

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4320t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din New-	Pin N	umber	Pin	Buffer	Description
Pin Name	PDIP	SOIC	Туре	Туре	Description
MCLR/VPP MCLR	1	1	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Rese to the device.
VPP			Р		Programming voltage input.
OSC1/CLKI/RA7 OSC1 CLKI	9	9	1	ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise.
RA7			ı 1/0	TTL	External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins. General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	10	10	0		Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator
CLKO			0	—	in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6			I/O	TTL	General purpose I/O pin.
RA0/AN0 RA0 AN0	2	2	I/O I	TTL Analog	PORTA is a bidirectional I/O port. Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	3	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	4	I/O 0	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	5	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	6	I/O I O	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/LVDIN/C2OUT RA5 AN4 SS LVDIN C2OUT	7	7	I/O 0	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output.
RA6					See the OSC2/CLKO/RA6 pin.
RA7					See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL comp ST = Schmitt Tr O = Output			ith CM	OS levels	CMOS = CMOS compatible input or output I = Input P = Power

TABLE 1-2: PIC18F2220/2320 PINOUT I/O DESCRIPTIONS

O = Output OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

Din Nama	Pin Number		Pin	Buffer	Description				
Pin Name	PDIP	SOIC	Туре	Туре	Description				
					PORTC is a bidirectional I/O port.				
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	11	11	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.				
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽²⁾	12	12	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input, Compare 2 output, PWM2 output.				
RC2/CCP1/P1A RC2 CCP1 P1A	13	13	I/O I/O O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced CCP1 output.				
RC3/SCK/SCL RC3 SCK SCL	14	14	I/O I/O I/O	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.				
RC4/SDI/SDA RC4 SDI SDA	15	15	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.				
RC5/SDO RC5 SDO	16	16	I/O O	ST —	Digital I/O. SPI data out.				
RC6/TX/CK RC6 TX CK	17	17	I/O O I/O	ST — ST	Digital I/O. USART asynchronous transmit. USART synchronous clock (see related RX/DT).				
RC7/RX/DT RC7 RX DT	18	18	I/O I I/O	ST ST ST	Digital I/O. USART asynchronous receive. USART synchronous data (see related TX/CK).				
Vss	8, 19	8, 19	Р		Ground reference for logic and I/O pins.				
Vdd	20	20	Р	—	Positive supply for logic and I/O pins.				
Legend: TTL = TTL con ST = Schmitt	Trigger i		ith CM	OS levels	CMOS = CMOS compatible input or output s I = Input				

TABLE 1-2: PIC18F2220/2320 PINOUT I/O DESCRIPTIONS (CONTINUED)

= Input Ρ = Power

O = Output OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS

Din Nama	Pi	n Numb	ber	Pin	Buffer	Description
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description
MC <u>LR</u> /Vpp/RE3 MCLR Vpp	1	18	18	I P	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. Programming voltage input.
RE3				, i	ST	Digital input.
OSC1/CLKI/RA7 OSC1 CLKI	13	30	32		ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode, CMOS otherwise. External clock source input. Always associated with
RA7				I/O	TTL	pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.) General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	31	33	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator
CLKO				ο	_	in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6				I/O	TTL	General purpose I/O pin.
RA0/AN0 RA0	2	19	19	I/O	TTL	PORTA is a bidirectional I/O port. Digital I/O.
AN0				I	Analog	Analog input 0.
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST/OD ST	Digital I/O. Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/LVDIN/	7	24	24			
C2OUT RA5 <u>AN4</u> SS LVDIN C2OUT				I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. Low-Voltage Detect input. Comparator 2 output.
RA6						See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.
O = Outp	nitt Trig out	tible inp ger inp (no dio	ut with		8 levels	CMOS = CMOS compatible input or output I = Input P = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

2.7.2 OSCILLATOR TRANSITIONS

The PIC18F2X20/4X20 devices contain circuitry to prevent clocking "glitches" when switching between clock sources. A short pause in the system clock occurs during the clock switch. The length of this pause is between 8 and 9 clock periods of the new clock source. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

2.8 Effects of Power-Managed Modes on the Various Clock Sources

When the device executes a SLEEP instruction, the system is switched to one of the power-managed modes, depending on the state of the IDLEN and SCS1:SCS0 bits of the OSCCON register. See **Section 3.0 "Power-Managed Modes"** for details.

