

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4220-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0) R/W-0	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0		
IDLEN	I IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0		
bit 7		·				·	bit 0		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value	e at POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 7	IDLEN: Idle E	Enable bit							
	1 = Idle mod	e enabled; CP	U core is not o	clocked in powe	er-managed mo	odes			
	0 = Run moo	de enabled; CP	U core is cloc	ked in power-n	nanaged modes	6			
bit 6-4	IRCF2:IRCF): Internal Osci	llator Frequer	ncy Select bits					
	111 = 8 MHz	(8 MHz source	e drives clock	directly)					
	110 = 4 MHz								
	101 = 2 MHz								
	100 = 1 MHZ								
	011 = 300 ki	12							
	001 = 125 k ⊢	lz							
	000 = 31 kHz	z (INTRC sourc	e drives clock	directly)					
bit 3	OSTS: Oscill	ator Start-up Ti	me-out Status	s bit ⁽¹⁾					
	1 = Oscillato	r Start-up Time	er time-out has	s expired; prima	ary oscillator is	running			
	0 = Oscillato	r Start-up Time	er time-out is r	unning; primary	oscillator is no	ot ready			
bit 2	IOFS: INTOS	SC Frequency S	Stable bit						
	1 = INTOSC	frequency is st	able						
	0 = INTOSC	frequency is no	ot stable						
bit 1-0	SCS1:SCS0:	System Clock	Select bits						
	1x = Internal	oscillator block	(RC modes)	(2)					
	01 = Timer1 (oscillator (Seco	ondary modes)(2)					
	00 = Primary	oscillator (Slee	ep and PRI_ID	DLE modes)					
Note 1:	Depends on state	of IESO bit in (Configuration	Register 1H.					
2:	SCS0 may not be	SCS0 may not be set while T1OSCEN (T1CON<3>) is clear.							

REGISTER 2-3: OSCCON: OSCILLATOR CONTROL REGISTER

Oscillator Configuration	Power-up ⁽²⁾ a	Exit from					
	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode				
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾				
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc				
EC, ECIO	66 ms ⁽¹⁾	—	—				
RC, RCIO	66 ms ⁽¹⁾	—	—				
INTIO1, INTIO2	66 ms ⁽¹⁾		—				

TABLE 4-1: TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the 4x PLL to lock.

REGISTER 4-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	_	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note: Refer to Section 5.14 "RCON Register" for bit definitions.

TABLE 4-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	0	0
RESET Instruction	0000h	00 uuuu	0	u	u	u	u	u	u
Brown-out Reset	0000h	01 11u-	1	1	1	u	0	u	u
MCLR Reset during power-managed Run modes	0000h	0u luuu	u	1	u	u	u	u	u
MCLR Reset during power-managed Idle modes and Sleep mode	0000h	0u 10uu	u	1	0	u	u	u	u
WDT time-out during full power or power-managed Run mode	0000h	0u Ouuu	u	0	u	u	u	u	u
MCLR Reset during full-power execution								u	u
Stack Full Reset (STVREN = 1)	0000h	0u uuuu	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)								u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	uu uuuu	u	u	u	u	u	u	1
WDT time-out during power-managed Idle or Sleep modes	PC + 2	uu 00uu	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	uu u0uu	u	u	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

5.3 Fast Register Stack

A "fast return" option is available for interrupts. A Fast Register Stack is provided for the STATUS, WREG and BSR registers and are only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers if the RETFIE, FAST instruction is used to return from the interrupt.

All interrupt sources will push values into the stack registers. If both low and high-priority interrupts are enabled, the stack registers cannot be used reliably to return from low-priority interrupts. If a high-priority interrupt occurs while servicing a low-priority interrupt, the stack register values stored by the low-priority interrupt will be overwritten. Users must save the key registers in software during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the Fast Register Stack for returns from interrupt.

If no interrupts are used, the Fast Register Stack can be used to restore the STATUS, WREG and BSR registers at the end of a subroutine call. To use the Fast Register Stack for a subroutine call, a CALL label, FAST instruction must be executed to save the STATUS, WREG and BSR registers to the Fast Register Stack. A RETURN, FAST instruction is then executed to restore these registers from the Fast Register Stack.

Example 5-1 shows a source code example that uses the Fast Register Stack during a subroutine call and return.

