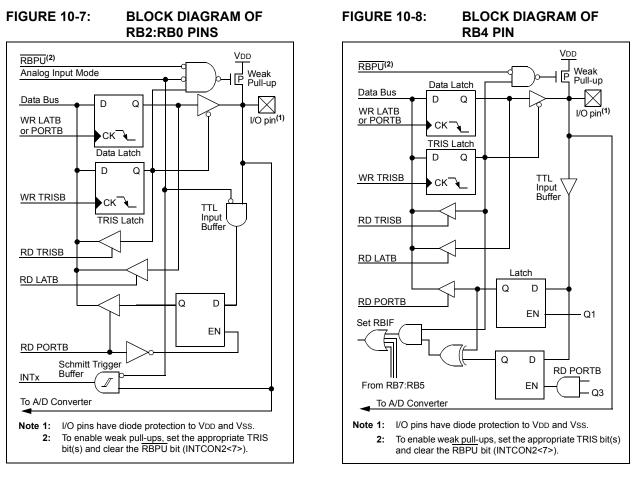


Welcome to E-XFL.COM

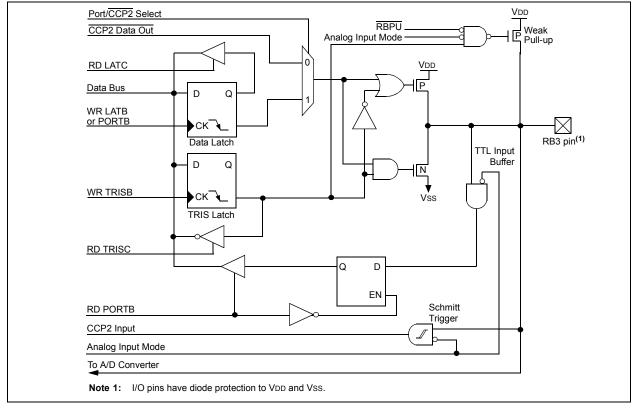
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4320t-i-pt

Email: info@E-XFL.COM

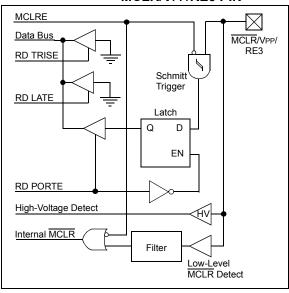

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 10-9: BLOCK DIAGRAM OF RB3/CCP2 PIN

FIGURE 10-14: BLOCK DIAGRAM OF MCLR/VPP/RE3 PIN

REGISTER 10-1: TRISE REGISTER

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0
bit 7							bit 0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7	 IBF: Input Buffer Full Status bit 1 = A word has been received and waiting to be read by the CPU 0 = No word has been received
bit 6	OBF : Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read
bit 5	 IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred
bit 4	PSPMODE : Parallel Slave Port Mode Select bit 1 = Parallel Slave Port mode 0 = General Purpose I/O mode
bit 3	Unimplemented: Read as '0'
bit 2	TRISE2: RE2 Direction Control bit 1 = Input 0 = Output
bit 1	TRISE1: RE1 Direction Control bit 1 = Input 0 = Output
bit 0	TRISE0: RE0 Direction Control bit 1 = Input 0 = Output

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, B	-	all o	e on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0	00x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1	111	1111	1111
TRISC	PORTC Da	ata Direction	Register						1111 1	111	1111	1111
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX X	xxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							XXXX X	xxx	uuuu	uuuu	
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0	000	uuuu	uuuu
CCPR1L	Capture/C	ompare/PW	M Register 2	I (LSB)					XXXX X	xxx	uuuu	uuuu
CCPR1H	Capture/Compare/PWM Register 1 (MSB)								XXXX X	xxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0	000	00	0000
CCPR2L	Capture/C	ompare/PW	M Register 2	2 (LSB)					XXXX X	xxx	uuuu	uuuu
CCPR2H	Capture/C	ompare/PW	M Register 2	2 (MSB)					XXXX X	xxx	uuuu	uuuu
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0	000	00	0000
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0	000	00-0	0000
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0	000	00-0	0000
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1	111	11-1	1111
TMR3L	Holding Re	egister for th	e Least Sigr	nificant Byte	of the 16-bit	TMR3 Reg	gister		XXXX X	xxx	uuuu	uuuu
TMR3H	Holding Re	egister for th	e Most Sign	ificant Byte	of the 16-bit	TMR3 Reg	ister		XXXX X	xxx	uuuu	uuuu
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0	000	uuuu	uuuu