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin, if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the system clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the system clock source. The INTRC output can be used directly to provide the system clock and may be enabled to support various special features, regardless of the power-managed mode (see Section 23.2 "Watchdog Timer (WDT)" through Section 23.4 "Fail-Safe Clock Monitor"). The INTOSC output at 8 MHz may be used directly to clock the system or may be divided down first. The INTOSC output is disabled if the system clock is provided directly from the INTRC output. If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a system clock source (i.e., MSSP slave, PSP, INTx pins, A/D conversions and others).

2.9 Power-up Delays

Power-up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see Section 4.1 "Power-on Reset (POR)" through Section 4.5 "Brown-out Reset (BOR)".

The first timer is the Power-up Timer (PWRT) which provides a fixed delay on power-up (parameter 33, Table 26-10), if enabled, in Configuration Register 2L. The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (LP, XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms, following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of 5 to 10 $\mu s,$ following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC, RC or INTIO modes are used as the primary clock source.

OSC Mode	OSC1 Pin	OSC2 Pin			
RC, INTIO1	Floating, external resistor should pull high	At logic low (clock/4 output)			
RCIO, INTIO2	Floating, external resistor should pull high	Configured as PORTA, bit 6			
ECIO	Floating, pulled by external clock	Configured as PORTA, bit 6			
EC	Floating, pulled by external clock	At logic low (clock/4 output)			
LP, XT, and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level			

TABLE 2-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-1 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

3.1.2 ENTERING POWER-MANAGED MODES

In general, entry, exit and switching between powermanaged clock sources requires clock source switching. In each case, the sequence of events is the same.

Any change in the power-managed mode begins with loading the OSCCON register and executing a SLEEP instruction. The SCS1:SCS0 bits select one of three power-managed clock sources; the primary clock (as defined in Configuration Register 1H), the secondary clock (the Timer1 oscillator) and the internal oscillator block (used in RC modes). Modifying the SCS bits will have no effect until a SLEEP instruction is executed. Entry to the power-managed mode is triggered by the execution of a SLEEP instruction.

Figure 3-5 shows how the system is clocked while switching from the primary clock to the Timer1 oscillator. When the SLEEP instruction is executed, clocks to the device are stopped at the beginning of the next instruction cycle. Eight clock cycles from the new clock source are counted to synchronize with the new clock source are counted, clocks from the new clock source are counted, clocks from the new clock source are counted, clocks from the new clock source resume clocking the system. The actual length of the pause is between eight and nine clock periods from the new clock source. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.

Three bits indicate the current clock source: OSTS and IOFS in the OSCCON register and T1RUN in the T1CON register. Only one of these bits will be set while in a power-managed mode other than PRI_RUN. When the OSTS bit is set, the primary clock is providing the system clock. When the IOFS bit is set, the INTOSC output is providing a stable 8 MHz clock source and is providing the system clock. When the T1RUN bit is set, the Timer1 oscillator is providing the system clock. If none of these bits are set, then either the INTRC clock source is clocking the system or the INTOSC source is not yet stable.

If the internal oscillator block is configured as the primary clock source in Configuration Register 1H, then both the OSTS and IOFS bits may be set when in PRI_RUN or PRI_IDLE modes. This indicates that the primary clock (INTOSC output) is generating a stable 8 MHz output. Entering a power-managed RC mode (same frequency) would clear the OSTS bit.

- Note 1: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.
 - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode; executing a SLEEP instruction is simply a trigger to place the controller into a power-managed mode selected by the OSCCON register, one of which is Sleep mode.

3.1.3 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the settings of the IDLEN and SCS bits at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by these same bits at that time. If the bits have changed, the device will enter the new power-managed mode specified by the new bit settings.

3.1.4 COMPARISONS BETWEEN RUN AND IDLE MODES

Clock source selection for the Run modes is identical to the corresponding Idle modes. When a SLEEP instruction is executed, the SCS bits in the OSCCON register are used to switch to a different clock source. As a result, if there is a change of clock source at the time a SLEEP instruction is executed, a clock switch will occur.

