

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4220-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS

Din Nome	Pi	n Numl	oer	Pin	Buffer	Decericálor
	PDIP	TQFP	QFN	Туре	Туре	Description
MCLR/VPP/RE3 MCLR VPP RE3	1	18	18	I P I	ST ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. Programming voltage input. Digital input.
OSC1/CLKI/RA7	13	30	32	•	0.	Oscillator crystal or external clock input.
OSC1				I	ST	Oscillator crystal input or external clock source input.
CLKI				I	CMOS	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7				I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	31	33	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				0		In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6				I/O	TTL	General purpose I/O pin.
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1	3	20	20			
RA1 AN1				I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+	5	22	22		0	
RA3 AN3				I/O I	TTL Analog	Digital I/O. Analog input 3.
VREF+	0	00	00	I	Analog	A/D reference voltage (high) input.
RA4/TOCKI/CTOUT RA4 TOCKI C1OUT	0	23	23	I/O I O	ST/OD ST —	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/LVDIN/	7	24	24			
C2OUT RA5 AN4 SS LVDIN C2OUT RA6				I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output. See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL	compa	tible inp	out			CMOS = CMOS compatible input or output
SI = SchrO = Outp	nitt Triç out n draia	ger inp			evels	P = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

Dia Mana	Pi	n Numl	ber	Pin	Buffer	Description
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description
	0	25	25			PORTE is a bidirectional I/O port.
REO	0	25	25	1/0	ST	Digital I/O
AN5				1	Analog	Analog input 5.
RD				I	TTL	Read control for Parallel Slave Port (see also \overline{WR} and \overline{CS} pins).
RE1/AN6/WR	9	26	26			
RE1				I/O	ST	Digital I/O.
AN6				I	Analog	Analog input 6.
WR				I	TTL	Write control for Parallel Slave Port (see CS and RD pins).
RE2/AN7/CS	10	27	27			
RE2				I/O	ST	Digital I/O.
AN7				1	Analog	Analog input 7.
CS				I	TTL	Chip select control fo <u>r</u> Parallel Slave Port (see related RD and WR).
RE3	1	18	18	_	—	See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 29	6, 30, 31	Р	—	Ground reference for logic and I/O pins.
Vdd	11, 32	7, 28	7, 8 29	Р	—	Positive supply for logic and I/O pins.
NC	_		13, 28	NC	NC	No connect.
Legend: TTL = TTL ST = Sch	compa mitt Tric	tible inp gaer inp	out out with	CMOS	levels	CMOS = CMOS compatible input or output

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

= Input

O = Output

Ρ = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

3.5.2 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock (defined in Configuration Register 1H) becomes ready. At that time, the OSTS bit is set and the device begins executing code.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see Section 23.3 "Two-Speed Start-up") or Fail-Safe Clock Monitor (see Section 23.4 "Fail-Safe Clock Monitor") are enabled in Configuration Register 1H, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Since the OSCCON register is cleared following all Resets, the INTRC clock source is selected. A higher speed clock may be selected by modifying the IRCF bits in the OSCCON register. Execution is clocked by the internal oscillator block until either the primary clock becomes ready, or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

3.5.3 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in a wake-up from the power-managed mode (see Section 3.2 "Sleep Mode" through Section 3.4 "Run Modes").

If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see **Section 23.2** "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the system clock source.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. These are:

- PRI_IDLE mode, where the primary clock source is not stopped; and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these cases, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes).

However, a fixed delay (approximately 10 μ s) following the wake-up event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.6 INTOSC Frequency Drift

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways.

It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has the side effect that the INTRC clock source frequency is also affected. However, the features that use the INTRC source often do not require an exact frequency. These features include the Fail-Safe Clock Monitor, the Watchdog Timer and the RC_RUN/RC_IDLE modes when the INTRC clock source is selected.

Being able to adjust the INTOSC requires knowing when an adjustment is required, in which direction it should be made and in some cases, how large a change is needed. Three examples are shown but other techniques may be used.

3.6.1 EXAMPLE – USART

An adjustment may be indicated when the USART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the system clock frequency is too high – try decrementing the value in the OSCTUNE register to reduce the system clock frequency. Errors in data may suggest that the system clock speed is too low – increment OSCTUNE.