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

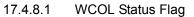
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: These bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I²C[™] MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽²⁾	R/W	UA	BF
bit 7							bit 0

Legend:	lahla hit	\\/ \\/##+-!-!- !- !+	11 - 11 minerale area (199	read as (0)
R = Read		W = Writable bit	U = Unimplemented bit,	
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7		ew Rate Control bit <u>r or Slave mode:</u>		
	1 = Slev	v rate control disabled v rate control enabled		
bit 6	CKE: SN	/Bus Select bit		
	1 = Enal	<u>r or Slave mode:</u> ble SMBus specific inputs ble SMBus specific inputs		
bit 5	D/A: Dat	a/Address bit		
	<u>In Maste</u> Reserve			
		mode: ates that the last byte receive ates that the last byte receive		5
bit 4	P: Stop I	pit ⁽¹⁾		
	0 = Stop	ates that a Stop bit has been bit was not detected last	detected last	
bit 3	S: Start	oit ⁽²⁾		
	0 = Start	ates that a Start bit has been bit was not detected last		
bit 2		ad/Write bit Information (I ² C r	mode only)	
	<u>In Slave</u> 1 = Rea	<u>mode:</u> (³⁾ d		
	0 = Write	9		
		<u>r mode:⁽⁴⁾</u>		
		smit is in progress smit is not in progress		
oit 1	UA: Upd	ate Address bit (10-Bit Slave	mode only)	
		ates that the user needs to up ess does not need to be upda		ADD register
oit 0	BF: Buff	er Full Status bit		
	1 = Data	<u>mit mode:</u> transmit in progress (does no transmit complete (does not		
	1 = Rece	<u>ve mode:</u> eive complete, SSPBUF is ful eive not complete, SSPBUF is		
		•		
Note 1:		ared on Reset when SSPEN i		
2:		ared on Reset when SSPEN i		
3:	address mato	the R/W bit information follow h to the next Start bit, Stop bi	t or not ACK bit.	
4٠	ORing this hit	with the SSPCON2 hits SEN	RSEN PEN RCEN or ACK	KEN will indicate if the MSSP is i


4: ORing this bit with the SSPCON2 bits, SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.

17.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Condition Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