In Idle modes, the CPU is not clocked and is not running. In Run modes, the CPU is clocked and executing code. This difference modifies the operation of the WDT when it times out. In Idle modes, a WDT time-out results in a wake from power-managed modes. In Run modes, a WDT time-out results in a WDT Reset (see Table 3-2).

During a wake-up from an Idle mode, the CPU starts executing code by entering the corresponding Run mode until the primary clock becomes ready. When the primary clock becomes ready, the clock source is automatically switched to the primary clock. The IDLEN and SCS bits are unchanged during and after the wake-up.

Figure 3-2 shows how the system is clocked during the clock source switch. The example assumes the device was in SEC_IDLE or SEC_RUN mode when a wake is triggered (the primary clock was configured in HSPLL mode).

Register Applicabl		e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	2220	2320	4220	4320	0 0000	0 0000	0 uuuu (3)
TOSH	2220	2320	4220	4320	0000 0000	0000 0000	uuuu uuuu ⁽³⁾
TOSL	2220	2320	4220	4320	0000 0000	0000 0000	uuuu uuuu ⁽³⁾
STKPTR	2220	2320	4220	4320	uu-0 0000	00-0 0000	uu-u uuuu ⁽³⁾
PCLATU	2220	2320	4220	4320	0 0000	0 0000	u uuuu
PCLATH	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน
PCL	2220	2320	4220	4320	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	2220	2320	4220	4320	00 0000	00 0000	uu uuuu
TBLPTRH	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน
TBLPTRL	2220	2320	4220	4320	0000 0000	0000 0000	นนนน นนนน
TABLAT	2220	2320	4220	4320	0000 0000	0000 0000	uuuu uuuu
PRODH	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	սսսս սսսս
PRODL	2220	2320	4220	4320	XXXX XXXX	սսսս սսսս	uuuu uuuu
INTCON	2220	2320	4220	4320	0000 000x	0000 000u	uuuu uuuu (1)
INTCON2	2220	2320	4220	4320	1111 -1-1	1111 -1-1	uuuu -u-u (1)
INTCON3	2220	2320	4220	4320	11-0 0-00	11-0 0-00	uu-u u-uu (1)
INDF0	2220	2320	4220	4320	N/A	N/A	N/A
POSTINC0	2220	2320	4220	4320	N/A	N/A	N/A
POSTDEC0	2220	2320	4220	4320	N/A	N/A	N/A
PREINC0	2220	2320	4220	4320	N/A	N/A	N/A
PLUSW0	2220	2320	4220	4320	N/A	N/A	N/A
FSR0H	2220	2320	4220	4320	xxxx	uuuu	uuuu
FSR0L	2220	2320	4220	4320	XXXX XXXX	uuuu uuuu	uuuu uuuu
WREG	2220	2320	4220	4320	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF1	2220	2320	4220	4320	N/A	N/A	N/A
POSTINC1	2220	2320	4220	4320	N/A	N/A	N/A
POSTDEC1	2220	2320	4220	4320	N/A	N/A	N/A
PREINC1	2220	2320	4220	4320	N/A	N/A	N/A
PLUSW1	2220	2320	4220	4320	N/A	N/A	N/A

TABLE 4-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

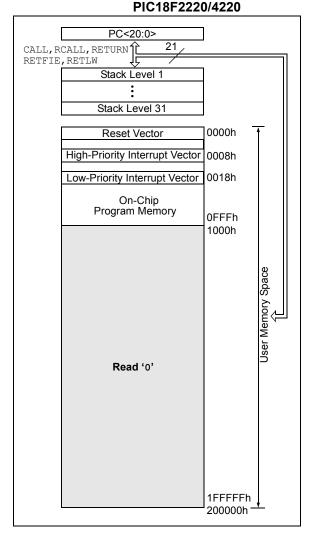
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-2 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

5.0 MEMORY ORGANIZATION


There are three memory types in enhanced MCU devices. These memory types are:

- Program Memory
- Data RAM
- Data EEPROM

Data and program memory use separate busses which allow for concurrent access of these types.

