

in min

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4320-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.3 RC_RUN MODE

In RC RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either of the INTIO1 or INTIO2 oscillators), there are no distinguishable differences between PRI RUN and RC RUN modes during execution. However, a clock switch delay will occur during entry to, and exit from, RC RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The IRCF bits may select the clock frequency before the **SLEEP** instruction is executed. When the clock source is switched to the INTOSC multiplexer (see Figure 3-10), the primary oscillator is shut down and the OSTS bit is cleared.

The IRCF bits may be modified at any time to immediately change the system clock speed. Executing a SLEEP instruction is not required to select a new clock frequency from the INTOSC multiplexer.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.

If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear: there will be no indication of the current clock source. The INTRC source is providing the system clocks.

If the IRCF bits are changed from all clear (thus enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the system continue while the INTOSC source stabilizes in approximately 1 ms.

If the IRCF bits were previously at a non-zero value before the **SLEEP** instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set.

When a wake-up event occurs, the system continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

FIGURE 5-6: DATA MEMORY MAP FOR PIC18F2X20/4X20 DEVICES

5.13 STATUS Register

The STATUS register, shown in Register 5-2, contains the arithmetic status of the ALU. The STATUS register can be the operand for any instruction as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register. For other instructions not affecting any Status bits (see Table 24-2).

Note:	The	C and	DC	bits	oper	rate	as	a	borre	wo
	and	digit	bor	wor	bit	res	bec	tive	ely,	in
	subt	raction.								

REGISTER 5-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	—	Ν	OV	Z	DC ⁽¹⁾	C ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Read	able bit	W = Writable b	pit	U = Unimple	mented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 7-5 bit 4	Unimplemen N: Negative b This bit is use (ALU MSB =	nted: Read as 'o bit ed for signed ari 1).	' thmetic (2's d	complement). I	t indicates whet	her the result v	was negative	
	1 = Result wa 0 = Result wa	as negative as positive						
bit 3	 bit 3 OV: Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7 of the result) to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred 							
bit 2	Z: Zero bit 1 = The resul 0 = The resul	t of an arithmeti t of an arithmeti	c or logic op c or logic op	eration is zero eration is not z	ero			
bit 1	bit 1 DC: Digit Carry/Borrow bit ⁽¹⁾ For ADDWF, ADDLW, SUBLW and SUBWF instructions: 1 = A carry-out from the 4th low-order bit of the result occurred							
bit 0 C: Carry/Borrow bit ⁽²⁾ For ADDWF, ADDLW, SUBLW and SUBWF instructions: 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred								
Note 1: 2:	For Borrow, the po operand. For rotate For Borrow, the po operand. For rotate source register.	larity is reversed e (RRF, RLF) ins larity is reversed e (RRF, RLF) ins	d. A subtracti structions, this d. A subtracti structions, thi	on is executed s bit is loaded on is executed s bit is loaded	by adding the 2 with either bit 4 by adding the 2 with either the h	's complement or bit 3 of the s 's complement igh or low-orde	of the second source register. of the second er bit of the	

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit, EEPGD, determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The FREE bit controls program memory erase operations. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. The WREN bit enables and disables erase and write operations. When set, erase and write operations are allowed. When clear, erase and write operations are disabled – the WR bit cannot be set while the WREN bit is clear. This process helps to prevent accidental writes to memory due to errant (unexpected) code execution.

Firmware should keep the WREN bit clear at all times except when starting erase or write operations. Once firmware has set the WR bit, the WREN bit may be cleared. Clearing the WREN bit will not affect the operation in progress.

The WRERR bit is set when a write operation is interrupted by a Reset. In these situations, the user can check the WRERR bit and rewrite the location. It will be necessary to reload the data and address registers (EEDATA and EEADR) as these registers have cleared as a result of the Reset.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 6.3 "Reading the Flash Program Memory"** regarding table reads.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Flag registers (PIR1, PIR2).