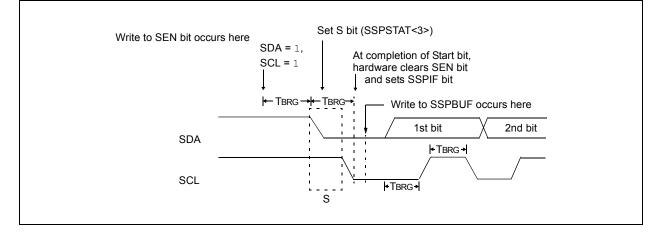

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

FIGURE 17-19: FIRST START BIT TIMING

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

U-0	U-0		R/W-0		R/W-0	F	R/W-0 ⁽¹)	R/W ⁽	1)	R/W	/(1)	R	/W(1)
_	—		VCFG1		VCFG0		PCFG3		PCFG	62	PCF	G1	PC	CFGC
oit 7														b
Legend:														
R = Readab	le hit	W :	= Writal	nle hit		11:	= Unim	olemer	nted hit	read a	as 'O'			
-n = Value a			= Bit is				= Bit is				x = Bit	is unkr	nown	
		1	- Dit 13	301		0	- Dit 13	cicarc	u	,			100011	
bit 7-6	Unimplem	ented:	Read a	as '0'										
bit 5	-				nfiguratio	on bit (VREF- S	source)					
	VCFG1: Voltage Reference Configuration bit (VREF- source) 1 = VREF- (AN2)													
	0 = V SS	. /												
bit 4	VCFG0: V	oltage F	Referen	ce Cor	nfiguratio	on bit (VREF+	source	e)					
		VCFG0: Voltage Reference Configuration bit (VREF+ source) 1 = VREF+ (AN3)												
	0 = V DD													
bit 3-0	PCFG3:PC	CFG0: /	A/D Por	t Confi	guration	Contr								
	PCFG3:	12	11	10	6	~	7(2)	3 ⁽²⁾	5 ⁽²⁾	4	8	2	-	0
	PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
	₀₀₀₀ (1)	А	А	А	Α	А	Α	А	Α	Α	Α	Α	Α	Α
	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	0010	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α
	0011	D	А	А	А	А	А	А	Α	Α	Α	Α	Α	Α
	0100	D	D	А	А	А	А	А	Α	Α	Α	Α	Α	Α
	0101	D	D	D	Α	А	Α	А	Α	Α	Α	Α	Α	Α
	0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
	0111 (1)	D	D	D	D	D	А	А	Α	Α	Α	Α	Α	A
	1000	D	D	D	D	D	D	А	Α	Α	Α	Α	Α	Α
	1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
				-	D	D	D	D	D	Α	Α	Α	Α	Α
	1010	D	D	D	5			-	D	D	Α	•	•	Α
	1010 1011	D D	D D	D	D	D	D	D	U	_	А	Α	Α	A
						D D	D D	D	D	D	D	A	A A	A
	1011	D	D D D	D D D	D D D	D D	D D	D D	D D	D D	D D	A D	A A	A A
	1011 1100	D D	D D	D D	D D	D	D	D	D	D D D	D	Α	Α	A A A
	1011 1100 1101	D D D	D D D	D D D	D D D	D D	D D	D D	D D	D D	D D	A D	A A	

REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1

Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.

2: AN5 through AN7 are available only in PIC18F4X20 devices.

19.7 A/D Conversions

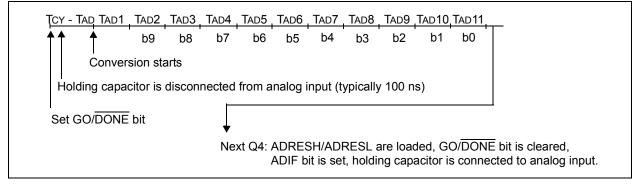
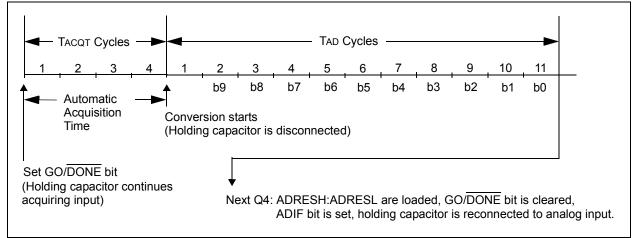

Figure 19-3 shows the operation of the A/D converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 19-4 shows the operation of the A/D converter after the GO/DONE bit has been set and the ACQT2:ACQT0 bits are set to '010' and selecting a 4 TAD acquisition time before the conversion starts. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 19-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 19-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

REGISTER 23-8: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1					
_	—	—	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0					
bit 7	·						bit 0					
Legend:												
R = Reada	ble bit	P = Programn	nable bit	U = Unimpler	nented bit, read	as '0'						
-n = Value	when device is unp	programmed		u = Unchang	ed from progran	nmed state						
bit 7-4	Unimplement	ted: Read as ')'									
bit 3	WRT3: Write	WRT3: Write Protection bit ⁽¹⁾										
		1 = Block 3 (001800-001FFFh) not write-protected										
	•	0 = Block 3 (001800-001FFFh) write-protected										
bit 2	WRT2: Write	WRT2: Write Protection bit ⁽¹⁾										
		1 = Block 2 (001000-0017FFh) not write-protected										
	, i	01000-0017FF	h) write-prote	ected								
bit 1		WRT1: Write Protection bit										
		00800-000FFF	· ·									
	,	0 = Block 1 (000800-000FFFh) write-protected										
bit 0	WRT0: Write	Protection bit										
		00200-0007FF										
	0 = Block 0 (0	00200-0007FF	h) write-prote	cted								

Note 1: Unimplemented in PIC18FX220 devices; maintain this bit set.

