

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4220-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS

Din Nome	Pi	n Numl	oer	Pin Buffer Descrip		Decericálor
	PDIP	TQFP	QFN	Туре	Туре	Description
MCLR/VPP/RE3 MCLR VPP RE3	1	18	18	I P I	ST ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. Programming voltage input. Digital input.
OSC1/CLKI/RA7	13	30	32	•	0.	Oscillator crystal or external clock input.
OSC1				I	ST	Oscillator crystal input or external clock source input.
CLKI				I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7				I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	31	33	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0		In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6				I/O	TTL	General purpose I/O pin.
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1	3	20	20			
RA1 AN1				I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+	5	22	22		0	
RA3 AN3				I/O I	TTL Analog	Digital I/O. Analog input 3.
VREF+	0	00	00	I	Analog	A/D reference voltage (high) input.
RA4/TOCKI/CTOUT RA4 TOCKI C1OUT	0	23	23	I/O I O	ST/OD ST —	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/LVDIN/	7	24	24			
C2OUT RA5 AN4 SS LVDIN C2OUT RA6				I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output. See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL	compa	tible inp	out			CMOS = CMOS compatible input or output
SI = SchrO = Outp	nitt Triç out n draia	ger inp			evels	P = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

3.3.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes in that it does not disable the primary system clock. For timing sensitive applications, this allows for the fastest resumption of device operation, with its more accurate primary clock source, since the clock source does not have to "warm up" or transition from another oscillator.

PRI_IDLE mode is entered by setting the IDLEN bit, clearing the SCS bits and executing a SLEEP instruction. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified in Configuration Register 1H. The OSTS bit remains set in PRI_IDLE mode (see Figure 3-3).

When a wake-up event occurs, the CPU is clocked from the primary clock source. A delay of approximately 10 μ s is required between the wake-up event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 3-4).

4.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, just tie the MCLR pin through a resistor (1k to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

FIGURE 4-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

4.2 Power-up Timer (PWRT)

The Power-up Timer (PWRT) of the PIC18F2X20/4X20 devices is an 11-bit counter, which uses the INTRC source as the clock input. This yields a count of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter #33 for details.

The PWRT is enabled by clearing Configuration bit, PWRTEN.

4.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset, or on exit from most power-managed modes.

4.4 PLL Lock Time-out

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5 Brown-out Reset (BOR)

A Configuration bit, BOREN, can disable (if clear/ programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below VBOR (parameter D005) for greater than TBOR (parameter #35), the brown-out situation will reset the chip. A Reset may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR. If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay TPWRT (parameter #33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay. Enabling BOR Reset does not automatically enable the PWRT.

4.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, after the POR pulse has cleared, PWRT time-out is invoked (if enabled). Then, the OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, all time-outs will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

Table 4-2 shows the Reset conditions for some Special Function Registers, while Table 4-3 shows the Reset conditions for all the registers.

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-/CVREF	bit 2	TTL	Input/output, analog input, VREF- or comparator VREF output.
RA3/AN3/VREF+	bit 3	TTL	Input/output, analog input or VREF+.
RA4/T0CKI/C1OUT	bit 4	ST	Input/output, external clock input for Timer0 or Comparator 1 output. Output is open-drain type.
RA5/AN4/SS/LVDIN/C2OUT	bit 5	TTL	Input/output, analog input, slave select input for Master Synchronous Serial Port, Low-Voltage Detect input or Comparator 2 output.
OSC2/CLKO/RA6	bit 6	TTL	OSC2, clock output or I/O pin.
OSC1/CLKI/RA7	bit 7	TTL	OSC1, clock input or I/O pin.

TABLE 10-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	uu0u 0000
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	a Latch Reg	XXXX XXXX	uuuu uuuu				
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA D	ata Directio	on Register				1111 1111	1111 1111
ADCON1	—	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
CMCON	C2OUT	C10UT	C2INV C1INV CIS CM2 CM1 CM0					0000 0111	0000 0111	
CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

EXAMPLE 12-	-1:	IMPLEMENTING	G A	A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit				
М	OVLW	0x80	;	Preload TMR1 register pair
М	IOVWF	TMR1H	;	for 1 second overflow
C	LRF	TMR1L		
М	IOVLW	b'00001111'	;	Configure for external clock,
М	IOVWF	T1OSC	;	Asynchronous operation, external oscillator
C	LRF	secs	;	Initialize timekeeping registers
C	LRF	mins	;	
М	IOVLW	.12		
М	IOVWF	hours		
В	SF	PIE1, TMR1IE	;	Enable Timer1 interrupt
R	ETURN			
RTCisr				
В	SF	TMR1H,7	;	Preload for 1 sec overflow
В	CF	PIR1,TMR1IF	;	Clear interrupt flag
I	NCF	secs,F	;	Increment seconds
М	IOVLW	.59	;	60 seconds elapsed?
C	PFSGT	secs		
R	ETURN		;	No, done
C	LRF	secs	;	Clear seconds
I	NCF	mins,F	;	Increment minutes
М	IOVLW	.59	;	60 minutes elapsed?
C	PFSGT	mins		
R	ETURN		;	No, done
С	LRF	mins	;	clear minutes
I	NCF	hours,F	;	Increment hours
М	OVLW	.23	;	24 hours elapsed?
С	PFSGT	hours		
R	ETURN	0.1	;	No, done
M	IOV LW	.01	;	Keset nours to 1
M	IOVWE'	nours		
R	ETURN.		;	Doue