- **Note 1:** Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown				
h:t 7		lal Clava Dart D		harmunt Elan hit	1)						
DIL 7	1 = A road of	r a write operati	write operation has taken place (must be cleared in software)								
	0 = No read	or write has occ	curred	i place (must be		,waic)					
bit 6	ADIF: A/D Co	onverter Interrup	ot Flag bit								
	1 = An A/D c	onversion comp	pleted (must	be cleared in s	oftware)						
	0 = The A/D	conversion is n	ot complete								
bit 5	RCIF: USAR	T Receive Interr	upt Flag bit	:- f: II (-l							
	1 = The USA 0 = The USA	RT receive buil	fer is empty	is full (cleared)		s read)					
bit 4	TXIF: USART	Transmit Interi	rupt Flag bit								
	 1 = The USART transmit buffer, TXREG, is empty (cleared when TXREG is written) 0 = The USART transmit buffer is full 										
bit 3	SSPIF: Maste	er Synchronous	Serial Port I	nterrupt Flag bi	t						
	1 = The trans 0 = Waiting to	mission/reception transmit/receiv	on is comple /e	te (must be cle	ared in software	÷)					
bit 2	CCP1IF: CCF	P1 Interrupt Flag	g bit								
	Capture mod	<u>e:</u>									
	1 = A TMR1 i 0 = No TMR1	register capture register captur	occurred (m e occurred	ust be cleared	in software)						
	Compare mo	<u>de:</u>	a matak asa	une d'annat le c	ele ered in eeffru	()					
	1 = A TMRT0 = No TMR1	register company	are match occu	curred (must be	cleared in solitw	are)					
	PWM mode:										
	Unused in thi	s mode.									
bit 1	TMR2IF: TM	R2 to PR2 Matc	h Interrupt F	lag bit							
	1 = TMR2 to	PR2 match occ	curred (must	be cleared in s	oftware)						
hit 0		2 IU FR2 Malch P1 Overflow Inte	occurreu arrunt Elag h	it							
Sit U	1 = TMR1 re	aister overflowe	ed (must be c	leared in softw	are)						
	0 = TMR1 re	gister did not ov	/erflow								

Note 1: This bit is reserved on PIC18F2X20 devices; always maintain this bit clear.

FIGURE 10-3:

BLOCK DIAGRAM OF RA6 PIN

FIGURE 10-4:

BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 10-5:

BLOCK DIAGRAM OF RA7 PIN

FIGURE 10-9: BLOCK DIAGRAM OF RB3/CCP2 PIN

Name	Bit#	Buffer Type	Function
RE0/AN5/RD	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, analog input or read control input in Parallel Slave Port mode. For RD (PSP Control mode): 1 = PSP is Idle 0 = Read operation. Reads PORTD register (if chip selected).
RE1/AN6/WR	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, analog input or write control input in Parallel Slave Port mode. For WR (PSP Control mode): 1 = PSP is Idle 0 = Write operation. Writes PORTD register (if chip selected).
RE2/AN7/CS	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, analog input or chip select control input in Parallel Slave Port mode. For CS (PSP Control mode): 1 = PSP is Idle 0 = External device is selected
MCLR/VPP/RE3 ⁽²⁾	bit 3	ST	Input only port pin or programming voltage input (if MCLR is disabled); Master Clear input or programming voltage input (if MCLR is enabled).

TABLE 10-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

2: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

TABLE 10-10:	SUMMARY OF REGISTER	RS ASSOCIATED WITH PORT	Ē

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTE			—	—	RE3 ⁽¹⁾	RE2	RE1	RE0	qxxx	quuu
LATE	_	_	—	—	—	LATE Data	a Latch Reg	ister	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Data Direction bits			0000 -111	0000 -111
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

 $\label{eq:lagend: Legend: x = unknown, u = unchanged, - = unimplemented, read as `0', q = value depends on condition. Shaded cells are not used by PORTE.$

Note 1: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

14.2 Timer1 Oscillator

The Timer1 oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. The oscillator is a lowpower oscillator rated for 32 kHz crystals. See **Section 12.2 "Timer1 Oscillator"** for further details.

14.3 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled/disabled by setting/clearing TMR3 Interrupt Enable bit, TMR3IE (PIE2<1>).

14.4 Resetting Timer3 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "Special Event Trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer3. See **Section 15.4.4 "Special Event Trigger"** for more information.

Note: The Special Event Triggers from the CCP module will not set interrupt flag bit, TMR3IF (PIR1<0>).

Timer3 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer3 is running in Asynchronous Counter mode, this Reset operation may not work. In the event that a write to Timer3 coincides with a Special Event Trigger from CCP1, the write will take precedence. In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer3.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR2	OSCIF	CMIF	—	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0000	00-0 0000
PIE2	OSCIE	CMIE	—	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0000	00-0 0000
IPR2	OSCIP	CMIP	—	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1111	11-1 1111
TMR3L	Timer3 Lo	ow Byte Reg	gister						XXXX XXXX	นนนน นนนน
TMR3H	Timer3 Hi	igh Byte Re	gister						XXXX XXXX	นนนน นนนน
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	u0uu uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu

 TABLE 14-1:
 REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

15.5 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.5.3** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (*period*) and a time that the output is high (*duty cycle*). The frequency of the PWM is the inverse of the period (1/period).

15.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H
 - Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

15.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 15-2:

CCPR1L and CCP1CON<5:4> can be written to at any time but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

16.4 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is an upwardly compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M1:P1M0 and CCP1M3:CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and CCP1CON<3:0>, respectively).

Figure 16-1 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that enhanced PWM

waveforms do not exactly match the standard PWM waveforms but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRISD bits for output.

16.4.1 PWM OUTPUT CONFIGURATIONS

The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the Standard PWM mode discussed in **Section 15.5** "**PWM Mode**". The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE

18.3.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 18-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (Section 18.2 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

18.3.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with address detect enable:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 18-4: USART RECEIVE BLOCK DIAGRAM

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
			WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	P = Program	nable bit	U = Unimpler	mented bit, read	as '0'	
-n = Value whe	-n = Value when device is unprogrammed				ed from progran	nmed state	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-1	WDPS<3:0>:	Watchdog Tim	er Postscale	Select bits			
	1111 = 1:32. 7	768					
	1110 = 1:16,3	384					
	1101 = 1:8,19	92					
	1100 = 1:4,09	96					
	1011 = 1:2,0 4	48					
	1010 = 1:1,02	24					
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4						
	0001 = 1:2						
	0000 = 1.1						
bit 0	WDTEN: Wat	chdog Timer E	nable bit				
	1 = WDT ena	bled					
	0 = WDT disa	abled (control is	s placed on the	e SWDTEN bit)		

REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

23.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO bit in Configuration Register 1H (CONFIG1H<7>).

Two-Speed Start-up is available only if the primary oscillator mode is LP, XT, HS or HSPLL (Crystal-Based modes). Other sources do not require a OST start-up delay; for these, Two-Speed Start-up is disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a POR Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IFRC2:IFRC0 immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

23.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 3.1.3 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS1:SCS0 bit settings and issue SLEEP commands before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the system clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the system clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 24-1:	1: GENERAL FORMAT FOR INSTRUCTIONS						
	Byte-oriented file register operations	Example Instruction					
	<u>15 10 9 8 7 0</u>						
	OPCODE d a f (FILE #)	ADDWF MYREG, W, B					
	 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 						
	Byte to Byte move operations (2-word)						
	<u>15 12 11 0</u>						
	OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2					
	15 12 11 0						
	1111 f (Destination FILE #)						
	f = 12-bit file register address						
	Bit-oriented file register operations						
	<u>15 12 11 9 8 7 0</u>						
	OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B					
	 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 						
	Literal operations						
	15 8 7 0						
	OPCODE k (literal)	MOVLW 0x7F					
	k = 8-bit immediate value						
	Control operations						
	CALL, GOTO and Branch operations						
	15 8 7 0						
	OPCODE n<7:0> (literal)	GOTO Label					
	15 12 11 0						
	1111 n<19:8> (literal)						
	n = 20-bit immediate value						
	15 8 7 0						
	OPCODE S n<7:0> (literal)	CALL MYFUNC					
	15 12 11 0						
	n<19:8> (literal)						
	S = Fast bit						
	15 11 10 0						
	OPCODE n<10:0> (literal)	BRA MYFUNC					
	<u>15</u> 8 7 0						
	OPCODE n<7:0> (literal)	BC MYFUNC					

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SS}} \downarrow \text{to SCK} \downarrow \text{or SCK} \uparrow \text{Input}$	Тсү	—	ns		
71	TscH	SCK Input High Time (Slave mode)	SCK Input High Time (Slave mode) Continuous				
71A			Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time (Slave mode)	Continuous	1.25 Tcy + 30	_	ns	
72A			Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Ed	100	—	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Cloc	1.5 Tcy + 40		ns	(Note 2)	
74	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCK Edg	100	—	ns		
75	TDOR	SDO Data Output Rise Time	PIC18FXX20	—	25	ns	
			PIC18LFXX20		45	ns	
76	TDOF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
78	TscR	SCK Output Rise Time (Master mode)	PIC18FXX20	—	25	ns	
			PIC18LFXX20		45	ns	
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after SCK Edge	PIC18FXX20	—	50	ns	
	TscL2DoV		PIC18LFXX20		100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	_	ns	

TABLE 26-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

FIGURE 26-16: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 26-24: A/D CONVERTER CHARACTERISTICS: PIC18F2220/2320/4220/4320 (INDUSTRIAL) PIC18F2220/2320/4220/4320 (EXTENDED) PIC18LF2220/2320/4220/4320 (INDUSTRIAL)

Param	Symbol	Characteristic		Min	Τνρ	Мах	Units	Conditions
No.	- ,				71 *	-		
A01	NR	Resolution		—		10	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error		—	_	<±1	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A04	Edl	Differential Linearity Error		_	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error	_		<±1	LSb	$\Delta VREF \ge 3.0V$	
A07	Egn	Gain Error		_	_	<±1	LSb	$\Delta VREF \ge 3.0V$
A10		Monotonicity		guaranteed ⁽²⁾			_	
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)		3	_	AVDD – AVSS	V	For 10-bit resolution
A21	Vrefh	Reference Voltage High		AVss + 3.0V	_	AVDD + 0.3V	V	For 10-bit resolution
A22	Vrefl	Reference Voltage Low		AVss – 0.3V	_	AVDD - 3.0V	V	For 10-bit resolution
A25	VAIN	Analog Input Voltage		VREFL		VREFH	V	
A28	AVdd	Analog Supply Voltage		Vdd - 0.3	_	VDD + 0.3	V	Tie to VDD
A29	AVss	Analog Supply Voltage		Vss – 0.3	_	Vss + 0.3	V	Tie to Vss
A30	ZAIN	Recommended Impedance of Analog Voltage Source		—		2.5 ⁽⁴⁾	kΩ	
A40	IAD	A/D Current from VDD	PIC18FXX20	_		180 ⁽⁵⁾	μA	Average current during conversion ⁽¹⁾
			PIC18LFXX20		_	90 ⁽⁵⁾	μA	
A50	IREF	VREF Input Current ⁽³⁾		_		±5 ⁽⁵⁾	μA	During VAIN acquisition. During A/D conversion cycle.
				—	_	±150 ⁽⁵⁾	μA	

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: VREFH current is from RA3/AN3/VREF+ pin or AVDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/VREF- pin or AVSS, whichever is selected as the VREFL source.

4: Assume quiet environment. If adjacent pins have high-frequency signals (analog or digital), ZAIN may need to be reduced to as low as 1 k Ω to fight crosstalk effects.

5: For guidance only.

FIGURE 27-3: MAXIMUM IDD vs. Fosc OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C

FIGURE 27-7: MAXIMUM IDD vs. Fosc OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C

FIGURE 27-34: AVERAGE Fosc vs. VDD FOR VARIOUS R'S EXTERNAL RC MODE, C = 20 pF, TEMPERATURE = +25°C