REGISTER 23-9: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/P-1	R/P-1	R-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾	_	_	—	—	—
bit 7							bit 0

Legend:			
R = Read	R = Readable bitP = Programmable bitn = Value when device is unprogrammed		U = Unimplemented bit, read as '0'
-n = Value			u = Unchanged from programmed state
bit 7	WRTD:	Data EEPROM Write Protection	n bit
		a EEPROM is not write-protecter a EEPROM is write-protected	d
bit 6	1 = Boo	Boot Block Write Protection bit t block (000000-0001FFh) is not t block (000000-0001FFh) is wri	•
bit 5	1 = Con	Configuration Register Write Pro figuration registers (300000-300 figuration registers (300000-300	00FFh) are not write-protected

bit 4-0 Unimplemented: Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

REGISTER 23-14: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	_	_	—	-	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit⁽¹⁾

1 = Watchdog Timer is on

0 = Watchdog Timer is off

Note 1: This bit has no effect if the Configuration bit, WDTEN (CONFIG2H<0>), is enabled.

TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2H	—	_	_	WDTPS3	WDTPS2	WDTPS2	WDTPS0	WDTEN
RCON	IPEN	_	-	RI	TO	PD	POR	BOR
WDTCON	—	-	l	—	—	_	l	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

24.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets.

Most instructions are a single program memory word (16 bits) but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · Control operations

The PIC18 instruction set summary in Table 24-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 24-1 shows the opcode field descriptions.

Most **byte-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word except for three double word instructions. These three instructions were made double word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 24-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 24-2, lists the instructions recognized by the Microchip Assembler (MPASMTM). **Section 24.2** "Instruction **Set**" provides a description of each instruction.

24.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

After Instruction

If Carry PC If Carry PC

= = =

ANDWF	AND W with f		BC	Branch if	Carry	
Syntax:	[label] ANDWF f	,d [,a]]	Syntax:	[<i>label</i>] E	BC n	
Operands:	$0 \leq f \leq 255$		Operands:	-128 ≤ n ≤	≤ 12 7	
	d ∈ [0,1] a ∈ [0,1]		Operation:	if Carry bi (PC) + 2 ·	t is '1', + 2n → PC	
Operation:	(W) .AND. (f) \rightarrow dest		Status Affect	ed: None		
Status Affected:	N, Z		Encoding:	1110	0010 nn	nn nnnn
Encoding:	0001 01da ff	ff ffff	Description:	If the Car	ry bit is '1', th	ien the
Description:	The contents of W are register 'f'. If 'd' is '0', t stored in W. If 'd' is '1' stored back in register If 'a' is '0', the Access selected. If 'a' is '1', th not be overridden (def	he result is , the result is 'f' (default). Bank will be e BSR will		The 2's co added to have incre instruction PC + 2 +	the PC. Sinc emented to fe	
Words:	1		Words:	1		
Cycles:	1		Cycles:	1(2)		
Q Cycle Activity:			Q Cycle Act	ivity:		
Q1	Q2 Q3	Q4	If Jump:			_
Decode	Read Process	Write to	Q1	Q2	Q3	Q4
	register 'f' Data	destination	Decod	e Read literal 'n'	Process Data	Write to PC
Example:	ANDWF REG, W		No operati	No on operation	No operation	No operation
Before Instru			If No Jump:			
W REG	= 0x17 = 0xC2		Q1	Q2	Q3	Q4
After Instruct	ion		Decod	e Read literal	Process Data	No operation
W REG	= 0x02 = 0xC2				Dulu	operation
REG	= 0xC2		Example:	HERE	BC JUMP)
			Before I PC	nstruction = ac	Idress (HERE)

1; address (JUMP) 0; address (HERE + 2)

BNOV	Branch if	Not Overflo	w	BNZ			
Syntax:	[<i>label</i>] B	[<i>label</i>] BNOV n					
Operands:	-128 ≤ n ≤	$-128 \le n \le 127$					
Operation:		if Overflow bit is '0', (PC) + 2 + 2n \rightarrow PC					
Status Affected:	None			Stat			
Encoding:	1110	0101 nni	nn nnnn	Enc			
Description:	program v The 2's co added to t have incre instruction PC + 2 + 2	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be $PC + 2 + 2n$. This instruction is then a two-cycle instruction.					
Words:	1			Wor			
Cycles:	1(2)			Сус			
Q Cycle Activity If Jump:	:			Q (If J			
Q1	Q2	Q3	Q4	-			
Decode	Read literal 'n'	Process Data	Write to PC				
No	No	No	No				
operation	operation	operation	operation] If N			
If No Jump: Q1	Q2	Q3	04	IT IN			
Decode	Read literal	Process	Q4 No	1			
Decode	'n'	Data	operation				
Example: Before Instr PC		BNOV Jump dress (HERE)		Exa			
After Instruc If Overflu PC If Overflu PC	ow = 0; = ad ow = 1;	dress (Jump) dress (HERE					

