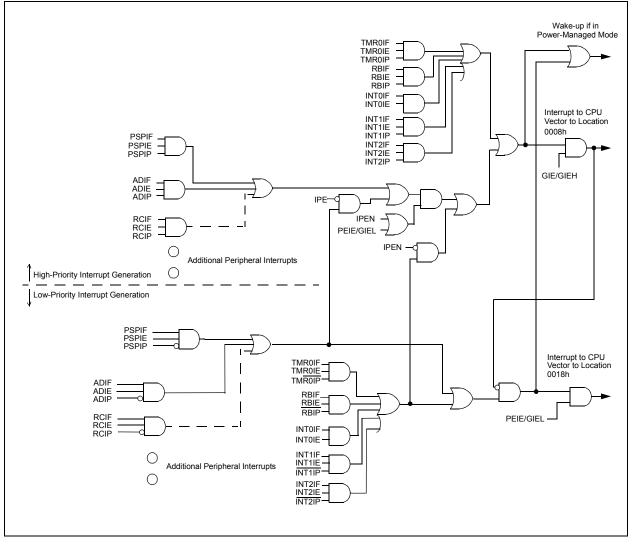
6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and place it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing a TBLRD instruction places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD


	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment TBLPTR
	MOVFW	TABLAT	;	get data
	MOVWF	WORD EVEN		
	TBLRD*+	_	;	read into TABLAT and increment TBLPTR
	MOVFW	TABLAT	;	get data
	MOVWF	WORD_ODD		

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

			-	
	MOVLW	D'64	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW			Load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		6 LSB = 0
	MOVLW MOVWF	CODE_ADDR_LOW TBLPTRL	'	0 138 - 0
READ BLOCK	PIO V WE			
	TBLRD*+	F	;	read into TABLAT, and inc
	MOVFW	TABLAT		get data
		POSTINCO	;	store data and increment FSR0
	DECFSZ	COUNTER	;	done?
	GOTO	READ_BLOCK	;	repeat
MODIFY_WORD				
	MOVLW	DATA_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	DATA_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	NEW_DATA_LOW	;	update buffer word and increment FSR0
	MOVWF	POSTINCO		undate huffer word
	MOVLW MOVWF	NEW_DATA_HIGH INDF0	'	update buffer word
ERASE BLOCK	MOVWE	INDEO		
BIGIOD_DECOR	MOVLW	CODE ADDR UPPER	;	load TBLPTR with the base
	MOVWF	TBLPTRU		address of the memory block
	MOVLW	CODE ADDR HIGH		2
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW	;	6 LSB = 0
	MOVWF	TBLPTRL		
	BCF	EECON1,CFGS		point to PROG/EEPROM memory
	BSF	EECON1, EEPGD	;	point to Flash program memory
	BSF	EECON1,WREN		enable write to memory
	BSF	EECON1, FREE		enable Row Erase operation
	BCF	INTCON, GIE		disable interrupts
	MOVLW	55h		Required sequence
	MOVWF	EECON2	;	write 55H
	MOVLW MOVWF	AAh EECON2		write AAH
	BSF	EECON1,WR		start erase (CPU stall)
	NOP	220001,000	'	Start Stable (of Start)
	BSF	INTCON, GIE	;	re-enable interrupts
WRITE BUFFER E		,	,	· · · · · · · · · · · · · · · · · · ·
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
PROGRAM_LOOP				
	MOVLW	8	;	number of bytes in holding register
	MOVWF	COUNTER		
WRITE_WORD_TO_	-	DOGUINCO	-	got low but oof buffor data and increment DODO
	MOVFW MOVWF	POSTINCO TABLAT		get low byte of buffer data and increment FSR0 present data to table latch
	TBLWT+'			short write
	TTANT L.			to internal TBLWT holding register, increment
			,	TBLPTR
	DECFSZ	COUNTER	;	loop until buffers are full
	GOTO	WRITE WORD TO HREGS	·	

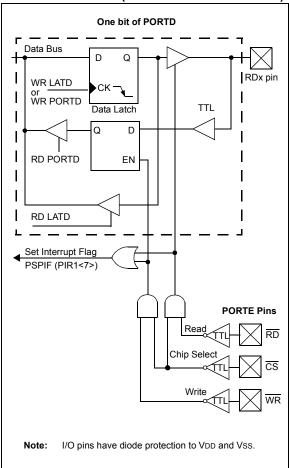
PIC18F2220/2320/4220/4320

10.6 Parallel Slave Port

Note:	The Parallel Slave Port is only available on
	PIC18F4X20 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 10-1). Setting control bit, PSPMODE (TRISE<4>), enables PSP operation, as long as the Enhanced CCP module is not operating in dual output or quad output PWM mode. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit, PSPMODE, enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PFCG3:PFCG0 (ADCON1<3:0>) must also be set to '1010'.