3.6.2 EXAMPLE – TIMERS

This technique compares system clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast – decrement OSCTUNE.

3.6.3 EXAMPLE – CCP IN CAPTURE MODE

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast – decrement OSCTUNE. If the measured time is much less than the calculated time, the internal oscillator block is running too slow – increment OSCTUNE.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt		
TOSU	2220	2320	4220	4320	0 0000	0 0000	0 uuuu (3)
TOSH	2220	2320	4220	4320	0000 0000	0000 0000	uuuu uuuu ⁽³⁾
TOSL	2220	2320	4220	4320	0000 0000	0000 0000	uuuu uuuu (3)
STKPTR	2220	2320	4220	4320	uu-0 0000	00-0 0000	uu-u uuuu (3)
PCLATU	2220	2320	4220	4320	0 0000	0 0000	u uuuu
PCLATH	2220	2320	4220	4320	0000 0000	0000 0000	սսսս սսսս
PCL	2220	2320	4220	4320	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	2220	2320	4220	4320	00 0000	00 0000	uu uuuu
TBLPTRH	2220	2320	4220	4320	0000 0000	0000 0000	սսսս սսսս
TBLPTRL	2220	2320	4220	4320	0000 0000	0000 0000	սսսս սսսս
TABLAT	2220	2320	4220	4320	0000 0000	0000 0000	սսսս սսսս
PRODH	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	սսսս սսսս
PRODL	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	นนนน นนนน
INTCON	2220	2320	4220	4320	0000 000x	0000 000u	uuuu uuuu (1)
INTCON2	2220	2320	4220	4320	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	2220	2320	4220	4320	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	2220	2320	4220	4320	N/A	N/A	N/A
POSTINC0	2220	2320	4220	4320	N/A	N/A	N/A
POSTDEC0	2220	2320	4220	4320	N/A	N/A	N/A
PREINC0	2220	2320	4220	4320	N/A	N/A	N/A
PLUSW0	2220	2320	4220	4320	N/A	N/A	N/A
FSR0H	2220	2320	4220	4320	xxxx	uuuu	uuuu
FSR0L	2220	2320	4220	4320	XXXX XXXX	սսսս սսսս	սսսս սսսս
WREG	2220	2320	4220	4320	XXXX XXXX	սսսս սսսս	սսսս սսսս
INDF1	2220	2320	4220	4320	N/A	N/A	N/A
POSTINC1	2220	2320	4220	4320	N/A	N/A	N/A
POSTDEC1	2220	2320	4220	4320	N/A	N/A	N/A
PREINC1	2220	2320	4220	4320	N/A	N/A	N/A
PLUSW1	2220	2320	4220	4320	N/A	N/A	N/A

TABLE 4-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-2 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt		
FSR1H	2220	2320	4220	4320	xxxx	uuuu	uuuu
FSR1L	2220	2320	4220	4320	XXXX XXXX	սսսս սսսս	սսսս սսսս
BSR	2220	2320	4220	4320	0000	0000	uuuu
INDF2	2220	2320	4220	4320	N/A	N/A	N/A
POSTINC2	2220	2320	4220	4320	N/A	N/A	N/A
POSTDEC2	2220	2320	4220	4320	N/A	N/A	N/A
PREINC2	2220	2320	4220	4320	N/A	N/A	N/A
PLUSW2	2220	2320	4220	4320	N/A	N/A	N/A
FSR2H	2220	2320	4220	4320	xxxx	uuuu	uuuu
FSR2L	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	սսսս սսսս
STATUS	2220	2320	4220	4320	x xxxx	u uuuu	u uuuu
TMR0H	2220	2320	4220	4320	0000 0000	0000 0000	սսսս սսսս
TMR0L	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	սսսս սսսս
T0CON	2220	2320	4220	4320	1111 1111	1111 1111	սսսս սսսս
OSCCON	2220	2320	4220	4320	0000 q000	0000 q000	uuuu qquu
LVDCON	2220	2320	4220	4320	00 0101	00 0101	uu uuuu
WDTCON	2220	2320	4220	4320	0	0	u
RCON ⁽⁴⁾	2220	2320	4220	4320	01 11q0	0q qquu	uu qquu
TMR1H	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	սսսս սսսս
TMR1L	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	นนนน นนนน
T1CON	2220	2320	4220	4320	0000 0000	u0uu uuuu	นนนน นนนน
TMR2	2220	2320	4220	4320	0000 0000	0000 0000	սսսս սսսս
PR2	2220	2320	4220	4320	1111 1111	1111 1111	1111 1111
T2CON	2220	2320	4220	4320	-000 0000	-000 0000	-uuu uuuu
SSPBUF	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	นนนน นนนน
SSPADD	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน
SSPSTAT	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน
SSPCON1	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน
SSPCON2	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน

TABLE 4-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS ((CONTINUED)
------------	---	-------------

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- **2:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 4-2 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

							,	(
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0000 q000	27, 47
LVDCON	—	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	47, 233
WDTCON	—	_	—	—	_	_	—	SWDTEN	0	47, 247
RCON	IPEN	-	_	RI	TO	PD	POR	BOR	01 11q0	45, 69, 98
TMR1H	Timer1 Regis	•	XXXX XXXX	47, 125						
TMR1L	Timer1 Regis	ster Low Byte							XXXX XXXX	47, 125
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	47, 121
TMR2	Timer2 Regis	ster							0000 0000	47, 127
PR2	Timer2 Perio	d Register							1111 1111	47, 127
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	47, 127
SSPBUF	MSSP Recei	ve Buffer/Trar	nsmit Register						**** ****	47, 156, 164
SSPADD	MSSP Addre	ss Register ir	n I ² C™ Slave	mode. MSSP	Baud Rate Re	eload Registe	r in I ² C Maste	r mode.	0000 0000	47, 164
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	47, 156, 165
SSPCON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	47, 157, 166
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	47, 167
ADRESH	A/D Result R	egister High I	Byte						XXXX XXXX	48, 220
ADRESL	A/D Result R	egister Low E	Syte						XXXX XXXX	48, 220
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	48, 211
ADCON1	_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0qqq	48, 212
ADCON2	ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	48, 213
CCPR1H	Capture/Com	npare/PWM R	egister 1 High	n Byte					XXXX XXXX	48, 134
CCPR1L	Capture/Com	npare/PWM R	egister 1 Low	Byte					XXXX XXXX	48, 134
CCP1CON	P1M1 ⁽⁵⁾	P1M0 ⁽⁵⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	48, 133, 141
CCPR2H	Capture/Com	npare/PWM R	egister 2 High	n Byte					XXXX XXXX	48, 134
CCPR2L	Capture/Com	npare/PWM R	egister 2 Low	Byte					XXXX XXXX	48, 134
CCP2CON	—	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	48, 133
PWM1CON ⁽⁵⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	48, 149
ECCPAS ⁽⁵⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	48, 150
CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	48, 227
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	48, 221
TMR3H	Timer3 Regis	ster High Byte							XXXX XXXX	48, 131
TMR3L	Timer3 Regis	ster Low Byte	r					n	XXXX XXXX	48, 131
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	48, 129
SPBRG	USART Baud Rate Generator									48, 198
RCREG	USART Receive Register									48, 204, 203
TXREG	USART Tran	smit Register							0000 0000	48, 202, 203
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	48, 196
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	48, 197

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read as '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read as '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: If PBADEN = 0, PORTB<4:0> are configured as digital inputs and read unknown and if PBADEN = 1, PORTB<4:0> are configured as analog inputs and read as '0' following a Reset.

5: These registers and/or bits are not implemented on the PIC18F2X20 devices and read as 0x00.

6: The RE3 port bit is available as an input only pin only in 40-pin devices when Master Clear functionality is disabled (CONFIG3H<7>= 0).

5.14 RCON Register

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device Reset. These flags include the TO, PD, POR, BOR and RI bits. This register is readable and writable.

- Note 1: If the BOREN Configuration bit is set (Brown-out Reset enabled), the BOR bit is '1' on a Power-on Reset. After a Brownout Reset has occurred, the BOR bit will be cleared and must be set by firmware to indicate the occurrence of the next Brown-out Reset.
 - 2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent Power-on Resets may be detected.