Syntax:	[<i>label</i>] B	[<i>label</i>] BNZ n				
Operands:	-128 < n <					
•						
Operation:		if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC				
Status Affected:	None					
Encoding:	1110	0001 nni	nn nnnn			
Description:	Description: If the Zero bit is '0 program will branc The 2's compleme added to the PC. S have incremented instruction, the new PC + 2 + 2n. This then a two-cycle in					
Words:	1	1				
Cycles:	1(2)	1(2)				
Q Cycle Activity: If Jump:						
Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	Write to PC			
No	No	No	No			
operation	operation	operation	operation			
If No Jump:						
Q1	Q2	Q3	Q4			
Decode	Read literal 'n'	Process Data	No operation			
Example:	HERE	BNZ Jump				
Example: Before Instru	HERE	BNZ Jump				

PC	=	address (HERE)
After Instruction		
If Zero PC If Zero PC	= = =	0; address (Jump) 1; address (HERE + 2)

BRA	x	Unconditi	ional Branc	h	BS	F	Bit Set f		
Synt	tax:	[<i>label</i>] B	RA n		Sy	ntax:	[<i>label</i>] B	SF f,b[,a]	
Ope	rands:	-1024 ≤ n	≤ 1023		Ор	erands:	$0 \le f \le 255$	5	
Ope	ration:	(PC) + 2 +	$2n \rightarrow PC$				0 ≤ b ≤ 7 a ∈ [0,1]		
Statu	us Affected:	None			On	eration:	a ∈ [0, l] 1 → f 		
Enco	oding:	1101	0nnn nn	nn nnnn	-	tus Affected:	None None		
Des	cription:	Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next		dd the 2's complement number n' to the PC. Since the PC will Encoding:		coding:	1000	bbba ff:	ff ffff et. If 'a' is '0',
		PC + 2 + 2	, the new ad 2n. This instr instruction.	dress will be ruction is a			Access Ba riding the I the bank v	ank will be se BSR value. If vill be selecte	elected, over- f 'a' = 1, then ed as per the
Wor	ds:	1					BSR value	.	
Cycl	es:	2				ords:	1		
QC	Cycle Activity:	:			Cy	cles:	1		
	Q1	Q2	Q3	Q4	Q	Cycle Activity	:		
	Decode	Read literal	Process	Write to PC		Q1	Q2	Q3	Q4
	No operation	ʻn' No operation	Data No operation	No operation		Decode	Read register 'f'	Process Data	Write register 'f'
					Exa	ample:	BSF F	LAG_REG, 7	
	<u>mple</u> : Before Instru	HERE	BRA Jump			Before Instru FLAG_R		DA	
	PC = address (HERE) After Instruction				After Instruc FLAG_R		BA		
	10	- au	dress (Jump	,					

POP	Pop Top of Return Stack				
Syntax:	[label]	POP			
Operands:	None				
Operation:	$(TOS) \rightarrow $	bit bucket			
Status Affected:	None				
Encoding:	0000	0000	0000	0110	
Description:	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previ- ous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.				
Words:	1				
Cycles:	1				
Q Cycle Activity	:				
Q1	Q2	Q3		Q4	
Decode	No operation	POP TOS value		No eration	
Example:	POP GOTO	NEW			
Before Instr TOS Stack (1	uction level down)		031A2 14332		
After Instruc TOS PC	tion	= 0x0 = NE\	14332 N		

PUSH	Push Top	of Return	Stack		
Syntax:	[label]	PUSH			
Operands:	None				
Operation:	(PC + 2) -	→ TOS			
Status Affected:	None				
Encoding:	0000	0000 00	00 0101		
Description:	The PC + 2 is pushed onto the top of the return stack. The previous TOS value is pushed down on the stack. This instruction allows to implement a software stack by modifying TOS, and then push it onto the return stack.				
Words:	1				
Cycles:	1				
Q Cycle Activity	/:				
Q1	Q2	Q3	Q4		
Decode	PUSH PC+2 onto return stack	No operation	No operation		
Example:	PUSH				
Before Instr TOS PC	ruction	= 0x003 = 0x000			
After Instruction PC TOS Stack (1 level down)		= 0x000 = 0x000 = 0x003	126		