A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 10-16 and Figure 10-17, respectively.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, B	-	all o	e on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0	00x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1	111	1111	1111
TRISC	PORTC Da	ata Direction	Register						1111 1	111	1111	1111
TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Reg	gister		XXXX X	xxx	uuuu	uuuu
TMR1H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		XXXX X	xxx	uuuu	uuuu
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0	000	uuuu	uuuu
CCPR1L	Capture/C	ompare/PW	M Register 2	I (LSB)					XXXX X	xxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	M Register 2	I (MSB)					XXXX X	xxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	000	00	0000
CCPR2L	Capture/C	ompare/PW	M Register 2	2 (LSB)					XXXX X	xxx	uuuu	uuuu
CCPR2H	Capture/C	ompare/PW	M Register 2	2 (MSB)					XXXX X	xxx	uuuu	uuuu
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0	000	00	0000
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0	000	00-0	0000
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0	000	00-0	0000
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1	111	11-1	1111
TMR3L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR3 Reg	gister		XXXX X	xxx	uuuu	uuuu
TMR3H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR3 Reg	ister		XXXX X	xxx	uuuu	uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0	000	uuuu	uuuu

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: These bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

Note:	The EC	CP (Enha	ince	d Cap	ture/ Compa	are/		
	PWM)	module	is	only	available	on		
	PIC18F4X20 devices.							

In 40 and 44-pin devices, the CCP1 module is implemented as a standard CCP module with enhanced PWM capabilities. Operation of the Capture, Compare and standard single output PWM modes is described in **Section 15.0 "Capture/Compare/PWM (CCP) Modules"**. Discussion in that section relating to PWM frequency and duty cycle also apply to the enhanced PWM mode. The ECCP module differs from the CCP with the addition of an enhanced PWM mode which allows for 2 or 4 output channels, user-selectable polarity, dead band control and automatic shutdown and restart. These features are discussed in detail in **Section 16.4 "Enhanced PWM Mode"**.

The control register for CCP1 is shown in Register 16-1. It differs from the CCP1CON register of PIC18F2X20 devices in that the two Most Significant bits are implemented to control enhanced PWM functionality.

REGISTER 16-1: CCP1CON: ECCP CONTROL REGISTER (40/44-PIN DEVICES)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	
bit 7		•		•			bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 7-6 P1M1:P1M0: PWM Output Configuration bits If CCP1M3:CCP1M2 = 00, 01, 10 (Capture, Compare or disabled): xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins If CCP1M3:CCP1M2 = 11 (PWM modes): 00 = Single output: P1A modulated; P1B, P1C, P1D assigned as port pins 01 = Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive 10 = Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins 11 = Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive bit 5-4 DC1B1:DC1B0: PWM Duty Cycle Least Significant bits Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPR1L.

16.4 Enhanced PWM Mode

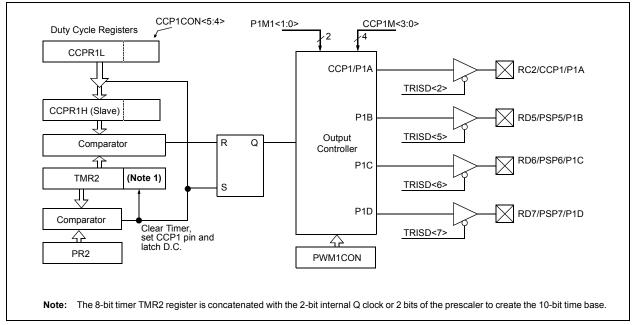
The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is an upwardly compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M1:P1M0 and CCP1M3:CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and CCP1CON<3:0>, respectively).

Figure 16-1 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that enhanced PWM

waveforms do not exactly match the standard PWM waveforms but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRISD bits for output.