REGISTER 5-3: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7			•		•		bit 0

-									
Legend:									
R = Readable b	oit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 7	IPEN: Interrupt Priority Enable bit								
	1 = Enable priority levels on interrupts								
	0 = Disable p	riority levels on interrupts (P	IC16CXXX Compatibility mode)					
bit 6-5	Unimplement	ted: Read as '0'							
bit 4	RI: RESET Ins	truction Flag bit							
	1 = The RESET instruction was not executed (set by firmware only)								
	0 = The RESET instruction was executed causing a device Reset (must be set in software after a								
	Brown-ou	it Reset occurs)							
bit 3	TO: Watchdog	g Time-out Flag bit							
	1 = Set by po	wer-up, CLRWDT instruction	or SLEEP instruction						
	0 = A WDT til	me-out occurred							
bit 2	PD: Power-do	own Detection Flag bit							
	1 = Set by power-up or by the CLRWDT instruction								
	0 = Cleared b	by execution of the SLEEP in	struction						
bit 1	POR: Power-o	on Reset Status bit							
	1 = A Power-on Reset has not occurred (set by firmware only)								
	0 = A Power-	on Reset occurred (must be	set in software after a Power-	on Reset occurs)					
bit 0	BOR: Brown-	out Reset Status bit							
	1 = A Brown-	out Reset has not occurred (set by firmware only)						
	0 = A Brown-	out Reset occurred (must be	set in software after a Brown-	out Reset occurs)					

R/W-:	x R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPG	D CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7						•	bit 0
Legend:		S = Settable b	it				
R = Read	lable bit	W = Writable t	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	EEPGD: Flas	h Program or D	ata EEPRO	M Memory Sele	ct bit		
	1 = Access F 0 = Access d	iasn program m ata EEPROM m	emory nemory				
bit 6	CFGS: Flash	Program/Data	EEPROM or	Configuration S	elect bit		
	1 = Access C	Configuration or	Calibration I	registers			
	0 = Access F	lash program o	r data EEPR	OM memory			
bit 5	Unimplemen	ited: Read as 'O)'				
bit 4	FREE: Flash	Row Erase Ena	able bit				
	1 = Erase the	e program men	nory row add	Iressed by TBL	PTR on the ne	ext WR comman	nd (cleared by
	0 = Perform	on of erase ope write-only	ration)				
bit 3	WRERR: EEI	PROM Error Fla	ig bit ⁽¹⁾				
	1 = A write o	peration was p	rematurely te	erminated (MCL	R or WDT Res	set during self-t	imed erase or
	program	operation)					
h:+ 0	0 = 1 he write	e operation com	pleted norm	ally			
DIT 2		e/write Enable I	JIC				
	0 = Inhibits w	vrite cycles					
bit 1	WR: Write Co	ontrol bit					
	1 = Initiates a	a data EEPROM	1 erase/write	cycle or a prog	ram memory ei	ase cycle or wri	ite cycle
	(The ope	eration is self-tim	ned and the	bit is cleared by	hardware once	e write is compl	ete.
	∩ = Write cvc	bit can only be	set (not clea	red) in software	.)		
bit 0	RD: Read Co	ontrol bit					
bit o	1 = Initiates a	a memory read (Read takes	one cycle. RD is	cleared in hard	dware. The RD	bit can only be
	set (not c	cleared) in softw	are. RD bit c	annot be set whe	en EEPGD = 1	.)	
	0 = Read cor	mpleted					
Note 1:	When a WRERR of	occurs the EEP	GD or FREE	bits are not cle	ared This allo	ws tracing of the	e error

REGISTER 7-1: EECON1: DATA EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows tracing of the error condition.

9.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high-priority interrupts 0 = Disables all high-priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

FIGURE 10-9: BLOCK DIAGRAM OF RB3/CCP2 PIN

NOTES:

NOTES:

17.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Register 17-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 17-32).