RET	RETFIE Return from Interrupt							
Synt	ax:	[label]	RETFIE [s]					
Оре	rands:	$s \in [0,1]$						
Ope	ration:	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL};$ if $s = 1,$ $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Status Affected: GIE/GIEH, PEIE/GIEL.								
Enco	oding:	0000	0000 00	01 000s				
Description: Return from Interrupt. Stack is popped and Top-of-Stack (TC loaded into the PC. Interrupts enabled by setting either the or low-priority global interrupt enable bit. If 's' = 1, the conter the shadow registers WS, STATUSS and BSRS are load into their corresponding regis W, STATUS and BSR. If 's' = update of these registers occu (default).				ack (TOS) is errupts are er the high terrupt e contents of VS, are loaded g registers, If 's' = 0, no				
Wor	ds:	1						
Cycl	es:	2	2					
QC	cycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	No operation	No operation	pop PC from stack Set GIEH or GIEL				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exar</u>	<u>mple</u> :	RETFIE 1	L					
After Interrupt PC = TOS W = WS BSR = BSRS STATUS = STATUSS GIE/GIEH, PEIE/GIEL = 1								

RET	ĽW	Return Li	teral to	w			
Synt	ax:	[label]	RETLW	k			
Ope	rands:	$0 \le k \le 25$	5				
Ope	ration:	$k \rightarrow W$, (TOS) $\rightarrow f$ PCLATU,		H are	unchanged		
Statu	us Affected:	None					
Enco	oding:	0000	1100	kk}	k kkkk		
Des	cription:	'k'. The pr	ogram o op of the The hig	count stac h ado			
Wor	ds:	1					
Cycl	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3	3	Q4		
	Decode	Read literal 'k'	Proce Data		pop PC from stack, Write to W		
	No	No	No		No		
	operation	operation	operat	ion	operation		
Exai	Example:						
	CALL TABLE	; W contai ; offset v ; W now ha ; table va	value as	ole			
TABI		; W = offs ; Begin ta ;					

Before Instruction

W = 0x07

After Instruction

:

W = value of kn

RETLW kn ; End of table

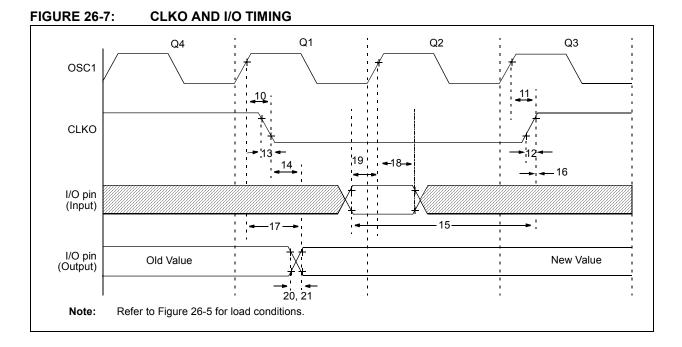
25.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

25.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

25.13 Demonstration, Development and Evaluation Boards


A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
10	TosH2cĸL	OSC1 ↑ to CLKO ↓		_	75	200	ns	(1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(1)
12	TCKR	CLKO Rise Time		—	35	100	ns	(1)
13	ТскF	CLKO Fall Time		—	35	100	ns	(1)
14	TckL2IoV	CLKO \downarrow to Port Out Valid		—		0.5 Tcy + 20	ns	(1)
15	ТюV2скН	Port In Valid before CLKO ↑		0.25 TCY + 25		_	ns	(1)
16	TckH2iol	Port In Hold after CLKO ↑		0		_	ns	(1)
17	TosH2IoV	OSC1↑ (Q1 cycle) to Port Out Valid		—	50	150	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port Input Invalid (I/O in hold time)	PIC18 F XX20	100		_	ns	
18A			PIC18 LF XX20	200	—	—	ns	
19	TioV2osH	Port Input Valid to OSC1 [↑] (I/O in setup time)		0	_	—	ns	
20	TIOR	Port Output Rise Time	PIC18 F XX20	—	10	25	ns	
20A			PIC18 LF XX20	—		60	ns	
21	TIOF	Port Output Fall Time	PIC18 F XX20	—	10	25	ns	
21A			PIC18 LF XX20	—	_	60	ns	