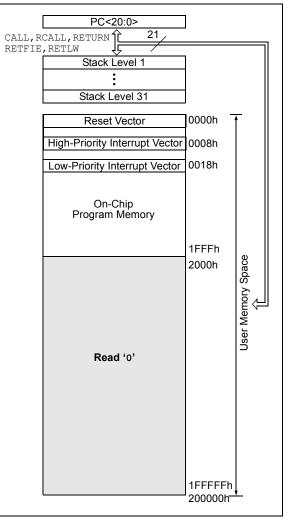
Additional detailed information for Flash program memory and data EEPROM is provided in Section 6.0 "Flash Program Memory" and Section 7.0 "Data EEPROM Memory", respectively.

FIGURE 5-1: PROGRAM MEMORY MAP AND STACK FOR

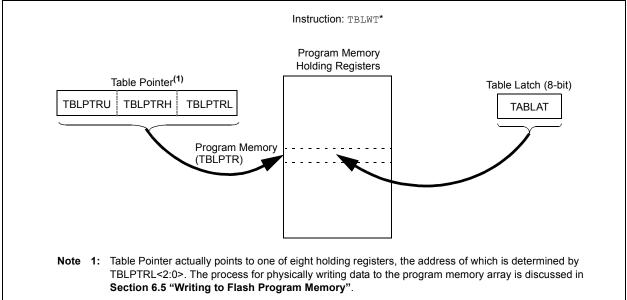
5.1 Program Memory Organization

A 21-bit program counter is capable of addressing the 2-Mbyte program memory space. Accessing a location between the physically implemented memory and the 2-Mbyte address will cause a read of all '0's (a NOP instruction).

The PIC18F2220 and PIC18F4220 each have 4 Kbytes of Flash memory and can store up to 2,048 single-word instructions.


The PIC18F2320 and PIC18F4320 each have 8 Kbytes of Flash memory and can store up to 4,096 single-word instructions.

The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.


The Program Memory Maps for PIC18F2220/4220 and PIC18F2320/4320 devices are shown in Figure 5-1 and Figure 5-2, respectively.

PROGRAM MEMORY MAP AND STACK FOR PIC18F2320/4320

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit, EEPGD, determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers. When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory.

The FREE bit controls program memory erase operations. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. The WREN bit enables and disables erase and write operations. When set, erase and write operations are allowed. When clear, erase and write operations are disabled – the WR bit cannot be set while the WREN bit is clear. This process helps to prevent accidental writes to memory due to errant (unexpected) code execution.

Firmware should keep the WREN bit clear at all times except when starting erase or write operations. Once firmware has set the WR bit, the WREN bit may be cleared. Clearing the WREN bit will not affect the operation in progress.

The WRERR bit is set when a write operation is interrupted by a Reset. In these situations, the user can check the WRERR bit and rewrite the location. It will be necessary to reload the data and address registers (EEDATA and EEADR) as these registers have cleared as a result of the Reset.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (EEPGD = 1). Program memory is read using table read instructions. See **Section 6.3 "Reading the Flash Program Memory"** regarding table reads.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

9.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from powermanaged mode. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 9-10: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	_	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:								
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	1 = Enat	terrupt Priority Enable bit ble priority levels on interrupt ble priority levels on interrup	s ts (PIC16CXXX Compatibility	mode)				
bit 6-5	Unimple	mented: Read as '0'						
bit 4	RI: RESE	T Instruction Flag bit						
	0 = The		executed (set by firmware only cuted causing a device Rese) t (must be set in software after a				

	Brown out (coot occurry)
bit 3	TO: Watchdog Time-out Flag bit
	1 = Set by power-up, CLRWDT instruction or SLEEP instruction
	0 = A WDT time-out occurred
bit 2	PD: Power-Down Detection Flag bit
	1 = Set by power-up or by the CLRWDT instruction
	0 = Cleared by execution of the SLEEP instruction
bit 1	POR: Power-on Reset Status bit
	1 = A Power-on Reset has not occurred (set by firmware only)
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = A Brown-out Reset has not occurred (set by firmware only)
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, B	-	all o	e on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0	00x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1	111	1111	1111
TRISC	PORTC Da	ata Direction	Register						1111 1	111	1111	1111
TMR1L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR1 Reg	gister		XXXX X	xxx	uuuu	uuuu
TMR1H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		XXXX X	xxx	uuuu	uuuu
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0	000	uuuu	uuuu
CCPR1L	Capture/C	ompare/PW	M Register 2	I (LSB)					XXXX X	xxx	uuuu	uuuu
CCPR1H	Capture/C	ompare/PW	M Register 2	I (MSB)					XXXX X	xxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	000	00	0000
CCPR2L	Capture/C	ompare/PW	M Register 2	2 (LSB)					XXXX X	xxx	uuuu	uuuu
CCPR2H	Capture/C	ompare/PW	M Register 2	2 (MSB)					XXXX X	xxx	uuuu	uuuu
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0	000	00	0000
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0	000	00-0	0000
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0	000	00-0	0000
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1	111	11-1	1111
TMR3L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR3 Reg	gister		XXXX X	xxx	uuuu	uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register									xxx	uuuu	uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0	000	uuuu	uuuu