16.4.1 PWM OUTPUT CONFIGURATIONS


The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the Standard PWM mode discussed in **Section 15.5** "**PWM Mode**". The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

PIC18F2220/2320/4220/4320

CCP1CO <7:6>	N SIGNAL	Duty ycle ──► ───── Period ───	PR2+1
00 (Single Ou	tput) P1A Modulated	 Delay ⁽¹⁾	
LO (Half-Brid	P1A Modulated ge) P1B Modulated		
(Eull-Brid	P1A Active		
(Full-Bridge, ^{D1} Forward)	d) P1C Inactive		
	P1D Modulated P1A Inactive		
11 (Full-Brid Reverse			
	P1D Inactive		

FIGURE 16-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 16-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

CCP1CON	SIGNAL	0 Duty		PR2+1
<7:6>		Cycl	e Period ——	>
00 (Single Output)	P1A Modulated			
	P1A Modulated			
10 (Half-Bridge)	P1B Modulated	Delay ⁽¹⁾	Delay ⁽¹⁾	
	P1A Active		1 1 1	
(Full-Bridge,	P1B Inactive	\equiv		<u> </u>
⁰¹ Forward)	P1C Inactive	<u> </u>		
	P1D Modulated			
	P1A Inactive		1 1 1	1 1
11 (Full-Bridge, Reverse)	P1B Modulated		 	
	P1C Active	_		
	P1D Inactive		1 	
		;	I I	1

Relationships:

• Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)

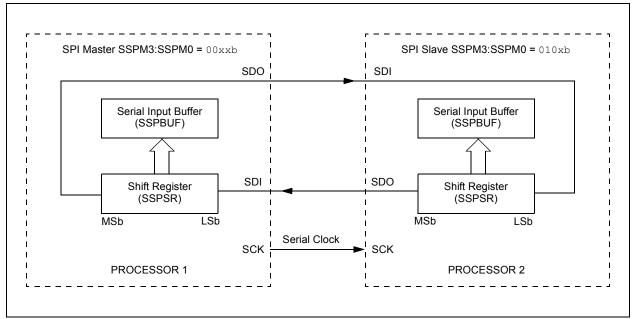
• Duty Cycle = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)

• Delay = 4 * Tosc * (PWM1CON<6:0>)

Note 1: Dead band delay is programmed using the PWM1CON register (see Section 16.4.4 "Programmable Dead-Band Delay").

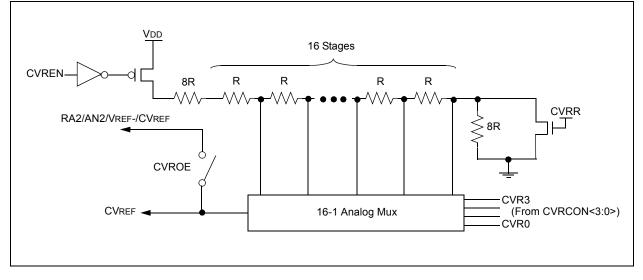
17.3.3 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI must have TRISC<4> bit cleared
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISA<5> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

17.3.4 TYPICAL CONNECTION


Register 17-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 17-2: SPI MASTER/SLAVE CONNECTION

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from VDD; therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

21.3 Operation in Power-Managed Modes

The contents of the CVRCON register are not affected by entry to or exit from power-managed modes. To minimize current consumption in power-managed modes, the voltage reference module should be disabled; however, this can cause an interrupt from the comparators so the comparator interrupt should also be disabled while the CVRCON register is being modified.

21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing the CVRCON register. This also disconnects the reference from the RA2 pin, selects the high-voltage range and selects the lowest voltage tap from the resistor divider.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be output using the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto the RA2 pin, with an input signal present, will increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, an external buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

PIC18F2220/2320/4220/4320

REGISTER 23-6: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

					-			
U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1	
_			_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	C = Clearable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value	when device is unp	programmed		u = Unchang	ed from program	nmed state		
bit 7-4		ted: Read as ')'					
bit 3	CP3: Code Pr	otection bit ⁽¹⁾						
	(1 = Block 3 (001800-001FFFh) not code-protected						
		01800-001FFF	h) code-prote	ected				
bit 2	CP2: Code Pr	otection bit ⁽¹⁾						
	•	1 = Block 2 (001000-0017FFh) not code-protected						
	0 = Block 2 (0	01000-0017FF	h) code-prote	ected				
bit 1	CP1: Code Pr							
		00800-000FFF						
	,	00800-000FFF	h) code-prote	ected				
bit 0	CP0: Code Pr							
		00200-0007FF						
	0 = Block 0 (0	00200-0007FF	h) code-prote	ected				

Note 1: Unimplemented in PIC18FX220 devices; maintain this bit set.