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, I	e on BOR	Valu all c Res	e on ther ets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111	1111	1111	1111
TMR1L	Timer1 Low		XXXX X	xxxx	uuuu	uuuu						
TMR1H	Timer1 High Byte Register										uuuu	uuuu
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	u0uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

15.1 CCP1 Module

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

TABLE 15-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

15.2 CCP2 Module

Capture/Compare/PWM Register 2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

CCP2 functions identically to CCP1 except for the enhanced PWM modes offered by CCP2

TABLE 15-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	TMR1 or TMR3 time base. Time base can be different for each CCP.
Capture	Compare	The compare could be configured for the Special Event Trigger which clears either TMR1 or TMR3 depending upon which time base is used.
Compare	Compare	The compare(s) could be configured for the Special Event Trigger which clears TMR1 or TMR3 depending upon which time base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽²⁾	R/W	UA	BF
bit 7							bit 0

Legend:										
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
hit 7	CMD: Clau	· Data Cantral hit								
dit 7	In Master of 1 = Slew r 0 = Slew r	7 Rate Control bit or Slave mode: rate control disabled rate control enabled								
bit 6	CKE: SME In Master of 1 = Enable 0 = Disable	CKE: SMBus Select bit <u>In Master or Slave mode:</u> 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs								
bit 5	D/A: Data/ In Master r Reserved. In Slave m 1 = Indicat 0 = Indicat	Address bit <u>node:</u> o <u>de:</u> es that the last byte receiv es that the last byte receiv	ved or transmitted was data ved or transmitted was address	s						
bit 4	P: Stop bit 1 = Indicat 0 = Stop bi	(1) es that a Stop bit has been t was not detected last	n detected last							
bit 3	S: Start bit 1 = Indicat 0 = Start b	(2) es that a Start bit has bee it was not detected last	n detected last							
bit 2	R/W : Read In <u>Slave m</u> 1 = Read 0 = Write <u>In Master r</u> 1 = Transn 0 = Transn	I/Write bit Information (I ² C <u>ode:</u> ⁽³⁾ node: ⁽⁴⁾ nit is in progress nit is not in progress	mode only)							
bit 1	UA: Updat 1 = Indicat 0 = Addres	e Address bit (10-Bit Slave es that the user needs to s does not need to be upo	e mode only) update the address in the SSF dated	ADD register						
bit 0	BF: Buffer <u>In Transmi</u> 1 = Data tr 0 = Data tr <u>In Receive</u> 1 = Receiv 0 = Receiv	Full Status bit t <u>mode:</u> ansmit in progress (does n ansmit complete (does no <u>mode:</u> e complete, SSPBUF is fu e not complete, SSPBUF	not include th <u>e ACK</u> and Stop t include the ACK and Stop bit Ill is empty	bits), SSPBUF is full ts), SSPBUF is empty						
Note 1: 2: 3:	This bit is cleare This bit is cleare This bit holds th address match	ed on Reset when SSPEN ed on Reset when SSPEN e R/W bit information follo to the next Start bit, Stop b	is cleared or a Start bit has be is cleared or a Stop bit has be wing the <u>last</u> address match. bit or not ACK bit.	een detected. een detected. This bit is only valid from the						