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

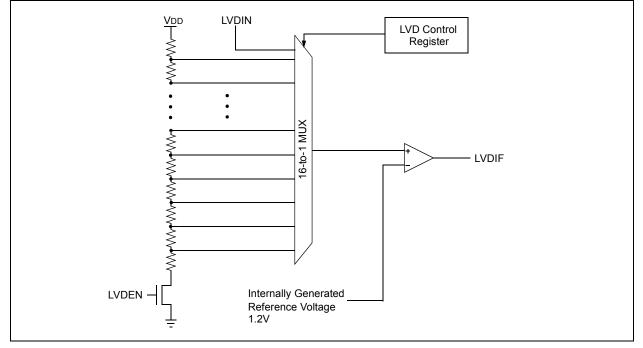
Note 1: These bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 10 inputs for the PIC18F2X20 devices and 13 for the PIC18F4X20 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

A new feature for the A/D converter is the addition of programmable acquisition time. This feature allows the user to select a new channel for conversion and setting the GO/DONE bit immediately. When the GO/DONE bit is set, the selected channel is sampled for the programmed acquisition time before a conversion is actually started. This removes the firmware overhead that may have been required to allow for an acquisition (sampling) period (see Register 19-3 and Section 19.3 "Selecting and Configuring Automatic Acquisition Time"). The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)


The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON					
bit 7							bit (
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown								
bit 7-6	Unimplomon	ted: Read as '	o'									
	•											
bit 5-2	CHS3:CHS0: Analog Channel Select bits 0000 = Channel 0 (AN0)											
		0001 = Channel 1 (AN1) 0010 = Channel 2 (AN2)										
	0011 = Channel 3 (AN3)											
	0100 = Channel 4 (AN4)											
	0101 = Channel 5 (AN5) ^(1,2)											
	0110 = Channel 6 (AN6) ^(1,2) 0111 = Channel 7 (AN7) ^(1,2)											
	1000 = Chan 1001 = Chan											
	1010 = Chan											
	1011 = Chan											
	1100 = Channel 12 (AN12)											
	1101 = Unim											
	1110 = Unim											
	1111 = Unim											
bit 1		/D Conversion	Status bit									
	$\frac{\text{When ADON} = 1}{1} = \text{A/D conversion in progress}$											
	1 = A/D conve 0 = A/D Idle	ersion in progre	ess									
h # 0												
bit 0	ADON: A/D C											
		erter module is erter module is										
	U = A/U CONVe		nisanien									

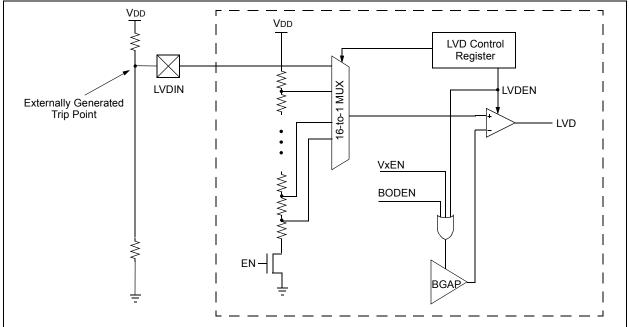

2: Performing a conversion on unimplemented channels returns full-scale results.

