

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4220-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.8 Look-up Tables

Look-up tables are implemented two ways:

- Computed GOTO
- Table Reads

5.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 5-4.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW $0 \times nn$ instructions. WREG is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW $0 \times nn$ instructions that returns the value $0 \times nn$ to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of 2 (LSB = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 5-4: COMPUTED GOTO USING AN OFFSET VALUE

	MOVFW	OFFSET
	CALL	TABLE
ORG	0xnn00	
TABLE	ADDWF	PCL
	RETLW	0xnn
	RETLW	0xnn
	RETLW	0xnn
	•	
	•	
	•	

5.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory, one byte at a time.

The Table Read/Table Write operation is discussed further in Section 6.1 "Table Reads and Table Writes".

5.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. Figure 5-6 shows the data memory organization for the PIC18F2X20/4X20 devices.

The data memory map is divided into as many as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits of the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratch pad operations in the user's application. The SFRs start at the last location of Bank 15 (FFFh) and extend towards F80h. Any remaining space beyond the SFRs in the bank may be implemented as GPRs. GPRs start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and a corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be used to access any location in the data memory map without banking. See Section 5.12 "Indirect Addressing, INDF and FSR Registers" for indirect addressing details.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access RAM. **Section 5.10 "Access Bank"** provides a detailed description of the Access RAM.

5.9.1 GENERAL PURPOSE REGISTER FILE

Enhanced MCU devices may have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

Data RAM is available for use as GPR registers by all instructions. The second half of Bank 15 (F80h to FFFh) contains SFRs. All other banks of data memory contain GPRs, starting with Bank 0.

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

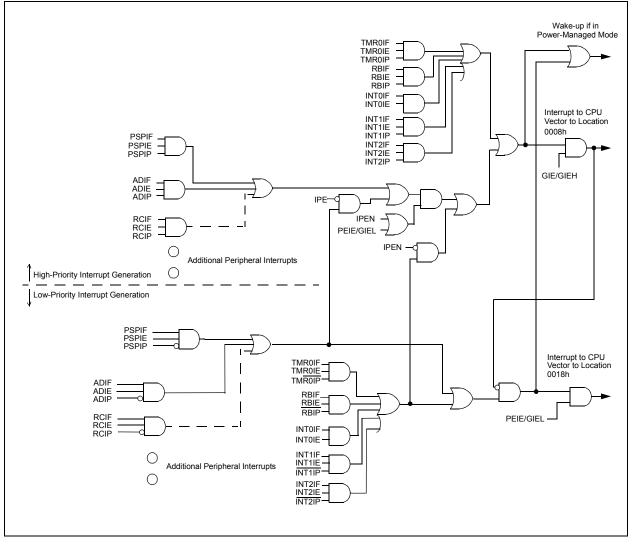
RES3:RES0	=	
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L ->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H ->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVF	ARG1L, W	
MULWF	ARG2H	; ARG1L * ARG2H ->
		; PRODH:PRODL
	PRODL, W	
	RES1, F	
	PRODH, W	-
	RES2, F	;
-	WREG	;
ADDWFC	RES3, F	;
;		
	ARG1H, W	
MULWF	ARG2L	; ARG1H * ARG2L ->
		; PRODH:PRODL
	PRODL, W	-
	RES1, F	
	PRODH, W	=
	RES2, F	
CLRF		;
ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM


RES3:RES0

- $= ARG1H:ARG1L \bullet ARG2H:ARG2L$
- = $(ARG1H \bullet ARG2H \bullet 2^{16}) +$ $(ARG1H \bullet ARG2L \bullet 2^{8}) +$ $(ARG1L \bullet ARG2H^{2} 2^{8}) +$ $(ARG1L \bullet ARG2L) +$ $(-1 \bullet ARG2H < 7> \bullet ARG1H: ARG1L \bullet 2^{16}) +$ $(-1 \bullet ARG1H < 7> \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVEE	PRODH, RES1	
	MOVFF MOVFF	PRODL, RESO	
	MOVEE	PRODL, RESU	;
;			
		ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF		; ARG1L * ARG2H ->
	PIOTIME	ANGZII	
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;		,	
'	MOVE	ARG1H, W	
			;
	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
		RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	BTESS	ARG2H, 7	; ARG2H:ARG2L neg?
	BRA	SIGN ARG1	; no, check ARG1
		-	
		ARG1L, W	;
	SUBWF	RES2	;
		ARG1H, W	;
	SUBWFB	RES3	
;			
SIG	N_ARG1		
	BTFSS	ARG1H, 7	; ARG1H:ARG1L neg?
	BRA	CONT CODE	; no, done
	MOVF	ARG2L, W	;
	SUBWF	RES2	;
	MOVF	ARG2H, W	;
	SUBWFB		,
Ι.	SODWED	U U U U U U	
;			
	T_CODE		
	:		
1			