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

FIGURE 27-19: MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_IDLE, ALL PERIPHERALS DISABLED

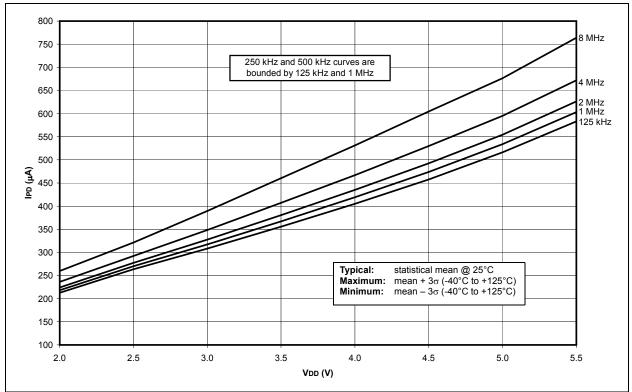
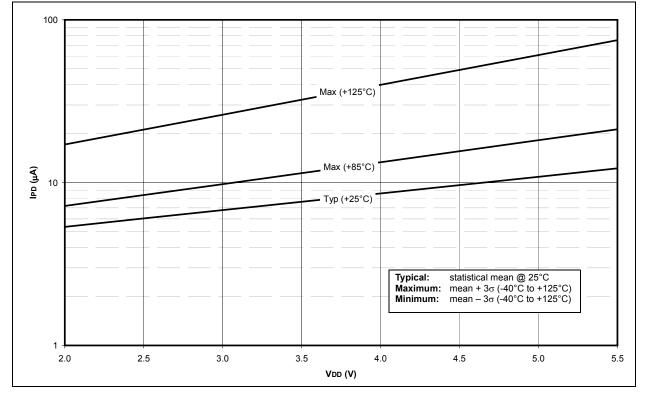
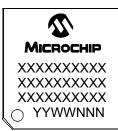
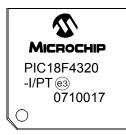




FIGURE 27-20: TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_IDLE, ALL PERIPHERALS DISABLED



Package Marking Information (Continued)

44-Lead TQFP

Example

44-Lead QFN

Example

APPENDIX A: REVISION HISTORY

Revision A (June 2002)

Original data sheet for PIC18F2X20/4X20 devices.

Revision B (October 2002)

This revision includes major changes to Section 2.0 "Oscillator Configurations" and Section 3.0 "Power-Managed Modes", updates to the Electrical Specifications in Section 26.0 "Electrical Characteristics" and minor corrections to the data sheet text.

Revision C (October 2003)

This revision includes updates to the Electrical Specifications in Section 26.0 "Electrical Characteristics" and to the DC Characteristics Graphs and Charts in Section 27.0 "DC and AC Characteristics Graphs and Tables" and minor corrections to the data sheet text.

Revision D (October 2006)

This revision includes updates to the packaging diagrams.

Revision E (January 2007)

This revision includes updates to the packaging diagrams.

Revision F (February 2007)

This revision includes updates to the packaging diagrams.

Revision G (December 2007)

- Modified OSCTUNE register data and added OSCTUN2 register data to **Section 2.6 "Internal Oscillator Block"** and Table 4-3 and Table 5-1.
- Changed Brown-out Voltage values in Section 26.1 "DC Characteristics: Supply Voltage PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial)".
- Updated low-voltage detect values in Table 26-4.
- Removed RE3 pin references for PIC18F2220/2320 devices in Section 1.0 "Device Overview", Section 5.0 "Memory Organization", Section 10.0 "I/O Ports", Section 19.0 "10-bit Analog-to-Digital Converter (A/D) Module" and Section 23.0 "Special Features of the CPU".
- Made minor changes to Section 17.3.3 "Enabling SPI I/O"; Table 1-2, Table 1-3, Table 3-3, Table 12-1 and Table 26-2; Figure 12-3 and Figure 16-1; Example 10-1 and Example 10-2; and Table 21-1 and Table 23-1.