4: ORing this bit with the SSPCON2 bits, SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'					
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unk	nown				
bit 7	GCEN: Gene	ral Call Fnable	bit (Slave mo	de only)							
	1 = Enable in 0 = General o	terrupt when a call address disa	general call a abled	iddress (0000h	n) is received in	the SSPSR					
bit 6	ACKSTAT: A	cknowledge Sta	itus bit (Maste	er Transmit mo	ode only)						
	1 = Acknowle 0 = Acknowle	edge was not re edge was receiv	ceived from s ed from slave	lave e							
bit 5	ACKDT: Ackr	nowledge Data	bit (Master R	eceive mode c	only) ⁽¹⁾						
	1 = Not Ackn 0 = Acknowle	owledge edge									
bit 4	ACKEN: Ack 1 = Initiate A cleared b 0 = Acknowle	nowledge Sequ cknowledge sec by hardware. edge sequence	ence Enable quence on SD Idle	bit (Master Re A and SCL pir	eceive mode onl ns and transmit A	y) ACKDT data bit	. Automatically				
bit 3	RCEN: Recei	ive Enable bit (I	Master Recei	ve mode only)							
	1 = Enables I 0 = Receive I	Receive mode f Idle	or I ² C								
bit 2	PEN: Stop Co	ondition Enable	bit (Master m	node only)							
	1 = Initiate St 0 = Stop cond	op condition on dition Idle	SDA and SC	L pins. Autom	atically cleared	by hardware.					
bit 1	RSEN: Repeated Start Condition Enabled bit (Master mode only)										
	1 = Initiate R 0 = Repeate	Repeated Start c d Start conditior	ondition on S 1 Idle	DA and SCL p	oins. Automatica	ally cleared by I	nardware.				
bit 0	SEN: Start Co	ondition Enable	d/Stretch Ena	abled bit							
	<u>In Master mo</u> 1 = Initiate St 0 = Start cone	<u>de:</u> art condition on dition Idle	SDA and SC	CL pins. Autom	atically cleared	by hardware.					
	In Slave mod 1 = Clock stre 0 = Clock stre	<u>e:</u> etching is enabl etching is disabl	ed for both S ed	lave Transmit a	and Slave Rece	ive (stretch en	abled)				

REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C[™] MODE)

Note 1: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

FIGURE 18-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TXREG	USART Tra		0000 0000	0000 0000						
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate Generator Register									0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear. The value in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 19.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time <u>can be</u> programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared OR
 - · Waiting for the A/D interrupt
- Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before next acquisition starts.

FIGURE 19-2: ANALOG INPUT MODEL

NOTES:

After Instruction

If Carry PC If Carry PC

= = =

ANDWF	NDWF AND W with f		вс		Branch if	Carry			
Syntax:	ntax: [<i>label</i>] ANDWF f [,d [,a]]		Synt	ax:	[<i>label</i>] B	[<i>label</i>] BC n			
Operands:	$0 \le f \le 255$			Ope	rands:	-128 ≤ n ≤	- 128 ≤ n ≤ 127		
	$\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$			Ope	Operation: if Carry bit is '1', $(PC) + 2 + 2n \rightarrow PC$				
Operation:	(W) .AND.	$(f) \rightarrow dest$		State	us Affected:	None	None		
Status Affected:	N, Z			Enco	odina:	1110	0010 nn:	nn nnnn	
Encoding:	0001	01da ff:	ff ffff	Des	cription:	If the Carr	v bit is '1'. th	en the	
Description:	escription: The contents of W are AND'ed with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR will not be overridden (default).				program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Words:	1			Wor	Words:				
Cycles:	1			Cycl	Cycles:				
Q Cycle Activity	:			QC	Q Cycle Activity:				
Q1	Q2	Q3	Q4	lf Ju	ump:				
Decode	Read	Process	Write to		Q1	Q2	Q3	Q4	
	register T	Data	destination		Decode	Read literal 'n'	Process Data	Write to PC	
Example:	ANDWF	REG, W			No	No	No	No	
Before Instru	uction			lf N		operation	operation	operation	
W	= 0x17				Q1	Q2	Q3	Q4	
After Instruc	= 0xC2				Decode	Read literal	Process	No	
W	= 0x02					'n	Data	operation	
REG	= 0xC2			Exa	<u>mple</u> :	HERE	BC JUMP		
					Before Instr	uction			
					PC	= ad	dress (HERE)	

1; address (JUMP) 0; address (HERE + 2)

NEG	F	Negate f							
Synt	tax:	[label]	[label] NEGF f[,a]						
Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]						
Ope	ration:	$(\overline{f}) + 1 \rightarrow$	f						
Statu	us Affected:	N, OV, C,	DC, Z						
Enco	oding:	0110	110a	ffff	ffff				
Des	cription:	Location 'f compleme the data m is '0', the <i>J</i> selected, c If 'a' = 1, t selected a	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value						
Wor	ds:	1	1						
Cycl	es:	1	1						
QC	Cycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proce Data	ss ı re	Write gister 'f'				
Example: NEGF REG, 1									
	Before Instru REG	iction = 0011 1	.010 [0x	3A]					
After Instructio REG =		tion = 1100 0)110 [0 :	«C6]					

NOF)	No Operation							
Syntax:		[label]	NOP						
Operands:		None	None						
Operation:		No opera	No operation						
Statu	us Affected:	None							
Encoding:		0000 1111	0000 xxxx	000 0000 000 xxx xxxx xxx		0000 xxxx			
Desc	cription:	No opera	tion.						
Wor	ds:	1							
Cycles:		1							
Q Cycle Activity:									
Q1		Q2	Q	3	Q4				
	Decode	No operation	No operation		ор	No eration			

Example:

None.