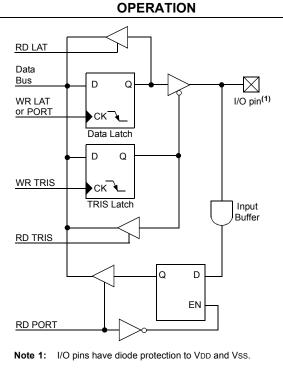
R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
INT2IP	INT1IP	—	INT2IE	INT1IE		INT2IF	INT1IF	
bit 7							bit (
Legend:								
R = Readabl	e bit	W = Writable	bit	•	mented bit, rea	id as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 7		External Interr	unt Driarity hi					
	1 = High prio	External Interro	upt Phonity bi	L				
	0 = Low prior	-						
bit 6	•	External Interro	upt Priority bi	t				
	1 = High prio	ority						
	0 = Low prior	rity						
bit 5	Unimplemen	ted: Read as ')'					
bit 4	INT2IE: INT2	External Interre	upt Enable bi	t				
		the INT2 extern						
		the INT2 exter	•					
bit 3	INT1IE: INT1 External Interrupt Enable bit							
		the INT1 extern the INT1 extern						
bit 2		ted: Read as '	•					
bit 1	-	External Interro						
		2 external interr		(must be clear	ed in software	N N		
		2 external interr				/		
bit 0		External Interro	•					
		1 external interr		(must be clear	ed in software))		
	0 = The INT1	1 external interr	upt did not oo	cur				
Note: In	terrupt flag bits	are set when a	n interrunt co	ndition occurs	regardless of	the state of its (corresponding	
	hable bit or the g							

prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3

10.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port without the interfaces to other peripherals is shown in Figure 10-1.

FIGURE 10-1: GENERIC I/O PORT

10.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input and one of the comparator outputs to become the RA4/T0CKI/C1OUT pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in Configuration Register 1H (see **Section 23.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins, RA3:RA0 and RA5, as A/D converter inputs is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register 1). Pins RA0 through RA5 may also be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register.

Note: On a Power-on Reset, RA5 and RA3:RA0 are configured as analog inputs and read as '0'. RA4 is configured as a digital input.

The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the RA pins even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMP	LE 10-1		INITIALIZING PORTA
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	0x0F	;	Set all A/D pins as
MOVWF	ADCON1	;	digital I/O pins
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA<5:4> as outputs

Name	Bit#	Buffer Type	Function
RE0/AN5/RD	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, analog input or read control input in Parallel Slave Port mode. For RD (PSP Control mode): 1 = PSP is Idle 0 = Read operation. Reads PORTD register (if chip selected).
RE1/AN6/WR	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, analog input or write control input in Parallel Slave Port mode. For WR (PSP Control mode): 1 = PSP is Idle 0 = Write operation. Writes PORTD register (if chip selected).
RE2/AN7/CS	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, analog input or chip select control input in Parallel Slave Port mode. For CS (PSP Control mode): 1 = PSP is Idle 0 = External device is selected
MCLR/VPP/RE3 ⁽²⁾	bit 3	ST	Input only port pin or programming voltage input (if $\overline{\text{MCLR}}$ is disabled); Master Clear input or programming voltage input (if $\overline{\text{MCLR}}$ is enabled).