REGISTER 23-7: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0	
CPD	CPB	—	—	—	—	—	—	
bit 7 bit 0								

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	unprogrammed	u = Unchanged from programmed state

bit 7	CPD: Data EEPROM Code Protection bit
	1 = Data EEPROM is not code-protected
	0 = Data EEPROM is code-protected
bit 6	CPB: Boot Block Code Protection bit
	1 = Boot block (000000-0001FFh) is not code-protected
	0 = Boot block (000000-0001FFh) is code-protected
bit 5-0	Unimplemented: Read as '0'

23.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

23.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

23.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions, or during program/verify. The ID locations can be read when the device is code-protected.

23.7 In-Circuit Serial Programming

PIC18F2X20/4X20 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed (see Table 23-5).

23.8 In-Circuit Debugger

When the DEBUG bit in Configuration register, CONFIG4L, is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 23-4 shows which resources are required by the background debugger.

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, VSS, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

23.9 Low-Voltage ICSP Programming

The LVP bit in Configuration Register 4L (CONFIG4L<2>) enables Low-Voltage ICSP Programming (LVP). When LVP is enabled, the microcontroller can be programmed without requiring high voltage being applied to the MCLR/VPP pin, but the RB5/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

LVP is enabled in erased devices.

While programming using LVP, VDD is applied to the MCLR/VPP pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

Note 1:	High-voltage programming is always available, regardless of the state of the LVP bit or the PGM pin, by applying VIHH
	to the MCLR pin.
•	

- 2: When Low-Voltage Programming is enabled, the RB5 pin can no longer be used as a general purpose I/O pin.
- **3:** When LVP is enabled, externally pull the PGM pin to Vss to allow normal program execution.

If Low-Voltage ICSP Programming mode will not be used, the LVP bit can be cleared and RB5/PGM becomes available as the digital I/O pin, RB5. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/ VPP pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required. If a block erase is to be performed when using Low-Voltage Programming, the device must be supplied with VDD of 4.5V to 5.5V.

TABLE 23-5: ICSP™/ICD CONNECTIONS

Signal	Pin	Notes
PGD	RB7	
PGC	RB6	
MCLR	MCLR	May require isolation from application circuits
Vdd	Vdd	
Vss	Vss	
PGM	RB5	Pull RB5 low if LVP is enabled

PIC18F2220/2320/4220/4320

DEC	FSZ	Decreme	Decrement f, Skip if 0						
Synt	ax:	[label] [[<i>label</i>] DECFSZ f[,d[,a]]						
Ope	rands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$							
Ope	ration:	(f) – 1 \rightarrow oskip if res							
Statu	us Affected:	None	•						
Enco	oding:	0010	11da ffi	ff ffff					
Desc	cription:	decremen is placed i is placed l (default). If the resu tion which carded an instead, m instruction Bank will l the BSR v	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruc- tion which is already fetched is dis- carded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the						
14/0	de .	BSR value	be selected a e (default).	is per the					
Word		1							
Cycl Q C	cs. Cycle Activity	by	ycles if skip a 2-word ins	and followed truction.					
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process Data	Write to destination					
lf sk	kip:								
1	Q1	Q2	Q3	Q4					
	No operation	No operation	No operation	No operation					
lf sk			d instruction:						
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
	No operation	No operation	No operation	No operation					
Example:		HERE	DECFSZ GOTO	CNT LOOP					
	Before Instru PC After Instruc	= Address	S (HERE)						
	Anter Instruc CNT If CNT PC If CNT PC	= CNT – = 0; = Address ≠ 0;	1 s (Continue s (Here + 2						

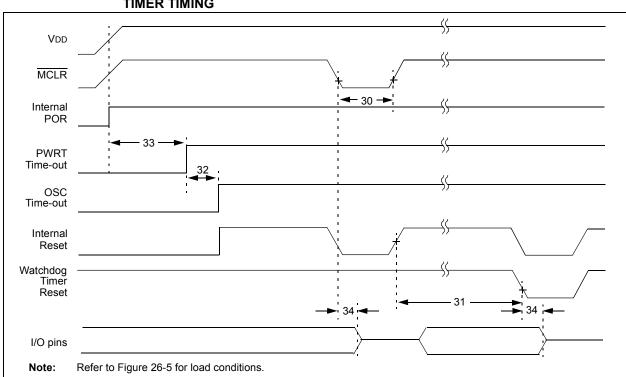
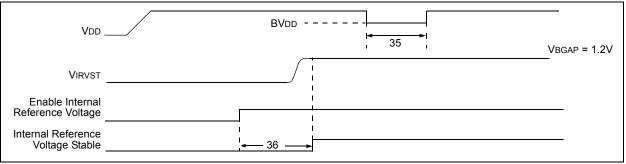

DCF	SNZ	Decreme	Decrement f, Skip if not 0						
Syntax:		[label]	[<i>label</i>] DCFSNZ f[,d[,a]]						
Operands:		$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$							
Operation:			(f) – 1 → dest, skip if result \neq 0						
Status Affected:		None							
Encoding:		0100							
Description: Words: Cycles:		decremen is placed i (default). If the resu instruction is discarde instead, m instruction Bank will b the BSR v bank will b BSR value 1 1(2)	If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). 1 1(2)						
QC	Cycle Activity:	by	Note: 3 cycles if skip and followed by a 2-word instruction.						
~ ~	Q1	Q2	Q3	Q4					
	Decode	Read	Process	Write to					
		register 'f'	Data	destination					
lf sl		00	02	04					
	Q1 No	Q2 No	Q3 No	Q4 No					
	operation	operation	operation	operation					
lf sł	kip and follow	ed by 2-wor	d instruction:						
	Q1	Q2	Q3	Q4					
	No operation	No operation	No operation	No operation					
	No	No	No	No					
	operation	operation	operation	operation					
Example: HERE DCFSNZ TEMP ZERO : NZERO :									
Before Instruction TEMP = ?									
	After Instruct TEMP If TEMP PC If TEMP PC	tion = = = ≠	0;	ZERO) NZERO)					

TABLE 26-4: LOW-VOLTAGE DETECT CHARACTERISTICS

PIC18LF2220/2320/4220/4320 (Industrial) PIC18F2220/2320/4220/4320 (Industrial, Extended)				$\label{eq:standard operating conditions (unless otherwise stated)} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$					
	VLVD LVD Voltage on VDD Transition High-to-Low — Date codes from 0351xxx to 0417xxx, inclusion								
D420A		PIC18LF2X20/4X20		Industrial Low Voltage (-40°C to +85°C)					
			LVDL<3:0> = 0000	N/A	N/A	N/A	V	Reserved	
			LVDL<3:0> = 0001	N/A	N/A	N/A	V	Reserved	
			LVDL<3:0> = 0010	2.08	2.26	2.44	V		
			LVDL<3:0> = 0011	2.26	2.45	2.65	V		
			LVDL<3:0> = 0100	2.35	2.55	2.76	V		
			LVDL<3:0> = 0101	2.55	2.77	2.99	V		
			LVDL<3:0> = 0110	2.64	2.87	3.10	V		
			LVDL<3:0> = 0111	2.82	3.07	3.31	V		
			LVDL<3:0> = 1000	3.09	3.36	3.63	V		
			LVDL<3:0> = 1001	3.29	3.57	3.86	V		
			LVDL<3:0> = 1010	3.38	3.67	3.96	V		
			LVDL<3:0> = 1011	3.56	3.87	4.18	V		
			LVDL<3:0> = 1100	3.75	4.07	4.40	V		
			LVDL<3:0> = 1101	3.93	4.28	4.62	V		
			LVDL<3:0> = 1110	4.23	4.60	4.96	V		
D420B		PIC18F2X20/4X20		Industrial (-40°C to +85°C)					
			LVDL<3:0> = 1011	3.56	3.87	4.18	V		
			LVDL<3:0> = 1100	3.75	4.07	4.40	V		
			LVDL<3:0> = 1101	3.93	4.28	4.62	V		
			LVDL<3:0> = 1110	4.23	4.60	4.96	V		
D420C		PIC18F2X20/4X20		Extended (-40°C to +125°C)					
			LVDL<3:0> = 1011	3.41	3.87	4.33	V		
			LVDL<3:0> = 1100	3.58	4.07	4.56	V		
			LVDL<3:0> = 1101	3.77	4.28	4.79	V		
			LVDL<3:0> = 1110	4.04	4.60	5.15	V		


Legend: Shading of rows is to assist in readability of the table.

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

FIGURE 26-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 26-9: BROWN-OUT RESET TIMING