FIGURE 22-2: LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the sense voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, LVDIN (Figure 22-3). This gives users flexibility because it allows them to configure the Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

MO	/LW	Move Lite	eral to V	v		MOVWF
Synt	tax:	[label]	MOVLW	/ k		Syntax:
Ope	rands:	$0 \le k \le 25$	55			Operand
Ope	ration:	$k \to W$				
Statu	us Affected:	None				Operatio
Enco	oding:	0000	1110	kkkk	kkkk	Status A
Des	cription:	The eight W.	-bit litera	ıl 'k' is lo	paded into	Encodin Descript
Wor	ds:	1				
Cycl	es:	1				
QC	Cycle Activity:					
	Q1	Q2	Q	3	Q4	
	Decode	Read literal 'k'	Proce Data		Vrite to W	Words:
<u>Exa</u>	mple:	MOVLW	0x5A			Cycles: Q Cycle
	After Instruct	ion				, , ,

Synt	ax:	[label]	MOVWF 1	[,a]				
Ope	rands:	$0 \le f \le 25$	$0 \le f \le 255$					
		a ∈ [0,1]						
Ope	ration:	$(W) \to f$						
Statu	us Affected:	None						
Enco	Encoding: 0110 111a ffff fff							
Deso	cription:	Location ⁴ 256-byte I Access Ba riding the the bank v	a from W to i f' can be any bank. If 'a' is ank will be si BSR value. I will be select e (default).	/whe '0', t electo f 'a' =	re in the he ed, over- = 1, then			
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Process		Write			
		register 'f'	Data	reg	gister 'f'			
Exar	nple:	MOVWF	REG					
Refore Instruction								

Move W to f

Before Instruction				
W REG	=	0x4F 0xFF		
After Instru	_	UXET		
W	=	0x4F		

REG = 0x4F

© 2007 Microchip Technology Inc.

W

= 0x5A

MULLW	Multiply I	_iteral with \	v	MULWF	Multiply V	V with f	
Syntax:	[label]	MULLW k		Syntax:	[label]	MULWF f	[,a]
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 258$	5	
Operation:	(W) x k \rightarrow	PRODH:PR	ODL		a ∈ [0,1]		
Status Affected:	None			Operation:	(W) x (f) –	→ PRODH:P	RODL
Encoding:	0000	1101 kk	kk kkkk	Status Affected:	None		
Description:	An unsign	ed multiplica	tion is	Encoding:	0000	001a ffi	ff ffff
	of W and 16-bit resu PRODH:F PRODH c W is unch	t between the the 8-bit litera ult is placed i PRODL regist contains the h anged. he Status flag	al 'k'. The n ter pair. ligh byte.	Description:	carried ou of W and t 'f'. The 16 the PROD pair. PRO byte.	ed multiplica t between th he register fi -bit result is H:PRODL ro DH contains	e contents le location stored in egister the high
	Note that carry is po	neither overf ossible in this ro result is po red.	opera-		Both W and 'f' are unchang None of the Status flags an affected. Note that neither overflow carry is possible in this ope tion. A zero result is possib		
Words:	1					o result is po ed. If 'a' is '0	
Cycles:	1					ank will be se	
Q Cycle Activity:					•	the BSR va	
Q1	Q2	Q3	Q4	1		n the bank v is per the BS	
Decode	Read literal 'k'	Process Data	Write registers		(default).	o por allo 20	
			PRODH:	Words:	1		
			PRODL	Cycles:	1		
Example:	MULLW	0xC4		Q Cycle Activity	:		
Before Instru		01101		Q1	Q2	Q3	Q4
W PRODH PRODL		E2		Decode	Read register 'f'	Process Data	Write registers PRODH:
After Instruct	ion						PRODL
W PRODH PRODL	= 0x	E2 AD 08		<u>Example</u> : Before Instru		REG	
				W REG PRODH PRODL	= 0x = 0x = ? = ?		
				After Instruc		C 4	

atter instruction		
W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

NEGF	Negate f						
Syntax:	[label]	NEGF f[,a	1]				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	$(\overline{f}) + 1 \rightarrow$	$(\overline{f}) + 1 \rightarrow f$					
Status Affected:	N, OV, C,	DC, Z					
Encoding:	0110	110a ff:	ff ffff				
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.						
Words:	1						
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write register 'f'				
Example:	NEGF R	EG , 1					
Before Instruc REG	= 0011 1	010 [0x3A]					
After Instructi REG	on = 1100 0	110 [0xC6]					