TABLE 10-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

2: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

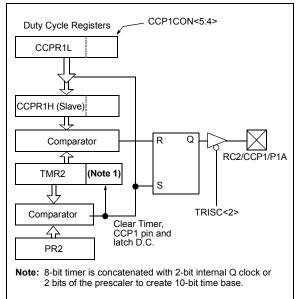
TABLE 10-10:	SUMMARY OF REGISTERS	ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTE	_	_		_	RE3 ⁽¹⁾	RE2	RE1	RE0	qxxx	quuu
LATE		—	—	_	_	LATE Data	a Latch Reg	ister	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directio	n bits	0000 -111	0000 -111
ADCON1	_		VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

 $\label{eq:lagend: Legend: x = unknown, u = unchanged, - = unimplemented, read as `0', q = value depends on condition. Shaded cells are not used by PORTE.$

Note 1: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

15.5 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

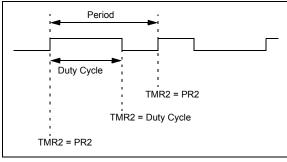

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.5.3** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (*period*) and a time that the output is high (*duty cycle*). The frequency of the PWM is the inverse of the period (1/period).

15.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H
 - Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

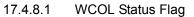
15.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 15-2:

CCPR1L and CCP1CON<5:4> can be written to at any time but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

REGISTER 16-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred; ECCP outputs are in shutdown state 0 = ECCP outputs are operating bit 6-4 ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits 000 = Auto-shutdown is disabled 001 = Comparator 1 output 010 = Comparator 2 output 011 = Either Comparator 1 or 2 100 = INTO							
	110 = INT0 o	r Comparator 1 r Comparator 2 r Comparator 1	2	or 2			
bit 3-2	00 = Drive Pir	Pin A and C S ns A and C to ' ns A and C to ' and C tri-state	0'	te Control bits			
bit 1-0	00 = Drive Pir	Pin B and D S ns B and D to ' ns B and D to ' nd D tri-state	0'	te Control bits			

17.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Condition Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

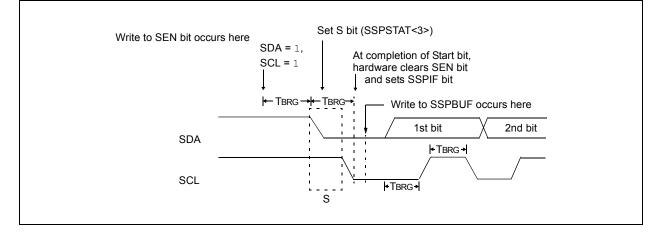
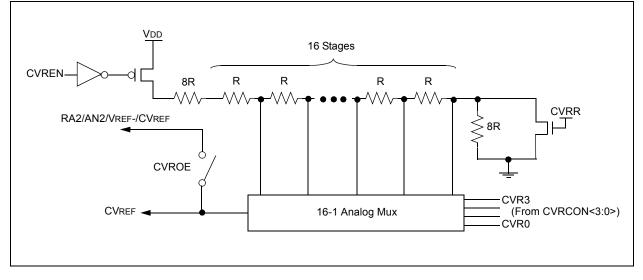

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

FIGURE 17-19: FIRST START BIT TIMING



If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from VDD; therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

21.3 Operation in Power-Managed Modes

The contents of the CVRCON register are not affected by entry to or exit from power-managed modes. To minimize current consumption in power-managed modes, the voltage reference module should be disabled; however, this can cause an interrupt from the comparators so the comparator interrupt should also be disabled while the CVRCON register is being modified.

21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing the CVRCON register. This also disconnects the reference from the RA2 pin, selects the high-voltage range and selects the lowest voltage tap from the resistor divider.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be output using the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto the RA2 pin, with an input signal present, will increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, an external buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