EXAMPLE 5-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR
	;SAVED IN FAST REGISTER
	;STACK
•	
•	
SUB1 •	
•	
RETURN FAST	;RESTORE VALUES SAVED
	; IN FAST REGISTER STACK
	,

5.4 PCL, PCLATH and PCLATU

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21-bits wide. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register may be performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATU register.

The contents of PCLATH and PCLATU will be transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 5.8.1** "**Computed** GOTO").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

FIGURE 5-6: DATA MEMORY MAP FOR PIC18F2X20/4X20 DEVICES

8.0 8 X 8 HARDWARE MULTIPLIER

8.1 Introduction

An 8 x 8 hardware multiplier is included in the ALU of the PIC18F2X20/4X20 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the STATUS register.

Making the 8 x 8 multiplier execute in a single-cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between enhanced devices using the single-cycle hardware multiply and performing the same function without the hardware multiply.

8.2 Operation

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiply. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	; ARG1 * ARG2 ->
MULWF	ARG2	; PRODH:PRODL
BTFSC SUBWF	ARG2, SB PRODH, F	; Test Sign Bit ; PRODH = PRODH ; - ARG1
MOVF	ARG2, W	; Test Sign Bit
BTFSC	ARG1, SB	; PRODH = PRODH
SUBWF	PRODH, F	; - ARG2

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9 x 9 upsigned	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs	
	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs	
o x o signed	Hardware multiply	6	6	600 ns	2.4 μs	6 μs	
16 x 16 uppigpod	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware multiply	28	28	2.8 μs	11.2 μs	28 μs	
16 x 16 signed	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs	
	Hardware multiply	35	40	4.0 μs	16.0 μs	40 μs	

TABLE 8-1: PERFORMANCE COMPARISON

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- · Reset from CCP module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.

Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 Oscillator Enable bit (T1OSCEN) which can be a clock source for Timer3.

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:								
R = Readable	bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	RD16: 16-Bit	Read/Write Mode Enab	le bit					
	1 = Enables 0 = Enables	register read/write of Tin register read/write of Tin	ner3 in one 16-bit operation ner3 in two 8-bit operations					
bit 6, 3	T3CCP2:T3C	CP1: Timer3 and Timer	1 to CCPx Enable bits					
	1x = Timer3 i	is the capture/compare of the capture/compare of	clock source for both CCP mo	odules				
	Timer1 i	is the capture/compare of	clock source for CCP2,					
	00 = Timer1 i	is the capture/compare of	clock source for both CCP mc	odules				
bit 5-4	T3CKPS1:T3	CKPS0: Timer3 Input C	lock Prescale Select bits					
	11 = 1:8 Prescale value							
	10 = 1:4 Pres	scale value						
	01 = 1:2 Pres	scale value						
hit 2		or3 Extornal Clock Innu	t Synchronization Control hit					
	(Not usable if	the device clock comes	from Timer1/Timer3.)					
	When TMR30	<u>CS = 1:</u>						
	1 = Do not sy	nchronize external clock	cinput					
	0 = Synchron	ize external clock input						
	When IMR30	<u>JS = 0:</u> orod_Timor3 usos the in	tornal clock when TMD3CS -	- 0				
hit 1				- 0.				
DILI		alaak input from Timor 1	JL DIL Desillator or T12CKL (on the ris	ing adap ofter the first folling adap				
	0 = Internal d	clock input from timer to clock (Fosc/4)	DSCIIIATOR OF TISCKI (ON THE IS	ang edge alter the first failing edge)				
bit 0	TMR3ON: Tir	mer3 On bit						
	1 = Enables	Timer3						
	0 = Stops Tir	ner3						

NOTES:

17.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

Legend:									
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value a	It POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr					
bit 7	SMP: Sar	nple bit							
	SPI Maste	er mode:							
	1 = Input	data sampled at end of data data sampled at middle of d	output time						
	SPI Slave	mode.							
	SMP mus	t be cleared when SPI is us	ed in Slave mode.						
bit 6	CKE: SPI	Clock Edge Select bit							
	When CK	hen CKP = 0:							
	1 = Data f	1 = Data transmitted on rising edge of SCK							
	0 = Data 1	0 = Data transmitted on falling edge of SCK							
	1 = Data 1	<u>When CKP = 1:</u> 1 = Data transmitted on falling edge of SCK							
	0 = Data 1	ransmitted on rising edge of	f SCK						
bit 5	D/A: Data	Address bit							
	Used in I ²	C mode only.							
bit 4	P: Stop bi	t							
	Used in I ²	C mode only.							
bit 3	S: Start bi	it							
	Used in I ²	C mode only.							
bit 2	R/W : Rea	d/Write Information bit							
	Used in I ²	C mode only.							
bit 1	UA: Upda	ite Address bit							
	Used in I ²	C mode only.							
bit 0	BF: Buffe	r Full Status bit (Receive mo	ode only)						
	1 = Recei	ve complete, SSPBUF is ful	1						
	0 = Recei	ve not complete, SSPBUF i	s empty						

17.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Register 17-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to '0' and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

17.4.7.1 Baud Rate Generation in Power-Managed Modes

When the device is operating in a power-managed mode, the clock source to the Baud Rate Generator may change frequency or stop, depending on the power-managed mode and clock source selected.

In most power modes, the Baud Rate Generator continues to be clocked but may be clocked from the primary clock (selected in a Configuration Word), the secondary clock (Timer1 oscillator at 32.768 kHz) or the internal oscillator block (one of eight frequencies between 31 kHz and 8 MHz). If the Sleep mode is selected, all clocks are stopped and the Baud Rate Generator will not be clocked.

FIGURE 17-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 17-3: I²C CLOCK RATE W/BRG

Fosc	Fcy	Fcy * 2	SSPADD VALUE (See Register 17-4, Mode 1000)	Fsc∟ ⁽²⁾ (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Bh	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

2: Actual clock rate will depend on bus conditions. Bus capacitance can increase rise time and extend the low time of the clock period, reducing the effective clock frequency (see Section 17.4.7.2 "Clock Arbitration").

NOTES:

18.3 USART Asynchronous Mode

In this mode, the USART uses standard Non-Returnto-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware but can be implemented in software (and stored as the ninth data bit). Asynchronous mode functions in all power-managed modes except Sleep mode when call clock sources are stopped. When in PRI IDLE mode, no changes to the Baud Rate Generator values are required; however, other power-managed mode clocks may operate at another frequency than the primary clock. Therefore, the Baud Rate generator values may need adjusting.

Asynchronous mode is selected by clearing bit, SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

18.3.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit, TXIF (PIR1<4>), is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. Flag bit TXIF is not cleared immediately upon loading the Transmit Buffer register, TXREG. TXIF becomes valid in the second instruction cycle following the load instruction. Polling TXIF immediately following a load of TXREG will return invalid results. While flag bit TXIF indicated the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, therefore, the user must poll this bit in order to determine whether the TSR register is empty.

Note 1: The TSR register is not mapped in data memory so it is not available to the user.

2: Flag bit, TXIF, is set when enable bit, TXEN, is set.

FIGURE 18-1: USART TRANSMIT BLOCK DIAGRAM

FIGURE 18-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TXREG	G USART Transmit Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	RG Baud Rate Generator Register									0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

FIGURE 22-2: LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the sense voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, LVDIN (Figure 22-3). This gives users flexibility because it allows them to configure the Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