TBLWT	Table Write					
Syntax:	[label]	TBLWT (*; *+; *-; +*)				
Operands:	None					
Operation:	if TBLWT* (TABLAT) TBLPTR - if TBLWT* (TABLAT) (TBLPTR) if TBLWT* (TABLAT) (TBLPTR) (TABLAT) (TABLAT)	, → Holding Register, No Change; +, → Holding Register, +1 → TBLPTR; -, → Holding Register, -1 → TBLPTR; *, +1 → TBLPTR, → Holding Register				
Status Affected:	None					

Encoding: 0000 0000 0000 11nn nn=0 * =1 *+ =2 *-=3 +*

Description:

This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to **Section 6.0 "Flash Program Memory"** for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 MBtye address range. The LSb of the TBLPTR selects which byte of the program memory

location to access. TBLPTR[0] = 0:Least Significant Byte of Program Memory Word TBLPTR[0] = 1:Most Significant Byte of Program Memory Word

The TBLWT instruction can modify the value of TBLPTR as follows:

- · no change
- post-increment
- post-decrement
- pre-increment

TBLWT Table Write (Continued)

Words: 1

Cycles: 2

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	No operation	No operation	No operation
No operation	No operation (Read TABLAT)	No operation	No operation (Write to Holding Register)

Example1: TBLWT *+;

Before Instruction

DCIU				
	TABLAT TBLPTR		= =	0x55 0x00A356
	(0x00A356)	LOISTER	=	0xFF
Afte	r Instructio	ns (table wi	rite co	ompletion)
	TABLAT		=	0x55
			=	0x00A357
	(0x00A356)	LOISTER	=	0x55
Example	<u>e 2</u> :	TBLWT -	⊦*;	
Befo	ore Instruct	ion		
	TABLAT		=	0x34
	TBLPTR		=	0x01389A
	HOLDING F	REGISTER		
	(0x01389A)		=	0xFF
		REGISTER	_	
	(0x01309B)		-	UXET
Afte	r Instructio	n (table writ	te cor	mpletion)
	TABLAT		=	0x34
	TBLPTR		=	0x01389B
	HOLDING F	REGISTER		
	(0x01389A)		=	0xFF
	HOLDING F	REGISTER		
	(0x01389B)		=	0x34

26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 26-6: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO (industrial)
			DC	25	MHz	EC, ECIO (extended)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC osc
			0.1	1	MHz	XT osc
			4	25	MHz	HS osc
			4	10	MHz	HS + PLL osc (industrial)
			4	6.25	MHz	HS + PLL osc (extended)
			5	33	kHz	LP Osc mode
1	Tosc	External CLKI Period ⁽¹⁾	25	—	ns	EC, ECIO (industrial)
			40	—	ns	EC, ECIO (extended)
		Oscillator Period ⁽¹⁾	250	—	ns	RC osc
			1	—	μS	XT osc
			40	250	ns	HS osc
			100	250	ns	HS + PLL osc (industrial)
			160	250	ns	HS + PLL osc (extended)
			30	_	μS	LP osc
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	—	ns	Tcy = 4/Fosc (industrial)
			160		ns	ICY = 4/FOSC (extended)
3	TosL,	External Clock in (OSC1)	30	—	ns	XT osc
	IOSH	High or Low Time	2.5	—	μS	LP osc
			10		ns	HS osc
4	TosR,	External Clock in (OSC1)	—	20	ns	XT osc
	TosF	Rise or Fall Time	—	50	ns	LP osc
			—	7.5	ns	HS osc

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

-	1	1		1	-	1	1
Param. No.	Symbol	Characteristic		Characteristic Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μs	PIC18FXX20 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	PIC18FXX20 must operate at a minimum of 10 MHz
			MSSP module	1.5 TCY	—		
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS	PIC18FXX20 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXX20 must operate at a minimum of 10 MHz
			MSSP module	1.5 TCY	—		
102	TR	SDA and SCL Rise	100 kHz mode	_	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	103 TF	SDA and SCL Fall Time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Time	400 kHz mode	0.6	—	μS	Start condition
91	THD:STA	Start Condition Hold	100 kHz mode	4.0	_	μS	After this period, the first clock pulse is
		Time	400 kHz mode	0.6	—	μS	generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	T Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		Time	400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup	100 kHz mode	4.7	—	μS	
		Time	400 kHz mode	0.6	—	— μ s	
109	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)
	Cl	Clock	400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free before a
			400 kHz mode	1.3	—	μS	new transmission can start
D102	Св	Bus Capacitive Loadir	ng	—	400	pF	

TABLE 26-19: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification), before the SCL line is released.

FIGURE 27-7: MAXIMUM IDD vs. Fosc OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C

FIGURE 27-27: Vol vs. IoL OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V

NOTES: