

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4320-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din New-	Pin N	umber	Pin	Buffer	Description		
Pin Name	PDIP	SOIC	Туре	Туре	Description		
MCLR/VPP MCLR	1	1	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Rese to the device.		
VPP			Р		Programming voltage input.		
OSC1/CLKI/RA7 OSC1 CLKI	9	9	1	ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise.		
RA7			ı 1/0	TTL	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins. General purpose I/O pin.		
OSC2/CLKO/RA6 OSC2	10	10	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator		
CLKO			0	—	in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate		
RA6			I/O	TTL	General purpose I/O pin.		
RA0/AN0 RA0 AN0	2	2	I/O I	TTL Analog	PORTA is a bidirectional I/O port. Digital I/O. Analog input 0.		
RA1/AN1 RA1 AN1	3	3	I/O I	TTL Analog	Digital I/O. Analog input 1.		
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	4	I/O 0	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.		
RA3/AN3/Vref+ RA3 AN3 Vref+	5	5	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.		
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	6	I/O I O	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.		
RA5/AN4/SS/LVDIN/C2OUT RA5 AN4 SS LVDIN C2OUT	7	7	I/O 0	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output.		
RA6					See the OSC2/CLKO/RA6 pin.		
RA7					See the OSC1/CLKI/RA7 pin.		
Legend: TTL = TTL comp ST = Schmitt Tr O = Output			ith CM	OS levels	CMOS = CMOS compatible input or output I = Input P = Power		

TABLE 1-2: PIC18F2220/2320 PINOUT I/O DESCRIPTIONS

O = Output OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

3.0 POWER-MANAGED MODES

The PIC18F2X20 and PIC18F4X20 devices offer a total of six operating modes for more efficient power management (see Table 3-1). These operating modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- · Sleep mode
- Idle modes
- Run modes

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

The clock switching feature offered in other PIC18 devices (i.e., using the Timer1 oscillator in place of the primary oscillator) and the Sleep mode offered by all PIC[®] devices (where all system clocks are stopped) are both offered in the PIC18F2X20/4X20 devices (SEC_RUN and Sleep modes, respectively). However, additional power-managed modes are available that allow the user greater flexibility in determining what portions of the device are operating. The power-managed modes are event driven; that is, some specific event must occur for the device to enter or (more particularly) exit these operating modes.

For PIC18F2X20/4X20 devices, the power-managed modes are invoked by using the existing SLEEP instruction. All modes exit to PRI_RUN mode when triggered by an interrupt, a Reset, or a WDT time-out (PRI_RUN mode is the normal full-power execution mode; the CPU and peripherals are clocked by the primary oscillator source). In addition, power-managed Run modes may also exit to Sleep mode or their corresponding Idle mode.

3.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires deciding if the CPU is to be clocked or not and selecting a clock source. The IDLEN bit controls CPU clocking while the SC1:SCS0 bits select a clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1.

3.1.1 CLOCK SOURCES

The clock source is selected by setting the SCS bits of the OSCCON register. Three clock sources are available for use in power-managed Idle modes: the primary clock (as configured in Configuration Register 1H), the secondary clock (Timer1 oscillator) and the internal oscillator block. The secondary and internal oscillator block sources are available for the power-managed modes (PRI_RUN mode is the normal full-power execution mode; the CPU and peripherals are clocked by the primary oscillator source).

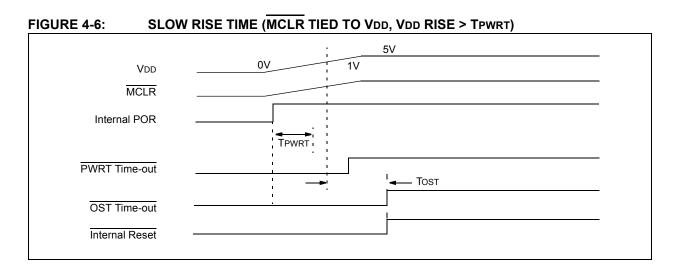
Mode	oscco	ON<7,1:0>	Module	Clocking	Available Clock and Oscillator Source		
wode	IDLEN	SCS1:SCS0	CPU	Peripherals			
Sleep	0	00	Off	Off	None – All clocks are disabled		
PRI_RUN	0	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC, INTRC ⁽¹⁾ . This is the normal full-power execution mode.		
SEC_RUN	0	01	Clocked	Clocked	Secondary – Timer1 Oscillator		
RC_RUN	0	1x	Clocked	Clocked	Internal Oscillator Block ⁽¹⁾		
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC		
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator		
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽¹⁾		

TABLE 3-1: POWER-MANAGED MODES

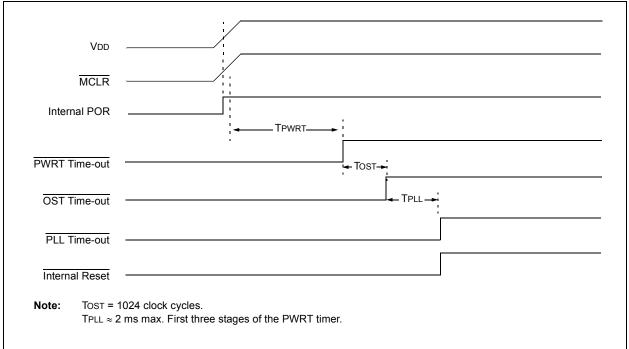
Note 1: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

TABLE 3-3:ACTIVITY AND EXIT DELAY ON WAKE-UP FROM SLEEP MODE OR
ANY IDLE MODE (BY CLOCK SOURCES)

Clock in Power-Managed	Primary System Clock	Power-Managed	Clock Ready Status Bit	Activity During Wake-up from Power-Managed Mode		
Mode	CIOCK	Mode Exit Delay	(OSCCON)	Exit by Interrupt	Exit by Reset	
	LP, XT, HS		OSTS	CPU and peripherals	Not clocked or	
Primary System Clock	HSPLL	5-10 μs ⁽⁵⁾	0315	clocked by primary clock	Two-Speed	
(PRI_IDLE mode)	EC, RC, INTRC ⁽¹⁾	5-10 µS(*)	—	and executing instructions.	Start-up (if enabled) ⁽³⁾ .	
(· · · ·· <u>_</u> ·· <u>_</u> ·· <u>_</u> ·········)	INTOSC ⁽²⁾		IOFS		(il enabled).	
	LP, XT, HS	OST	0010	CPU and peripherals		
T1OSC or INTRC ⁽¹⁾	HSPLL	OST + 2 ms	OSTS	clocked by selected		
TIUSC OF INTROVY	EC, RC, INTRC ⁽¹⁾	5-10 μs ⁽⁵⁾	—	power-managed mode clock and executing		
	INTOSC ⁽²⁾	5-10 μs ⁽⁴⁾	IOFS	instructions until primary		
	LP, XT, HS	OST	OSTS	clock source becomes		
INTOSC ⁽²⁾	HSPLL	OST + 2 ms	0313	ready.		
	EC, RC, INTRC ⁽¹⁾	5-10 μs ⁽⁵⁾	—			
	INTOSC ⁽²⁾	None	IOFS			
	LP, XT, HS	OST	OSTS	Not clocked or		
Sleep mode	HSPLL	OST + 2 ms	0313	Two-Speed Start-up (if		
	EC, RC, INTRC ⁽¹⁾	5-10 μs ⁽⁵⁾	_	enabled) until primary clock source becomes		
	INTOSC ⁽²⁾	5-10 μs ⁽⁴⁾	IOFS	ready ⁽³⁾ .		


Note 1: In this instance, refers specifically to the INTRC clock source.

2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.


3: Two-Speed Start-up is covered in greater detail in Section 23.3 "Two-Speed Start-up".

4: Execution continues during the INTOSC stabilization period.

5: Required delay when waking from Sleep and all Idle modes. This delay runs concurrently with any other required delays (see Section 3.3 "Idle Modes").

FIGURE 4-7: TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)

NOTES:

10.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4X20
	devices.

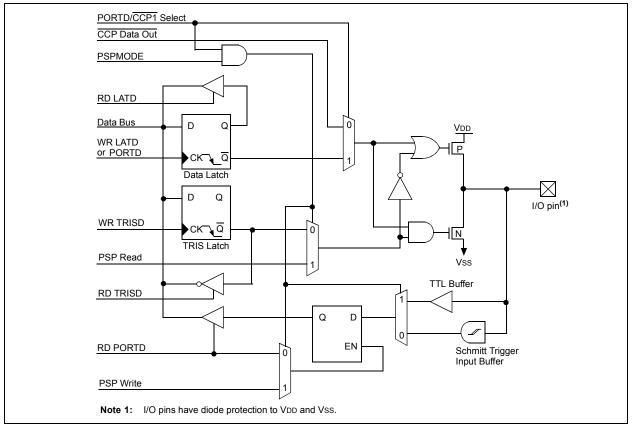
PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

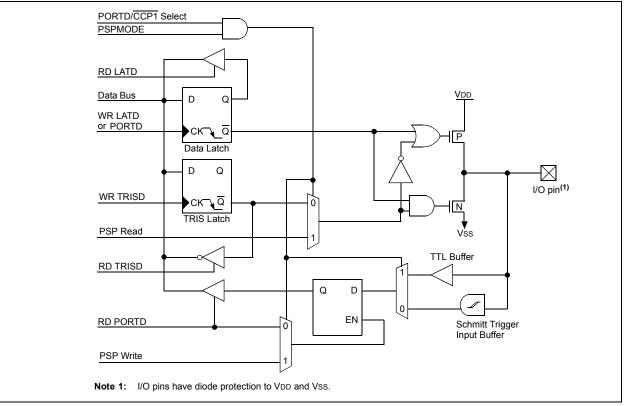
All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1B, P1C and P1D of the Enhanced CCP module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.


PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

Note:	When the enhanced PWM mode is used
	with either dual or quad outputs, the PSP
	functions of PORTD are automatically
	disabled.


EXAMPLE 10-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	: Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs
		, 100 as inpaces

FIGURE 10-11: BLOCK DIAGRAM OF RD7:RD5 PINS

FIGURE 10-12: BLOCK DIAGRAM OF RD4:RD0 PINS

TABLE 10-7: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 0.
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 1.
RD2/PSP2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 2.
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 3.
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 4.
RD5/PSP5/P1B	bit 5	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 5 or Enhanced PWM output P1B.
RD6/PSP6/P1C	bit 6	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 6 or Enhanced PWM output P1C.
RD7/PSP7/P1D	bit 7	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 7 or Enhanced PWM output P1D.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
LATD	LATD Data	a Latch Re	gister						XXXX XXXX	uuuu uuuu
TRISD	PORTD D	ata Directio	on Registe	r					1111 1111	1111 1111
TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Directi	on bits	0000 -111	0000 -111
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing Timer1 interrupt enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "Special Event Trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion if the A/D module is enabled (see **Section 15.4.4 "Special Event Trigger"** for more information).

Note:	The Spe	cial E	Event	Trig	gers from t	he C	CP1
	module	will	not	set	interrupt	flag	bit,
	TMR1IF	(PIR	1<0>	·).			

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.

12.6 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, is valid due to a rollover between reads. A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

12.7 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.2 "Timer1 Oscillator"** above), gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow, triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it; the simplest method is to set the MSbit of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

15.4 Compare Mode

In Compare mode, the 16-bit CCPR1 (CCPR2) register value is constantly compared against either the TMR1 register pair value, or the TMR3 register pair value. When a match occurs, the RC2/CCP1/P1A (RC1/T10SI/CCP2) pin:

- · Is driven high
- · Is driven low
- · Toggles output (high-to-low or low-to-high)
- Remains unchanged (interrupt only)

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the same time, interrupt flag bit, CCP1IF (CCP2IF), is set.

15.4.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRISC bit.

Note: Clearing the CCP1CON register will force the RC2/CCP1/P1A compare output latch to the default low level. This is not the PORTC I/O data latch.

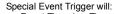
15.4.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.4.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

15.4.4 SPECIAL EVENT TRIGGER


In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The Special Event Trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable Period register for Timer1.

The special trigger output of CCP2 resets either the TMR1 or TMR3 register pair. Additionally, the CCP2 Special Event Trigger will start an A/D conversion if the A/D module is enabled.

Note: The Special Event Trigger from the CCP2 module will not set the Timer1 or Timer3 interrupt flag bits.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

Reset Timer1 or Timer3 but not set Timer1 or Timer3 interrupt flag bit and set bit GO/DONE (ADCON0<2>) which starts an A/D conversion (CCP2 only) Special Event Trigger Set Flag bit CCP1IF CCPR1H CCPR1L Х O S Output Comparator Logic RC2/CCP1/P1A Match R pin TRISC<2> **Output Enable** CCP1CON<3:0> T3CCP2 0 Mode Select TMR1H TMR1L TMR3H TMR3L Special Event Trigger Set Flag bit CCP2IF T3CCP1 0 T3CCP2 1 S Q Output Comparator Loġic RC1/T1OSI/CCP2 Match R pin TRISC<1> CCPR2H CCPR2L Output Enable CCP2CON<3:0> Mode Select

18.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules available in the PIC18F2X20/4X20 family of microcontrollers. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

The RC6/TX/CK and RC7/RX/DT pins must be configured as shown for use with the Universal Synchronous Asynchronous Receiver Transmitter:

- SPEN (RCSTA<7>) bit must be set (= 1)
- TRISC<7> bit must be set (= 1)
- TRISC<6> bit must be cleared (= 0)

Register 18-1 shows the Transmit Status and Control register (TXSTA) and Register 18-2 shows the Receive Status and Control register (RCSTA).

18.1 Asynchronous Operation in Power-Managed Modes

The USART may operate in Asynchronous mode while the peripheral clocks are being provided by the internal oscillator block. This mode makes it possible to remove the crystal or resonator that is commonly connected as the primary clock on the OSC1 and OSC2 pins.

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz. However, this frequency may drift as VDD or temperature changes and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output back to 8 MHz. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source (see **Section 3.6 "INTOSC Frequency Drift**" for more information).

The other method adjusts the value in the Baud Rate Generator since there may be not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

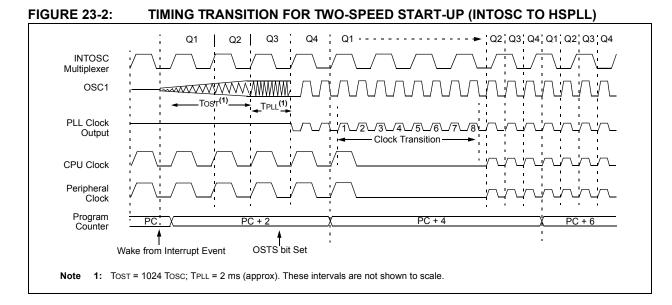
NOTES:

23.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO bit in Configuration Register 1H (CONFIG1H<7>).

Two-Speed Start-up is available only if the primary oscillator mode is LP, XT, HS or HSPLL (Crystal-Based modes). Other sources do not require a OST start-up delay; for these, Two-Speed Start-up is disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a POR Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.


Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IFRC2:IFRC0 immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

23.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 3.1.3 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS1:SCS0 bit settings and issue SLEEP commands before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the system clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the system clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

BNOV	Branch if	Not Overflo	w	BNZ
Syntax:	[<i>label</i>] B	NOV n		Syn
Operands:	-128 ≤ n ≤	127		Ope
Operation:	if Overflov (PC) + 2 +	v bit is '0', - 2n \rightarrow PC		Оре
Status Affected:	None			Stat
Encoding:	1110	0101 nni	nn nnnn	Enc
Description:	program v The 2's co added to t have incre instruction PC + 2 + 2	he PC. Since mented to fe	umber '2n' is e the PC will etch the next dress will be uction is	Des
Words:	1			Wor
Cycles:	1(2)			Сус
Q Cycle Activity If Jump:	:			Q (If J
Q1	Q2	Q3	Q4	-
Decode	Read literal 'n'	Process Data	Write to PC	
No	No	No	No	
operation	operation	operation	operation] If N
If No Jump: Q1	Q2	Q3	04	IT IN
Decode	Read literal	Process	Q4 No	1
Decode	'n'	Data	operation	
Example: Before Instr PC		BNOV Jump dress (HERE)		Exa
After Instruc If Overflu PC If Overflu PC	ow = 0; = ad ow = 1;	dress (Jump) dress (HERE		

Syntax:	[<i>label</i>] B	[<i>label</i>] BNZ n					
Operands:	-128 < n <						
•							
Operation:	if Zero bit (PC) + 2 +	,					
Status Affected:	None						
Encoding:	1110	0001 nni	nn nnnn				
Description:	program w The 2's co added to t have incre instruction PC + 2 + 2	bit is '0', the vill branch. mplement nu he PC. Since mented to fe , the new ad 2n. This instr -cycle instru	umber '2n' is the PC will tch the next dress will be uction is				
Words:	1	1					
Cycles:	1(2)	1(2)					
Q Cycle Activity: If Jump:							
Q1	Q2	Q3	Q4				
Decode	Read literal 'n'	Process Data	Write to PC				
No	No	No	No				
operation	operation	operation	operation				
If No Jump:							
Q1	Q2	Q3	Q4				
Decode	Read literal 'n'	Process Data	No operation				
Example:	HERE	BNZ Jump					
Example: Before Instru	HERE	BNZ Jump					

PC	=	address (HERE)
After Instruction		
If Zero PC If Zero PC	= = =	0; address (Jump) 1; address (HERE + 2)

Operands: $0 \le k \le 255$ Operation:(W) .OR. $k \to W$ Status Affected:N, ZEncoding: 0000 1001 kkkk kkkkDescription:The contents of W are OR'ed with the eight-bit literal 'k'. The result is placed in W.Words:1Cycles:1Q Cycle Activity:Q1 Q2 Q3 Q4DecodeRead literal 'k' DataExample:IORLW0x35Before Instruction W= 0x9A	IORLW	Inclusive OR Lit	teral with	w
Operation:(W) .OR. k \rightarrow WStatus Affected:N, ZEncoding:00001001kkkkDescription:The contents of W are OR'ed with the eight-bit literal 'k'. The result is placed in W.Words:1Cycles:1Q Cycle Activity:Q2Q3Q1Q2Q3Q4DecodeRead literal 'k'DecodeRead literal 'k'ProcessWrite to W0x35Before Instruction W=0x9A	Syntax:	[label] IORLW	′ k	
Status Affected: N, Z Encoding: 0000 1001 kkkk kkkk Description: The contents of W are OR'ed with the eight-bit literal 'k'. The result is placed in W. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to W Iteral 'k' Data Vata Example: IORLW 0x35 Before Instruction W = 0x9A	Operands:	$0 \leq k \leq 255$		
Encoding: Description: The contents of W are OR'ed with the eight-bit literal 'k'. The result is placed in W. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read literal 'k' Data Write to W Example: IORLW 0x35 Before Instruction W = 0x9A	Operation:	(W) .OR. $k \rightarrow W$		
Description: The contents of W are OR'ed with the eight-bit literal 'k'. The result is placed in W. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to W literal 'k' Data Write to W Example: IORLW $0x35$ Before Instruction W = 0x9A	Status Affected:	N, Z		
the eight-bit literal 'k'. The result is placed in W. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to W literal 'k' Data Example: IORLW 0x35 Before Instruction W = 0x9A	Encoding:	0000 1001	kkkk	kkkk
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to W literal 'k' Data Vrite to W Example: IORLW 0x35 Before Instruction W = 0x9A	Description:	the eight-bit litera		•••
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to W literal 'k' Data Example: IORLW 0x35 Before Instruction W = 0x9A	Words:	1		
Q1 Q2 Q3 Q4 Decode Read literal 'k' Process Data Write to W Example: IORLW 0x35 Before Instruction W = 0x9A	Cycles:	1		
Decode Read literal 'k' Process Data Write to W Example: IORLW 0x35 Before Instruction W = 0x9A	Q Cycle Activity:			
literal 'k' Data Example: IORLW 0x35 Before Instruction W = 0x9A	Q1	Q2 Q	3	Q4
Before Instruction W = 0x9A	Decode			rite to W
W = 0x9A	Example:	IORLW 0x35		
	Before Instru	ction		
	W	= 0x9A		
After Instruction	After Instruct	on		
W = 0xBF	W	= 0xBF		

	Inclusive	OR W v	vith f	
Syntax:	[label]	ORWF	f [,d	[,a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	(W) .OR. ($f) \rightarrow de$	st	
Status Affected:	N, Z			
Encoding:	0001	00da	ffff	ffff
	'd' is '1', th register 'f' Access Ba riding the I the bank w	(default ank will I BSR val). If 'a' be sele ue. If 'a	is '0', the ected, ove a' = 1, the
	BSR value	e (defau	lt).	as per the
Words:	BSR value 1	e (defau	lt).	as per the
Words: Cycles:		e (defau	lt).	as per the
	1	e (defau	lt).	as per the
Cycles:	1	e (defau Q3		as per the
Cycles: Q Cycle Activity:	1 1		ss	

Before Instruction					
RESULT	=	0x13			
W	=	0x91			
After Instruction					

RESULT	=	0x13
W	=	0x93

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial)

	2220/2320/4220/4320 strial)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
PIC18F2		rd Oper	•	-40°C ≤ T⁄	s otherwise stated $A \le +85^{\circ}C$ for indust $A \le +125^{\circ}C$ for extend	rial		
Param No.	Device	Тур	Max	Units	Conditions			
	Power-down Current (IPD)	(1)						
l	PIC18LF2X20/4X20	0.1	0.5	μA	-4	40°C		
		0.1	0.5	μΑ	+2	25°C	VDD = 2.0V (Sleep mode)	
		0.2	1.7	μA	+8	85°C	()	
	PIC18LF2X20/4X20	0.1	0.5	μA	-4	10°C	VDD = 3.0V	
		0.1	0.5	μΑ		25°C	(Sleep mode)	
		0.3	1.7	μΑ		+85°C		
	All devices	0.1	2.0	μA		10°C	$V_{DD} = 5.0V$	
		0.1	2.0	μA		25°C		
	Estavolado da visca	0.4	6.5	μA		35°C	(Sleep mode)	
	Extended devices	11.2	50	μA	+1	25°C		
	Supply Current (IDD) ^(2,3) PIC18LF2X20/4X20	11	25		-40°C			
	PIC 10LF2X20/4X20	13	25 25	μΑ μΑ	-40 C +25°C	VDD = 2.0V		
		13	25	μΑ	+25 C +85°C	VDD - 2.0V		
	PIC18LF2X20/4X20	34	40	μΑ	-40°C			
		28	40	μΑ	+25°C	VDD = 3.0V	Fosc = 31 kHz	
		25	40	μΑ	+85°C		(RC_RUN mode,	
	All devices	77	80	μA	-40°C		internal oscillator source)	
		62	80	μΑ	+25°C			
		53	80	μA	+85°C	VDD = 5.0V		
	Extended devices	50	80	μA	+125°C	1		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

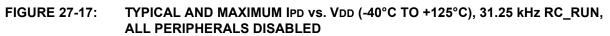
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

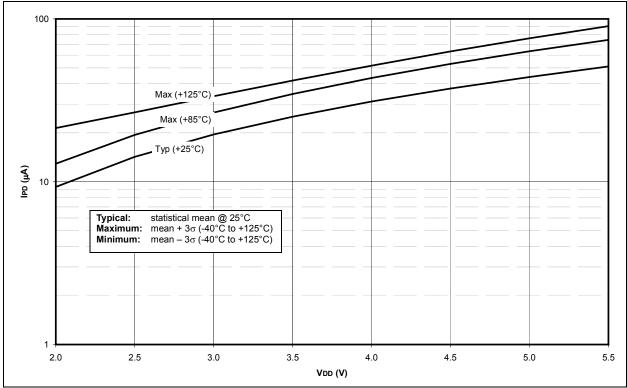
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial) (Continued)

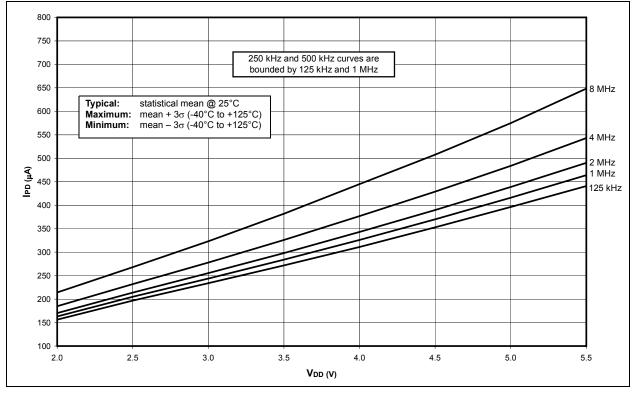
PIC18LF2 (Indus	2220/2320/4220/4320 strial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					,
	220/2320/4220/4320 strial, Extended)		rd Oper ng temp			otherwise stated ≤ +85°C for industr ≤ +125°C for exter	rial
Param No.	Device	Тур	Max	Units	Conditions		
	Module Differential Currer	nts (∆lw	от, ∆Іво	R, ∆ILVD	, Δ IOSCB, Δ IAD)		
D022	Watchdog Timer	1.5	3.8	μA	-40°C		
(∆IWDT)		2.2	3.8	μA	+25°C	VDD = 2.0V VDD = 3.0V	
		2.7	4.0	μA	+85°C		
		2.3	4.6	μA	-40°C		
		2.7	4.6	μA	+25°C		
		3.1	4.8	μA	+85°C		
		3.0	10.0	μA	-40°C		
		3.3	10.0	μA	+25°C	VDD = 5.0V	
		3.9	10.0	μA	+85°C	100 0.01	
	Extended devices only	4.0	13.0	μA	+125°C		
D022A	Brown-out Reset	35	50	μA	-40°C to +85°C -	VDD = 3.0V	
(Δ IBOR)		42	60	μA	40 0 10 700 0	VDD = 5.0V	
	Extended devices only	46	65	μA	-40°C to +125°C		
D022B	Low-Voltage Detect	31	45	μA		VDD = 2.0V	
(Allvd)		33	50	μA	-40°C to +85°C	VDD = 3.0V	
		42	60	μA		VDD = 5.0V	
	Extended devices only	46	65	μA	-40°C to +125°C	vuu – 5.0V	

Legend: Shading of rows is to assist in readability of the table.


Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

FIGURE 27-18: TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_IDLE MODE, ALL PERIPHERALS DISABLED

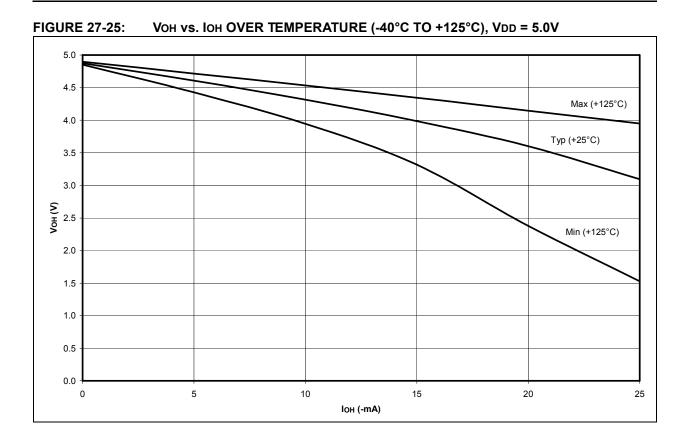
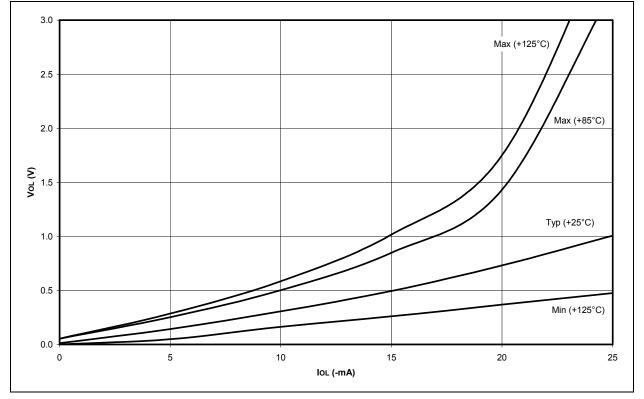
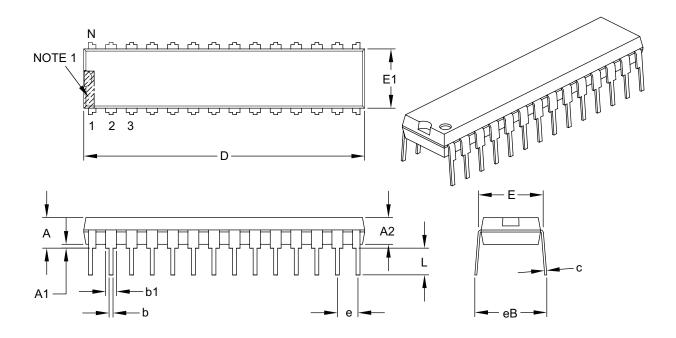



FIGURE 27-26: Vol vs. lol OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V



28.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dime	Dimension Limits			MAX
Number of Pins	N	28		
Pitch	e	.100 BSC		
Top to Seating Plane	A	_	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Timing Diagrams and Specifications	
A/D Conversion Requirements	
Capture/Compare/PWM Requirements	
CLKO and I/O Requirements	
DC Characteristics - Internal RC Accuracy	
Example SPI Mode Requirements	
(Master Mode, CKE = 0)	
Example SPI Mode Requirements	
(Master Mode, CKE = 1)	
Example SPI Mode Requirements	
(Slave Mode, CKE = 0)	
Example SPI Slave Mode	
Requirements (CKE = 1)	
External Clock Requirements	
I ² C Bus Data Requirements (Slave Mode)	
Master SSP I ² C Bus Data Requirements	
Master SSP I ² C Bus Start/Stop Bits	
Requirements	
Parallel Slave Port Requirements	
(PIC18F4X20)	
PLL Clock	
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements	
Timer0 and Timer1 External Clock	
Requirements	
USART Synchronous Receive Requirements	
USART Synchronous Transmission	
Requirements	
•	
Top-of-Stack Access 54	
Top-of-Stack Access	
TRISE Register	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register 109 TSTFSZ 298 Two-Speed Start-up 237, 248	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register PSPMODE Bit	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195 Asynchronous Mode 202	
TRISE Register PSPMODE Bit	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Associated Registers 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 U 198 U USART USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 U 198 U USART USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode 198 Baud Rates, Asynchronous Mode 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode 199 Baud Rates, Asynchronous Mode 199	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode 199 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) 200	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 198 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (BRGH = 1, High Speed)	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (SYNC = 1)	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U U USART 195 Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (SYNC = 1) 201 High Baud Rate Select (BRGH Bit) 198	
TRISE Register 109 PSPMODE Bit 109 TSTFSZ 298 Two-Speed Start-up 237, 248 Two-Word Instructions 237, 248 Example Cases 58 TXSTA Register 58 BRGH Bit 198 U USART Asynchronous Mode 202 Associated Registers, Receive 205 Associated Registers, Transmit 203 Receiver 204 Transmitter 202 Baud Rate Generator (BRG) 198 Baud Rate Formula 198 Baud Rates, Asynchronous Mode (BRGH = 0, Low Speed) (BRGH = 0, Low Speed) 199 Baud Rates, Asynchronous Mode (BRGH = 1, High Speed) (BRGH = 1, High Speed) 200 Baud Rates, Synchronous Mode (SYNC = 1)	

Serial Port Enable (SPEN Bit)	. 195
Setting Up 9-Bit Mode with Address Detect	. 204
Synchronous Master Mode	. 206
Associated Registers, Reception	. 208
Associated Registers, Transmit	. 207
Reception	. 208
Transmission	
Synchronous Slave Mode	. 209
Associated Registers, Receive	. 210
Associated Registers, Transmit	. 209
Reception	. 210
Transmission	. 209
V	
Voltage Reference Specifications	. 322
W	
Watchdog Timer (WDT)237	, 246
Associated Registers	
Control Register	. 246
During Oscillator Failure	
Programming Considerations	
WCOL	. 183
WCOL Status Flag	, 188
WWW Address	. 389
WWW, On-Line Support	5

Х

XORLW	298
XORWF	299