After Instruction

If Carry PC If Carry PC

= = =

ANDWF	AND W wi	th f		вс		Branch if	Carry	
Syntax:	[label] AN	NDWF f[,d [,a]]	Synt	ax:	[<i>label</i>] B	[<i>label</i>] BC n	
$Operands: \qquad 0 \leq f \leq 255$		Ope	Operands: $-128 \le n \le 127$					
d ∈ [0,1] a ∈ [0,1]		Ope	Operation: if Carry bit is '1', $(PC) + 2 + 2n \rightarrow PC$					
Operation:	(W) .AND.	$(f) \rightarrow dest$		State	us Affected:	None		
Status Affected:	N, Z			Enco	odina:	1110	0010 nn:	nn nnnn
Encoding:	0001	01da ff:	ff ffff	Des	cription:	If the Carr	v bit is '1'. th	en the
Description:	The contents of W are AND'ed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR will not be overridden (default).			program will brand The 2's complement added to the PC. have incremented instruction, the ne PC + 2 + 2n. This then a two-cycle i		vill branch. Implement nu he PC. Since emented to fe a, the new ad 2n. This instr p-cycle instru	umber '2n' is e the PC will etch the next dress will be uction is ction.	
Words:	1			Wor	Words: 1			
Cycles:	1			Cycl	es:	1(2)		
Q Cycle Activity	:			QC	cycle Activity	/:		
Q1	Q2	Q3	Q4	lf Ju	ump:			
Decode	Read	Process	Write to		Q1	Q2	Q3	Q4
	register T	Data	destination		Decode	Read literal 'n'	Process Data	Write to PC
Example:	ANDWF	REG, W			No	No	No	No
Before Instru	uction			lf N		operation	operation	operation
W	= 0x17				Q1	Q2	Q3	Q4
REG = 0xC2 After Instruction			Decode	Read literal	Process	No		
W	= 0x02					'n	Data	operation
REG	= 0xC2			Exa	<u>mple</u> :	HERE	BC JUMP	
					Before Instr	uction	-l	
					PC	= ad	dress (HERE)

1; address (JUMP) 0; address (HERE + 2)

MOVLW Move Literal to W						N	IOVWF	
Synt	ax:	[label]	MOVLV	/ k			5	Syntax:
Оре	rands:	$0 \le k \le 25$	55				C	Operand
Оре	ration:	$k \to W$						
Statu	us Affected:	None					C	Operatio
Enco	oding:	0000	1110	kkk	k	kkkk	5	Status A
Description:		The eight W.	The eight-bit literal 'k' is loaded into W.					Encodine Descripti
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read literal 'k'	Proce Data	ess a	Wr	ite to W	V	Vords:
<u>Exa</u>	mple:	MOVLW	0x5A				()ycles: Q Cycle
	After Instruct	ion						yoic

Syntax:	[label]	MOVWF	= f	[,a]	
Operands:	$0 \le f \le 25$	5			
	a ∈ [0,1]				
Operation:	$(W) \to f$				
Status Affected:	None				
Encoding:	0110	111a	fff	f	ffff
Description:	Move dat Location 256-byte Access B riding the the bank BSR valu	a from W if' can be bank. If ' ank will I BSR val will be se e (defau	/ to re anyv a' is ' be sel ue. If electe It).	egiste where 0', th lected 'a' = d as	r 'f'. e in the e d, over- 1, then per the
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	}	(ຊ4
Decode	Read	Proce	SS	W	rite
	register 'f'	Data	à	regis	ster 'f'
Example:	MOVWF	REG			

Move W to f

Before Instruction						
W	=	0x4F				
REG	=	0xFF				
After Instruction						
W = 0x4F						

REG = 0x4F

© 2007 Microchip Technology Inc.

W

= 0x5A

26.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VoD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows:

Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 26-6: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO (industrial)
			DC	25	MHz	EC, ECIO (extended)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC osc
			0.1	1	MHz	XT osc
			4	25	MHz	HS osc
			4	10	MHz	HS + PLL osc (industrial)
			4	6.25	MHz	HS + PLL osc (extended)
			5	33	kHz	LP Osc mode
1	Tosc	External CLKI Period ⁽¹⁾	25	—	ns	EC, ECIO (industrial)
			40	—	ns	EC, ECIO (extended)
		Oscillator Period ⁽¹⁾	250	—	ns	RC osc
			1	—	μS	XT osc
			40	250	ns	HS osc
			100	250	ns	HS + PLL osc (industrial)
			160	250	ns	HS + PLL osc (extended)
			30	_	μS	LP osc
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	—	ns	Tcy = 4/Fosc (industrial)
			160		ns	ICY = 4/FOSC (extended)
3	TosL,	External Clock in (OSC1)	30	—	ns	XT osc
	IOSH	High or Low Time	2.5	—	μS	LP osc
			10		ns	HS osc
4	TosR,	External Clock in (OSC1)	—	20	ns	XT osc
	TosF	Rise or Fall Time	—	50	ns	LP osc
			—	7.5	ns	HS osc

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 27-31: ΔIPD LVD vs. VDD SLEEP MODE, LVD = 2.00V-2.12V

FIGURE 27-32: △IPD BOR vs. VDD, -40°C TO +125°C SLEEP MODE, BOR ENABLED AT 2.00V-2.16V