FIGURE 17-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 17-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 7	SPEN: Serial 1 = Serial por 0 = Serial por	Port Enable bi t enabled (con t disabled (held	t figures RX/D ⁻ d in Reset)	T and TX/CK pi	ns as serial por	t pins)		
bit 6	RX9: 9-Bit Re 1 = Selects 9- 0 = Selects 8-	ceive Enable t bit reception bit reception	bit					
bit 5	SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode – Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode – Slave:							
bit 4	CREN: Continuous Receive Enable bit <u>Asynchronous mode:</u> 1 = Enables receiver 0 = Disables receiver <u>Synchronous mode:</u> 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)							
bit 3	ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set 0 = Disables address detection, enables interrupt and loads the receive buffer when RSR<8> is set							
bit 2	 FERR: Framing Error bit 1 = Framing error (can be updated by reading RCREG register and receiving next valid byte) a = No framing error 							
bit 1	OERR: Overrun e 0 = No overrun e	un Error bit error (can be cl in error	eared by clea	ring bit CREN)				
bit 0	RX9D: 9th bit This can be a	of Received D ddress/data bit	ata : or a paritv bi	it and must be o	calculated by us	ser firmware.		

18.3 USART Asynchronous Mode

In this mode, the USART uses standard Non-Returnto-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The Baud Rate Generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware but can be implemented in software (and stored as the ninth data bit). Asynchronous mode functions in all power-managed modes except Sleep mode when call clock sources are stopped. When in PRI IDLE mode, no changes to the Baud Rate Generator values are required; however, other power-managed mode clocks may operate at another frequency than the primary clock. Therefore, the Baud Rate generator values may need adjusting.

Asynchronous mode is selected by clearing bit, SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

18.3.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit, TXIF (PIR1<4>), is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. Flag bit TXIF is not cleared immediately upon loading the Transmit Buffer register, TXREG. TXIF becomes valid in the second instruction cycle following the load instruction. Polling TXIF immediately following a load of TXREG will return invalid results. While flag bit TXIF indicated the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, therefore, the user must poll this bit in order to determine whether the TSR register is empty.

Note 1: The TSR register is not mapped in data memory so it is not available to the user.

2: Flag bit, TXIF, is set when enable bit, TXEN, is set.

FIGURE 18-1: USART TRANSMIT BLOCK DIAGRAM

18.5 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any power-managed mode. Slave mode is entered by clearing bit, CSRC (TXSTA<7>).

18.5.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit, TXIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TXREG	USART Tr	ansmit R	Register						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	e Genera		0000 0000	0000 0000					

TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission. **Note 1:** The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

CPF	SGT	Compare	f with W, Sk	kip if f > W	CPF	SLT	Compare	f with W, Sł	kip if f < W		
Syn	tax:	[label] C	CPFSGT f[,a]	Synt	Syntax:		[label] CPFSLT f[,a]			
Ope	erands:	0 ≤ f ≤ 255 a ∈ [0,1]	5		Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]			
Operation:		(f) – (W), skip if (f) > (unsigned	(f) – (W), skip if (f) > (W) (unsigned comparison)			ration:	(f) - (W), skip if $(f) < (W)$ (unsigned comparison)				
Status Affected: None		State	us Affected:	None							
Encoding: 0110 010a ffff ffff		ff ffff	Enc	oding:	0110	000a ff:	ff ffff				
Des	Description: Offor Offor Offor Offor Description: Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value		Des	Description: Words:		Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR will not be overridden (default).					
Mor	do				Cyc	es:	1(2)				
Сус	les:	1(2) Note: 3 o	cycles if skip	and followed	QC	Cycle Activity	Note: 3 by	cycles if skip v a 2-word ins	and followed struction.		
0.0	Yele Activity	. Dy				Q1	Q2	Q3	Q4		
QC	Q1	Q2	Q3	Q4		Decode	Read register 'f'	Process Data	No operation		
	Decode	Read register 'f'	Process Data	No	lf sl	kip: Q1	02	03	Q4		
lf s	kip:					No	No	No	No		
	Q1	Q2	Q3	Q4		operation	operation	operation	operation		
	No operation	No operation	No operation	No operation	lf sl	kip and follov Q1	ved by 2-wor Q2	d instruction: Q3	Q4		
lf s	kip and follov	ved by 2-wor	d instruction:			No	No	No	No		
	Q1	Q2	Q3	Q4		operation	operation	operation	operation		
	No	No	No	No operation		No operation	No	No	No		
F	No operation	No operation	No operation	No operation	Exa	mple:	HERE NLESS	CPFSLT REG			
<u>Exa</u>	<u>mple</u> :	HERE NGREATER	CPFSGT RE	lG		Before Instru	uction	•			
		GREATER	:			PC	= Ac	Idress (HERE)		
	Before Instru	uction = Ad	dress (HERE)		After Instruc	tion				
W = ?		UIC33 (HERE	COD (HEKE)		If REG	< W	,				
	After Instruc If REG PC If REG PC	tion > W; = Ad ≤ W; = Ad	dress (grea dress (ngre	TER) ATER)		PC If REG PC	= Ac ≥ W = Ac	ldress (LESS ; ldress (NLES) S)		

SUB	WFB	Subtract	Subtract W from f with Borrow						
Synt	ax:	[label] S	UBWF	3 f[,	d [,a]]				
Opei	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Oper	ration:	(f) – (W) –	$(\overline{C}) \rightarrow 0$	dest					
Statu	us Affected:	N, OV, C,	DC, Z						
Enco	oding:	0101	10da	fff	f ffff				
		row) from 1 method). I stored in V stored bac 'a' is '0', th selected, c 'a' is '1', th selected a (default).	row) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).						
Word	ds:	1							
Cycl	es:	1	1						
Q Cycle Activity:									
	Q1	Q2	Q	3	Q4				
	Decode	Read register 'f'	Proce Dat	ess a	Write to destination				

Example 1:	SU	JBWFB	REG,	1,	0
Before Instruc	tion				
REG	=	0x19	(00	01	1001)
W	=	0x0D	(00	00	1101)
C	=	0x01			
After Instruction	on				
REG	=	0x0C	(00	00	1011)
W	=	0x0D	(00	00	1101)
C	=	0x01			
N S	=	0x00 0x00	; res	sult	is positive
Example 2:	SU	JBWFB	REG,	Ο,	0
Before Instruc	tion				
REG	=	0x1B	(00	01	1011)
W	=	0x1A	(00	01	1010)
С	=	0x00			
After Instruction	on				
REG	=	0x1B	(00	01	1011)
W	=	0x00			
C ·	=	0x01			
N S	=	0x01 0x00	, 18	suit	
Example 3:	St	JBWFB	REG,	1,	0
Before Instruc	tion				
REG	=	0x03	(00	00	0011)
W	=	0x0E	(00	00	1101)
С	=	0x01			
After Instruction	on				
REG	=	0xF5	(11	11	0100)
14/		0.05	; [2	s co	mpj
vv C	_		(00	00	TTOT)
Z	=	0x00			
N ÷	=	0x01	; res	sult	is negative

TBLRD	Table Rea	d			TBLRD	
Syntax:	[label]	Example1:				
Operands:	None	Before				
Operation:	TA TB ME After Ir					
	(Prog Men (TBLPTR)	າ (TBLPT +1 → TB	R)) → TAI LPTR;	BLAT,	IA TB	
	if TBLRD * (Prog Men (TBLPTR) if TBLRD + (TBLPTR) (Prog Men	'-, 1 (TBLPT -1 → TBl ⊦*, +1 → TB 1 (TBLPT	R)) → TAI LPTR; SLPTR, R)) → TAI	BLAT, BLAT	<u>Example2</u> : Before TA TB MB	
Status Affecte	d:None	,	.,		After Ir	
Encoding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*	TB	
Description:	This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2 Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program					
Words: Cycles:	The TBLRI value of TF • no chan • post-inci • post-dec • pre-incre 1 2	instructi BLPTR as ge rement crement ement	ion can mo	odify the		
Q Cycle Activ	rity:					

Q1

Decode

No

operation

Q2

No operation

No operation (Read Program Memory) Q3

No

operation

No

operation

Q4 No operation

No operation (Write TABLAT)

TBLRD Table Read (cont'd)

xample1:	TBLRD	*+	;	
Before Instruc	tion			
TABLAT			=	0x55
MEMORY	0x00A356	5)	=	0x00A356 0x34
After Instruction	n			
TABLAT			=	0x34
TBLPTR			=	0x00A357
xample2:	TBLRD	+*	;	
Before Instruc	tion			
TABLAT			=	0xAA
	0v01435	7)	=	0x01A357
MEMORY(0x01A358	3)	=	0x12 0x34
After Instruction	n			
TABLAT			=	0x34
IBLPIR			=	0x01A358