TABLE 24-2: PIC18FXXX INSTRUCTION SET

Mnemonic, Operands		Description	Cualas	16-Bit Instruction Word				Status	Natas
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED	FILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff		1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1 ΄	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3,
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1		10da	ffff	ffff	C, DC, Z, OV, N	-
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)		11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)		10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1		00da	ffff	ffff		1, 2
MOVF	f, d, a	Move f	1		00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2		ffff	ffff	ffff	,	•
	's, 'd	f_d (destination) 2nd word	2		ffff	ffff	ffff	None	
MOVWF	f, a	Move WREG to f	1		1111a	ffff	ffff	None	
MULWF	f. a	Multiply WREG with f	1		001a	ffff	ffff	None	
NEGF	f, a	Negate f	1		110a	ffff	ffff	C, DC, Z, OV, N	1 2
RLCF	f, d, a	Rotate Left f through Carry	1		01da	ffff	ffff		1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1			1111 ffff			1, 2
RRCF	f, d, a		1		01da	ffff	ffff ffff		1, 2
		Rotate Right f through Carry	1	0011	00da				
RRNCF	f, d, a	Rotate Right f (No Carry)	1		00da	ffff	ffff	,	
SETF	f, a	Set f	-		100a	ffff	ffff	None	1 0
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	Ι, Ζ
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with Borrow	1	0101	10da	ffff	ffff		1, 2
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	r, d, a f, a		1 (2 or 3)	0011	10da 011a	IIII ffff	IIII ffff	None	4 1, 2
	,	Test f, Skip if 0	()						1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
		E REGISTER OPERATIONS	1					I	
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

BCF	Bit Clear f						
Syntax:	Syntax: [label] BCF f,b[,a]						
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Operation:	$0 \rightarrow f < b >$						
Status Affected:	None						
Encoding:	1001 3	bbba ff	ff	ffff			
Description:	is '0', the A selected, ov If 'a' = 1, th	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)					
Words:	1	1					
Cycles:	1						
Q Cycle Activity							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Process Data		Write gister 'f'			
Example: BCF FLAG_REG, 7 Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47							

BN	Branch if	Branch if Negative				
Syntax:	[<i>label</i>] B	Nn				
Operands:	-128 ≤ n ≤	127				
Operation:	if Negative (PC) + 2 +					
Status Affected:	None					
Encoding:	1110	0110 nnr	nn nnnn			
	added to t have incre instruction PC + 2 + 2 then a two	vill branch. Implement nu he PC. Since emented to fe I, the new ad 2n. This instr D-cycle instru	e the PC wi etch the ne dress will b uction is			
Words:	1					
Cycles:	1(2)					
Q Cycle Activity	y :					
Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	Write to PC			
No	No	No	No			
operation	operation	operation	operation			
If No Jump:						
Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	No operation			
Example:	HERE	BN Jump				
Before Inst	ruction					
PC	= ad	dress (HERE)				

PC	=	address (HERE)
After Instruction		
If Negative	=	1;
РC	=	address (Jump)
If Negative	=	0;
PC	=	address (HERE + 2)

INC	SZ	Incremen	t f, Skip if 0				
Synt	ax:	[label]	INCFSZ f[,d [,a]]			
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5				
Ope	ration:	(f) + 1 \rightarrow c skip if resu					
Statu	us Affected:	None					
Enco	oding:	0011	11da ffi	ff ffff			
Word		increment is placed i (default). If the resu instruction is discarde instead, m instruction Bank will b the BSR v bank will b BSR value	If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Cycl	es:	1(2)					
-		Note: 3 c	ycles if skip a a 2-word inst				
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
lf sk	(ip:	regiotor	Dulu	dootinution			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
IT SK	kip and follow			04			
	Q1 No	Q2 No	Q3 No	Q4 No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
Example:		NZERO	INCFSZ CN : :	Τ			
	Before Instru PC	= Address	6 (HERE)				
	After Instruct CNT If CNT PC If CNT PC	ion = CNT + 7 = 0; = Address ≠ 0; = Address	S (ZERO)				