NOF	•	No Opera	ation					
Synt	ax:	[label]	NOP					
Operands:		None	None					
Operation:		No operat	tion					
Status Affected:		None						
Encoding:		0000	0000	000	0	0000		
		1111	XXXX XXXX XXX			XXXX		
Desc	cription:	No operat	tion.					
Wor	ds:	1						
Cycl	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q3			Q4		
	Decode	No	No N		No			
		operation	operation operat		eration			

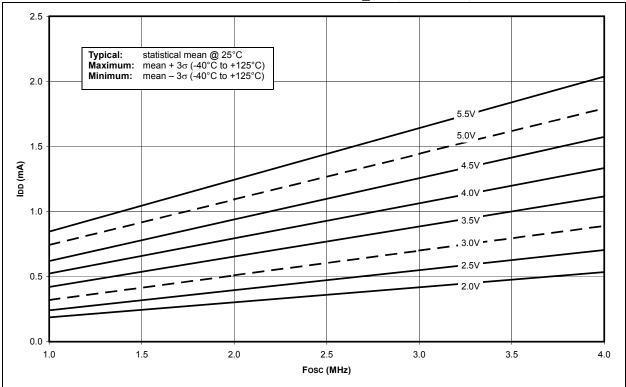
Example:

None.

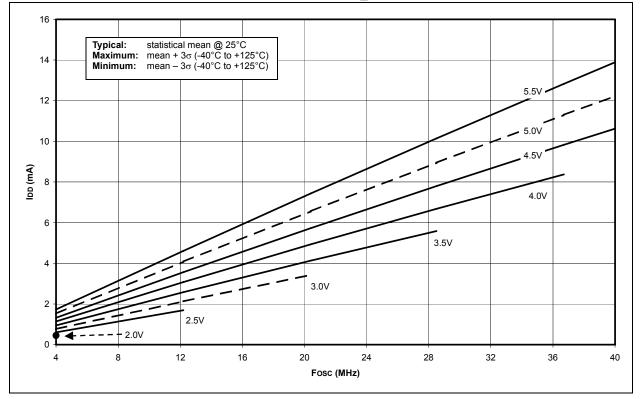
SUBLW	Subtract	Subtract W from Literal					
Syntax:	[label] S	[<i>label</i>] SUBLW k					
Operands:	$0 \le k \le 25$	0 ≤ k ≤ 255					
Operation:	k – (W) –	$k - (W) \rightarrow W$					
Status Affected:	N, OV, C,	N, OV, C, DC, Z					
Encoding:	0000	0000 1000 kkkk kkkk					
Description:	W is subt	racted from t	he eiaht-bit				
·		The result is					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read literal 'k'	Process Data	Write to W				
Example 1:	SUBLW (x02					
Before Instru	iction						
W	= 1						
С	= ?						
After Instruct							
W C	= 1 = 1 :re	sult is positive	2				
C Z N	= 0						
Example 2:	-	x02					
Before Instru	iction						
W	= 2						
С	= ?						
After Instruct	ion						
W	= 0 = 1 ; re	sult is zero					
Z	= 1	Sult 15 2010					
Example 3:	= 0 SUBLW (x02					
Before Instru		X02					
W	= 3						
C	= ?						
After Instruct	ion						
W		's complemen					
C Z N	= 0 ; re = 0	sult is negativ	e				
Ν	= 1						

SUBWF	Subtrac	Subtract W from f				
Syntax:	[label]	SUBWF f[,	d [,a]]			
Operands:	0 ≤ f ≤ 28 d ∈ [0,1] a ∈ [0,1]					
Operation:	(f) – (W)					
Status Affected:	N, OV, C					
Encoding:	0101					
Description:	complem the resul '1', the re register ' the Acce overridin '1', then	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If = 'a' is '0', the Access Bank will be selected overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1		· · ·			
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example 1:	SUBWF	REG				
Before Instru						
REG W	= 3 = 2					
С	= ?					
After Instruct REG	tion = 1					
W	= 2					
C Z N	= 1 ; re = 0	esult is positive				
	= 0					
Example 2:		REG, W				
Before Instru REG	uction = 2					
W	= 2					
C After Instruct	= ?					
After Instruct	lion					
REG	= 2					
W	= 2 = 0					
W C	= 0 = 1 ; re	esult is zero				
W	= 0 = 1;re	esult is zero				
W C	= 0 = 1 ; re = 1 = 0	e sult is zero REG				
W C Z N <u>Example 3</u> : Before Instru	= 0 = 1 ; re = 1 = 0 SUBWF					
W C Z N <u>Example 3</u> : Before Instru REG	= 0 = 1 ; re = 0 SUBWF = 0x01					
W C Z N <u>Example 3</u> : Before Instru	= 0 = 1 ; re = 1 = 0 SUBWF					
W C Z N Example 3: Before Instru REG W C After Instruct	= 0 = 1 ; re = 0 SUBWF uction = 0x01 = 0x02 = ? tion	REG				
W C Z N Example 3: Before Instru- REG W C After Instruct REG	= 0 = 1 ; re = 0 SUBWF uction = 0x01 = 0x02 = ? tion = 0xFFh	REG	nent)			
W C Z N Example 3: Before Instru REG W C After Instruct	= 0 = 1 ; re = 0 SUBWF uction = 0x01 = 0x02 = ? tion	REG	,			