C	SNZ	Incremen	Increment f, Skip if Not 0				
Synt	ax:	[label]	INFSNZ f[,d [,a]]			
Ope	rands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$					
Ope	ration:	(f) + 1 \rightarrow (skip if res					
Statu	us Affected:	None					
Enco	oding:	0100	10da ff	ff ffff			
Desc	cription:	increment is placed i (default). If the resu instruction is discard instead, n instruction Bank will the BSR v bank will b	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).				
Wor	ds:	1					
Cycl	es:	1(2) Note: 3 (cycles if skip	and followor			
0.0		-	a 2-word ins				
QC	Cycle Activity:			truction.			
QC	Cycle Activity: Q1 Decode	Q2 Read	a 2-word ins Q3 Process Data				
Q C If sk	Q1 Decode	Q2	Q3 Process	truction. Q4 Write to			
	Q1 Decode	Q2 Read	Q3 Process	truction. Q4 Write to			
	Q1 Decode kip:	Q2 Read register 'f'	Q3 Process Data	Q4 Write to destination			
lf sk	Q1 Decode kip: Q1 No	Q2 Read register 'f' Q2 No operation	Q3 Process Data Q3 No operation	truction. Q4 Write to destination Q4 No operation			
lf sk	Q1 Decode kip: Q1 No operation	Q2 Read register 'f' Q2 No operation	Q3 Process Data Q3 No operation	truction. Q4 Write to destination Q4 No operation			
lf sk	Q1 Decode Q1 No operation kip and follow Q1 No	Q2 Read register 'f' Q2 No operation /ed by 2-wor Q2 No	Q3 Process Data Q3 No operation d instruction Q3 No	truction. Q4 Write to destination Q4 No operation Q4 No			
lf sk	Q1 Decode (ip: Q1 No operation kip and follow Q1 No operation	Q2 Read register 'f' Q2 No operation ved by 2-wor Q2 No operation	Q3 Process Data Q3 No operation d instruction Q3 No operation	Q4 Write to destination Q4 No operation Q4 No operation			
lf sk	Q1 Decode Q1 No operation kip and follow Q1 No	Q2 Read register 'f' Q2 No operation /ed by 2-wor Q2 No	Q3 Process Data Q3 No operation d instruction Q3 No	truction. Q4 Write to destination Q4 No operation Q4 No			
lf sk	Q1 Decode (ip: Q1 No operation kip and follow Q1 No operation No	Q2 Read register 'f' Q2 No operation Ved by 2-wor Q2 No operation No operation	Q3 Process Data Q3 No operation Q3 No operation No	Q4 Write to destination Q4 No operation Q4 No operation No operation			

REG =	REG + 1	
lf REG ≠	0;	
PC =	Address	(NZERO)
If REG =	υ,	
PC =	Address	(ZERO)

XOF	RWF	Exclusiv	Exclusive OR W with f					
Synt	ax:	[label]	[<i>label</i>] XORWF f[,d[,a]]					
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$						
Ope	ration:	(W) .XOF	R. (f) \rightarrow d	lest				
Statu	us Affected:	N, Z						
Enco	oding:	0001	10da	fff	f	ffff		
Des	cription:	with regis is stored is stored (default). Bank will the BSR bank will	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).					
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read register 'f'	Proce Data			/rite to stination		
<u>Exar</u>	<u>nple</u> :	XORWF	REG					
	Before Instru REG W	iction = 0xAF = 0xB5						
	After Instruct REG W	tion = 0x1A = 0xB5						

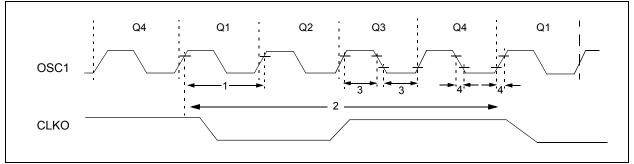
26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial) (Continued)

PIC18LF2220/2320/4220/4320 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
-	PIC18F2220/2320/4220/4320 (Industrial, Extended)		$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) ^(2,3)								
	PIC18LF2X20/4X20	100	220	μA	-40°C				
		110	220	μA	+25°C	VDD = 2.0V			
		120	220	μA	+85°C				
	PIC18LF2X20/4X20	180	330	μΑ	-40°C				
		180	330	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC RUN mode,		
		170	330	μA	+85°C		internal oscillator source)		
	All devices	340	550	μA	-40°C		·····,		
		330	550	μA	+25°C				
		310	550	μA	+85°C	VDD - 5.0V			
	Extended devices	410	650	μA	+125°C				
	PIC18LF2X20/4X20	350	600	μA	-40°C				
		360	600	μA	+25°C	VDD = 2.0V			
		370	600	μA	+85°C				
	PIC18LF2X20/4X20	580	900	μA	-40°C				
		580	900	μA	+25°C	VDD = 3.0V VDD = 5.0V	Fosc = 4 MHz (RC RUN mode,		
		560	900	μA	+85°C		internal oscillator source)		
	All devices	1.1	1.8	mA	-40°C				
		1.1	1.8	mA	+25°C				
		1.0	1.8	mA	+85°C				
	Extended devices	1.2	1.8	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

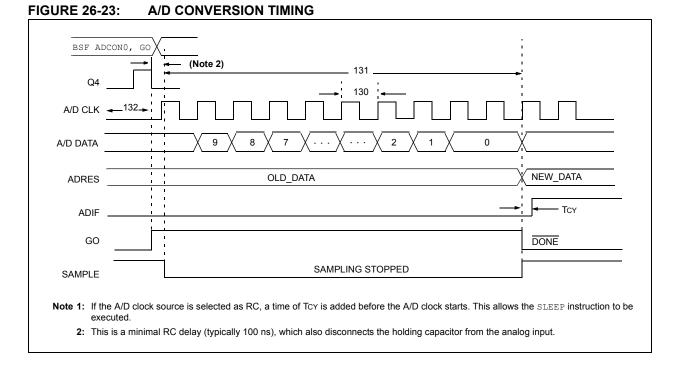

FIGURE 26-6: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO (industrial)
			DC	25	MHz	EC, ECIO (extended)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC osc
			0.1	1	MHz	XT osc
			4	25	MHz	HS osc
			4	10	MHz	HS + PLL osc (industrial)
			4	6.25	MHz	HS + PLL osc (extended)
			5	33	kHz	LP Osc mode
1	Tosc	External CLKI Period ⁽¹⁾	25	_	ns	EC, ECIO (industrial)
			40	_	ns	EC, ECIO (extended)
		Oscillator Period ⁽¹⁾	250	_	ns	RC osc
			1	—	μs	XT osc
			40 100	250 250	ns ns	HS osc HS + PLL osc (industrial)
			160	250	ns	HS + PLL osc (extended)
			30	_	μS	LP osc
2	Тсү	Instruction Cycle Time ⁽¹⁾	100 160		ns ns	Tcy = 4/Fosc (industrial) Tcy = 4/Fosc (extended)
3	TosL,	External Clock in (OSC1)	30	_	ns	XT osc
	TosH	High or Low Time	2.5	—	μS	LP osc
			10	—	ns	HS osc
4	TosR,	External Clock in (OSC1)	_	20	ns	XT osc
	TosF	Rise or Fall Time	_	50	ns	LP osc
			_	7.5	ns	HS osc

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

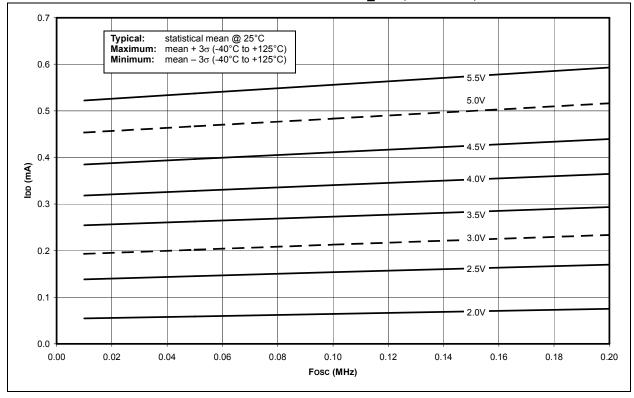
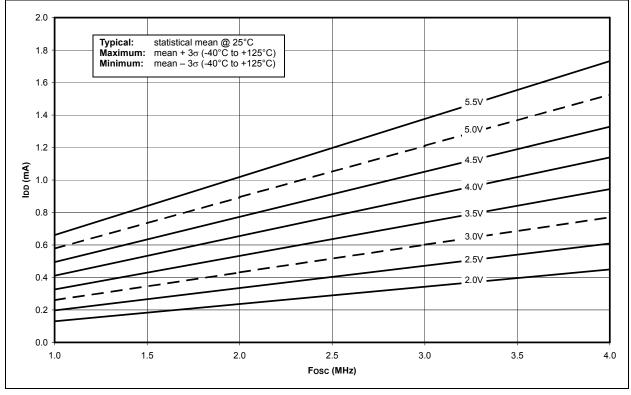


TABLE 26-25: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
130	TAD	A/D Clock Period	PIC18FXX20	1.6	20 ⁽²⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18 LF XX20	3.0	20 ⁽²⁾	μS	Tosc based, VREF full range
			PIC18FXX20	2.0	6.0	μS	A/D RC mode
			PIC18 LF XX20	3.0	9.0	μS	A/D RC mode
131	TCNV	Conversion Time (not including acquisition time) ⁽¹⁾		11	12	Tad	


Note 1: ADRES register may be read on the following TCY cycle.

2: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

FIGURE 27-3: MAXIMUM IDD vs. Fosc OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C

С

C Compilers	
MPLAB C18	
MPLAB C30	
CALL	
Capture (CCP Module)	135
Associated Registers	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	
Timer1/Timer3 Mode Selection	
Capture (ECCP Module)	
Capture/Compare/PWM (CCP)	
Capture Mode. See Capture.	
CCP1	
CCPR1H Register	
CCPR1L Register	
CCP2	
CCPR2H Register	
CCPR2L Register	134
Compare Mode. See Compare.	
Interaction of Two CCP Modules	134
PWM Mode. See PWM.	
Timer Resources	
Clock Sources	
Selection Using OSCCON Register	
Clocking Scheme/Instruction Cycle	
CLRF	
CLRWDT	
Code Examples	
16 x 16 Signed Multiply Routine	
16 x 16 Unsigned Multiply Routine	
8 x 8 Signed Multiply Routine	
8 x 8 Unsigned Multiply Routine	
Changing Between Capture Prescalers	
Computed GOTO Using an Offset Value	
Data EEPROM Read	
Data EEPROM Refresh Routine	
Data EEPROM Write	
Erasing a Flash Program Memory Row	
Fast Register Stack	
How to Clear RAM (Bank 1) Using	
Indirect Addressing	
Implementing a Real-Time Clock Using a	405
Timer1 Interrupt Service	
Initializing PORTA	
Initializing PORTB	
Initializing PORTD	
Loading the SSPBUF (SSPSR) Register	
Reading a Flash Program Memory Word	
Saving STATUS, WREG and BSR	00
Registers in RAM	
Writing to Flash Program Memory	
Code Protection	,
COMF	
Comparator	
Analog Input Connection Considerations	
Associated Registers	
Configuration	
Effects of a Reset	
Interrupts	
Operation	
Operation in Power-Managed Modes	

Outputs	223
Reference	223
Response Time	223
Comparator Specifications	
Comparator Voltage Reference	227
Accuracy and Error	
Associated Registers	229
Configuring	227
Connection Considerations	228
Effects of a Reset	228
Operation in Power-Managed Modes	228
Compare (CCP Module)	136
Associated Registers	137
CCP Pin Configuration	136
CCPR1 Register	
Software Interrupt	136
Special Event Trigger	136, 220
Timer1/Timer3 Mode Selection	
Compare (ECCP Mode)	142
Computed GOTO	
Configuration Bits	
Configuration Register Protection	255
Context Saving During Interrupts	
Control Registers	
EECON1 and EECON2	
Conversion Considerations	
CPFSEQ	
CPFSGT	
CPFSLT	275
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
D	
Data EEPROM Code Protection	255
Data EEPROM Memory	81
Associated Registers	84
EEADR Register	81
EECON1 and EECON2 Registers	81
Operation During Code-Protect	84
Protection Against Spurious Write	83
Reading	83
Using	84
Write Verify	83
Writing	83
Data Memory	
General Purpose Registers	59
Map for PIC18F2X20/4X20	
Special Function Registers	
DAW	
DC and AC Characteristics	
Graphs and Tables	347
DC Characteristics	
Power-Down and Supply Current	

 Supply Voltage
 308

 DCFSNZ
 277

 DECF
 276

 DECFSZ
 277

 Development Support
 301

 Device Differences
 376

 Device Overview
 7

 Features (table)
 8

 New Core Features
 7

 Other Special Features
 7

 Direct Addressing
 67

Timer2	127
Associated Registers	128
MSSP Clock Shift	127, 128
Operation	127
Postscaler. See Postscaler, Timer2.	
PR2 Register	127, 138
Prescaler. See Prescaler, Timer2.	
TMR2 Register	
TMR2 to PR2 Match Interrupt 127,	
Timer3	129
Associated Registers	131
Operation	130
Oscillator	129, 131
Overflow Interrupt	129, 131
Resetting, Using a Special Event Trigger	
Output (CCP)	131
TMR3H Register	129
TMR3L Register	129
Timing Diagrams	
A/D Conversion	
Acknowledge Sequence	188
Asynchronous Reception	
Asynchronous Transmission	
Asynchronous Transmission (Back to Back)	
Baud Rate Generator with Clock Arbitration	
BRG Reset Due to SDA Arbitration During	
Start Condition	191
Brown-out Reset (BOR)	
Bus Collision During a Repeated Start	
Condition (Case 1)	102
Bus Collision During a Repeated Start	
Condition (Case 2)	102
Bus Collision During a Stop	
Condition (Case 1)	103
Bus Collision During a Stop	
a 1	102
Condition (Case 2) Bus Collision During Start	
Condition (SCL = 0)	101
Bus Collision During Start	
Condition (SDA Only)	100
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM (CCP)	
CLKO and I/O	
Clock Synchronization	
Clock, Instruction Cycle	
Example SPI Master Mode (CKE = 0)	
Example SPI Master Mode (CKE = 1)	
Example SPI Slave Mode (CKE = 0)	
Example SPI Slave Mode (CKE = 1)	
External Clock (All Modes Except PLL)	
Fail-Safe Clock Monitor (FSCM)	
First Start Bit	
Full-Bridge PWM Output	
Half-Bridge PWM Output	145
I ² C Bus Data	
I ² C Bus Start/Stop Bits	339
I ² C Master Mode (Transmission,	
7 or 10-Bit Address)	
I ² C Slave Mode (Transmission, 10-Bit Address)	
I ² C Slave Mode (Transmission, 7-Bit Address) .	171
I ² C Slave Mode with SEN = 0 (Reception,	
10-Bit Address)	172
I ² C Slave Mode with SEN = 0 (Reception,	
7-Bit Address)	170

I ² C Slave Mode with SEN = 1 (Reception,
10-Bit Address) 177 I^2C Slave Mode with SEN = 1 (Reception,
7-Bit Address)
Low-Voltage Detect
Low-Voltage Detect Characteristics
Master SSP I ² C Bus Data
Master SSP I ² C Bus Start/Stop Bits
Parallel Slave Port (PIC18F4X20)
Parallel Slave Port (PSP) Read
Parallel Slave Port (PSP) Write
PWM Auto-Shutdown (PRSEN = 0,
Auto-Restart Disabled)
PWM Auto-Shutdown (PRSEN = 1,
Auto-Restart Enabled)
PWM Direction Change
PWM Direction Change at Near
100% Duty Cycle
PWM Output
Repeat Start Condition
Reset, Watchdog Timer (WDT), Oscillator Start-up
Timer (OST), Power-up Timer (PWRT)
Slave Mode General Call Address Sequence
(7 or 10-Bit Addressing Mode)
Slave Synchronization
Slow Rise Time (MCLR Tied to VDD,
VDD Rise > TPWRT)
SPI Mode (Master Mode)
SPI Mode (Slave Mode with CKE = 0)
SPI Mode (Slave Mode with CKE = 0)
Stop Condition Receive or Transmit Mode
Synchronous Transmission
Synchronous Transmission (Through TXEN)
Time-out Sequence on POR w/
PLL Enabled (MCLR Tied to VDD)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD): Case 1
Time-out Sequence on Power-up
(MCLR Not Tied to VDD): Case 2
Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to SEC_IDLE Mode
Transition for Entry to SEC_IDEL Mode
Transition for Entry to Sleep Mode
Transition for Two-Speed Start-up
(INTOSC to HSPLL)
Transition for Wake from PRI_IDLE Mode
Transition for Wake from RC_RUN Mode
(RC_RUN to PRI_RUN)
Transition for Wake from
SEC_RUN Mode (HSPLL)
Transition for Wake from Sleep (HSPLL)
Transition to PRI_IDLE Mode
Transition to RC_IDLE Mode
Transition to RC_RUN Mode
USART Synchronous Receive (Master/Slave) 344
USART Synchronous Reception (Master Mode, SREN)
USART SynchronousTransmission (Master/Slave) . 344
USANT Synuliuliuus mansilissiuli (iviasiel/Siave) . 344