			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$				
Param No.	Sym	Characteristic	Min Typ† Max Units				Conditions
		Internal Program Memory Programming Specifications					
D110	Vpp	Voltage on MCLR/VPP pin	9.00	_	13.25	V	(Note 2)
D112	IPP	Current into MCLR/VPP pin	_	—	300	μA	
D113	IDDP	Supply Current during Programming	—	—	1.0	mA	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K 10K	1M 100K		E/W E/W	-40°C to +85°C -40°C to +125°C
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M 100K	10M 1M	_	E/W E/W	-40°C to +85°C -40°C to +125°C
		Program Flash Memory					
D130	Eр	Cell Endurance	10K 1K	100K 10K		E/W E/W	-40°C to +85°C -40°C to +125°C
D131	Vpr	VDD for Read	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP port
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-Timed Write	VMIN	_	5.5	V	VMIN = Minimum operating voltage
D133	TIE	ICSP Block Erase Cycle Time	_	4	_	ms	VDD > 4.5V
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	_	_	ms	VDD > 4.5V
D133A	Tiw	Self-Timed Write Cycle Time	—	2	_	ms	
D134	TRETD	Characteristic Retention	40	_	_	Year	Provided no other specifications are violated


TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Refer to **Section 7.8 "Using the Data EEPROM**" for a more detailed discussion on data EEPROM endurance.

2: Required only if Low-Voltage Programming is disabled.

APPENDIX A: REVISION HISTORY

Revision A (June 2002)

Original data sheet for PIC18F2X20/4X20 devices.

Revision B (October 2002)

This revision includes major changes to Section 2.0 "Oscillator Configurations" and Section 3.0 "Power-Managed Modes", updates to the Electrical Specifications in Section 26.0 "Electrical Characteristics" and minor corrections to the data sheet text.

Revision C (October 2003)

This revision includes updates to the Electrical Specifications in Section 26.0 "Electrical Characteristics" and to the DC Characteristics Graphs and Charts in Section 27.0 "DC and AC Characteristics Graphs and Tables" and minor corrections to the data sheet text.

Revision D (October 2006)

This revision includes updates to the packaging diagrams.

Revision E (January 2007)

This revision includes updates to the packaging diagrams.

Revision F (February 2007)

This revision includes updates to the packaging diagrams.

Revision G (December 2007)

- Modified OSCTUNE register data and added OSCTUN2 register data to **Section 2.6 "Internal Oscillator Block"** and Table 4-3 and Table 5-1.
- Changed Brown-out Voltage values in Section 26.1 "DC Characteristics: Supply Voltage PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial)".
- Updated low-voltage detect values in Table 26-4.
- Removed RE3 pin references for PIC18F2220/2320 devices in Section 1.0 "Device Overview", Section 5.0 "Memory Organization", Section 10.0 "I/O Ports", Section 19.0 "10-bit Analog-to-Digital Converter (A/D) Module" and Section 23.0 "Special Features of the CPU".
- Made minor changes to Section 17.3.3 "Enabling SPI I/O"; Table 1-2, Table 1-3, Table 3-3, Table 12-1 and Table 26-2; Figure 12-3 and Figure 16-1; Example 10-1 and Example 10-2; and Table 21-1 and Table 23-1.

NOTES: