

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2220-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

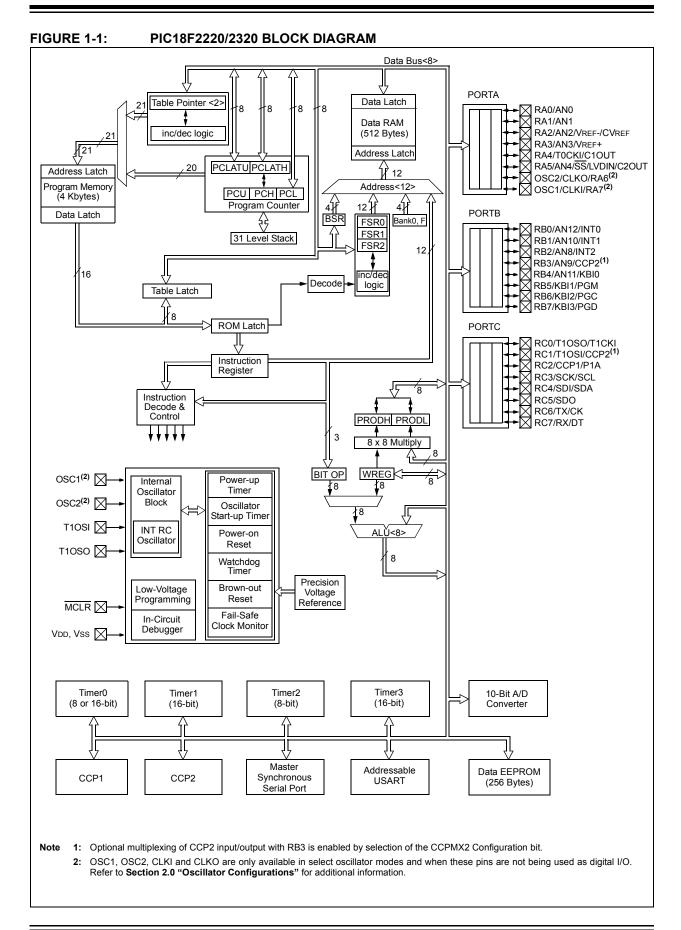
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.


To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

TABLE 2-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

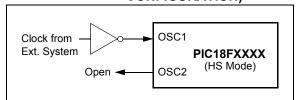
Osc Type	Crystal Freq	Typical Capacitor Values Tested:			
-	Freq	C1	C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	1 MHz	33 pF	33 pF		
	4 MHz	27 pF	27 pF		
HS	4 MHz	27 pF	27 pF		
	8 MHz	22 pF	22 pF		
	20 MHz	15 pF	15 pF		
			_		

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

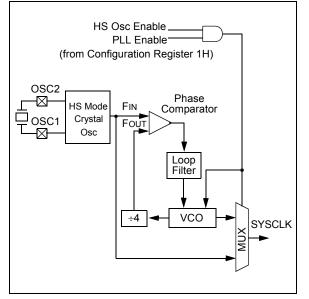
See the notes following this table for additional information.


Crysta	als Used:
32 kHz	4 MHz
200 kHz	8 MHz
1 MHz	20 MHz

- Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use the HS mode or switch to a crystal oscillator.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - Rs may be required to avoid overdriving crystals with low drive level specification.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.

An external clock source may also be connected to the OSC1 pin in the HS mode, as shown in Figure 2-2.

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)


2.3 HSPLL

A Phase Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency crystal oscillator circuit, or to clock the device up to its highest rated frequency from a crystal oscillator. This may be useful for customers who are concerned with EMI due to high-frequency crystals.

The HSPLL mode makes use of the HS mode oscillator for frequencies up to 10 MHz. A PLL then multiplies the oscillator output frequency by 4 to produce an internal clock frequency up to 40 MHz.

The PLL is enabled only when the oscillator Configuration bits are programmed for HSPLL mode. If programmed for any other mode, the PLL is not enabled.

FIGURE 2-3: PLL BLOCK DIAGRAM

	2-3. 0000						
R/W-0	R/W-0	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
bit 7							bit (
Legend:							
R = Readab		W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	IDLEN: Idle	Enable bit					
				clocked in powe			
				cked in power-n	nanaged modes	3	
bit 6-4		0: Internal Osci	•				
		z (8 MHz source	e drives clock	directly)			
	110 = 4 MH: 101 = 2 MH:						
	101 = 2 MHz 100 = 1 MHz						
	011 = 500 k						
	010 = 250 k						
	001 = 125 k						
		Iz (INTRC source		• ·			
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾ 1 = Oscillator Start-up Timer time-out has expired; primary oscillator is running						
		•		s expired; prima running; primary	•	•	
bit 2		SC Frequency S		anning, primary		ready	
		frequency is st					
		frequency is no					
bit 1-0	SCS1:SCS0	: System Clock	Select bits				
	1x = Interna	l oscillator block	(RC modes))			
		oscillator (Seco					
	00 = Primary	y oscillator (Sle	ep and PRI_II	DLE modes)			
Note 1: D	Depends on state	e of IESO bit in	Configuration	Register 1H.			
2 : S	SCS0 may not be	e set while T1O	SCEN (T1CO	N<3>) is clear.			
	-		-	-			

REGISTER 2-3: OSCCON: OSCILLATOR CONTROL REGISTER

NOTES:

TABLE 5-2		JUIER		MARY (P		.0/2320/4/	220/4320)		1	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0000 q000	27, 47
LVDCON	—		IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	47, 233
WDTCON	—			—	_		—	SWDTEN	0	47, 247
RCON	IPEN	_	_	RI	TO	PD	POR	BOR	01 11q0	45, 69, 98
TMR1H	Timer1 Regis	ster High Byte							XXXX XXXX	47, 125
TMR1L	Timer1 Regis	ster Low Byte							XXXX XXXX	47, 125
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	47, 121
TMR2	Timer2 Regis	ster							0000 0000	47, 127
PR2	Timer2 Perio	d Register							1111 1111	47, 127
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	47, 127
SSPBUF	MSSP Recei	ve Buffer/Trar	nsmit Register	-					XXXX XXXX	47, 156, 164
SSPADD	MSSP Addre	ss Register ir	I ² C™ Slave	mode. MSSP	Baud Rate Re	eload Register	r in I ² C Maste	r mode.	0000 0000	47, 164
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	47, 156, 165
SSPCON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	47, 157, 166
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	47, 167
ADRESH	A/D Result Register High Byte							•	XXXX XXXX	48, 220
ADRESL	A/D Result R	egister Low B	yte						XXXX XXXX	48, 220
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	48, 211
ADCON1	—	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0qqq	48, 212
ADCON2	ADFM	-	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	48, 213
CCPR1H	Capture/Compare/PWM Register 1 High Byte						•	XXXX XXXX	48, 134	
CCPR1L	Capture/Com	npare/PWM R	egister 1 Low	Byte					XXXX XXXX	48, 134
CCP1CON	P1M1 ⁽⁵⁾	P1M0 ⁽⁵⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	48, 133, 141
CCPR2H	Capture/Com	npare/PWM R	egister 2 High	Byte					XXXX XXXX	48, 134
CCPR2L	Capture/Com	npare/PWM R	egister 2 Low	Byte					XXXX XXXX	48, 134
CCP2CON	—		DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	48, 133
PWM1CON ⁽⁵⁾	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	48, 149
ECCPAS ⁽⁵⁾	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	48, 150
CVRCON	CVREN	CVROE	CVRR	—	CVR3	CVR2	CVR1	CVR0	000- 0000	48, 227
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	48, 221
TMR3H	Timer3 Regis	ster High Byte							XXXX XXXX	48, 131
TMR3L	Timer3 Register Low Byte							XXXX XXXX	48, 131	
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	48, 129
SPBRG	USART Bau	d Rate Genera	ator						0000 0000	48, 198
RCREG	USART Rece	eive Register							0000 0000	48, 204, 203
TXREG	USART Tran	smit Register							0000 0000	48, 202, 203
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	48, 196
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	48, 197

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read as '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read as '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: If PBADEN = 0, PORTB<4:0> are configured as digital inputs and read unknown and if PBADEN = 1, PORTB<4:0> are configured as analog inputs and read as '0' following a Reset.

5: These registers and/or bits are not implemented on the PIC18F2X20 devices and read as 0x00.

6: The RE3 port bit is available as an input only pin only in 40-pin devices when Master Clear functionality is disabled (CONFIG3H<7>= 0).

9.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u> 1 = Enables all high-priority interrupts 0 = Disables all high-priority interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit 1 = The INTO external interrupt occurred (must be cleared in software) 0 = The INTO external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

Name	Bit#	Buffer Type	Function
RE0/AN5/RD	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, analog input or read control input in Parallel Slave Port mode. For RD (PSP Control mode): 1 = PSP is Idle 0 = Read operation. Reads PORTD register (if chip selected).
RE1/AN6/WR	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, analog input or write control input in Parallel Slave Port mode. For WR (PSP Control mode): 1 = PSP is Idle 0 = Write operation. Writes PORTD register (if chip selected).
RE2/AN7/CS	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, analog input or chip select control input in Parallel Slave Port mode. For CS (PSP Control mode): 1 = PSP is Idle 0 = External device is selected
MCLR/VPP/RE3 ⁽²⁾	bit 3	ST	Input only port pin or programming voltage input (if $\overline{\text{MCLR}}$ is disabled); Master Clear input or programming voltage input (if $\overline{\text{MCLR}}$ is enabled).

TABLE 10-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

2: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

TABLE 10-10:	SUMMARY OF REGISTERS	ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTE	—	_		_	RE3 ⁽¹⁾	RE2	RE1	RE0	qxxx	quuu
LATE		—	—	_	_	LATE Data	a Latch Reg	ister	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directio	n bits	0000 -111	0000 -111
ADCON1	_		VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

 $\label{eq:lagend: Legend: x = unknown, u = unchanged, - = unimplemented, read as `0', q = value depends on condition. Shaded cells are not used by PORTE.$

Note 1: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

11.1 Timer0 Operation

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI/C1OUT. The incrementing edge is determined by the Timer0 Source Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

11.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not readable or writable.

The PSA and T0PS2:T0PS0 bits determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, x....etc.) will clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

11.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

11.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or FFFFh to 000h in 16-bit mode. This overflow sets the TMR0IF bit. The interrupt can be masked by clearing the TMR0IE bit. The TMR0IF bit must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Sleep mode, since the timer requires clock cycles, even when T0CS is set.

11.4 16-Bit Mode Timer Reads and Writes

TMR0H is not the high byte of the timer/counter in 16-bit mode but is actually a buffered version of the high byte of Timer0 (refer to Figure 11-2). The high byte of the Timer0 counter/timer is not directly readable nor writable. TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0, without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

A write to the high byte of Timer0 must also take place through the TMR0H Buffer register. Timer0 high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TMR0L	Timer0 Low Byte Register							XXXX XXXX	uuuu uuuu	
TMR0H	Timer0 High Byte Register							0000 0000	0000 0000	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	x000 000x	0000 000u
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	1111 1111
TRISA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	PORTA D	PORTA Data Direction Register					1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

Note 1: RA6 and RA7 are enabled as I/O pins depending on the oscillator mode selected in Configuration Word 1H.

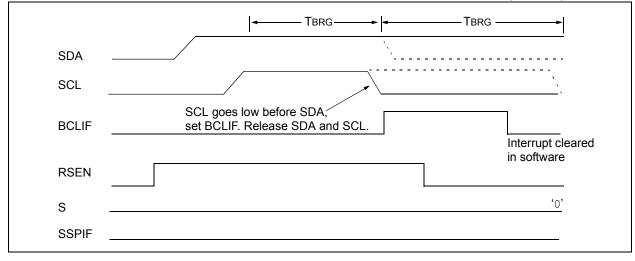
17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 17-30).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 17-30: BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)

NOTES:

R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
IESO	FSCM	—	_	FOSC3	FOSC2	FOSC1	FOSC0
bit 7	·						bit 0
Legend:							
R = Readab	ole bit	P = Program	nable bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value v	vhen device is unp	orogrammed		u = Unchang	ed from prograr	nmed state	
bit 7	IESO: Intorna	I/External Swit	chovor hit				
	1 = Internal/E	xternal Switch	over mode er				
bit 6	FCMEN: Fail-	Safe Clock Mo	nitor Enable	bit			
		Clock Monitor Clock Monitor					
bit 5-4	Unimplemen	ted: Read as '	0'				
bit 3-0	FOSC3:FOSC	: Oscillator S	Selection bits	(1)			
	1001 = Intern 1000 = Intern 0111 = Extern 0110 = HS os 0101 = EC os	al oscillator blo nal RC oscillato cillator, PLL en cillator, port fu cillator, CLKO cillator cillator	ock, CLKO fu ock, port functor, port function or, port function abled (clock nction on RA	nction on RA6 a tion on RA6 and on on RA6 frequency = 4 a 6	d port function o		

Byte-oriented file register operations	Example Instruction
<u>15 10 9 8 7 0</u>	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
15 12 11 9 8 7 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
	NOVIE 0 75
OPCODE k (literal) k = 8-bit immediate value	MOVLW 0x7F
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
15 12 11 0 1111 n<19:8> (literal) 1	
1111 n<19:8> (literal)	
n = 20-bit immediate value	CALL MYFUNC
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0	CALL MYFUNC
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 15 15 12 11 0	CALL MYFUNC
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal)	CALL MYFUNC
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 15 15 12 11 0 n n<19:8> (literal) 15	CALL MYFUNC
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1 15 12 11 0 15 12 11 0 S = Fast bit S 15 11 10	CALL MYFUNC BRA MYFUNC
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 15 15 12 11 0 15 12 11 0 S = Fast bit S = Fast bit S = Fast bit	
1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 OPCODE S n<7:0> (literal) 1 15 12 11 0 15 12 11 0 S = Fast bit S 15 11 10	

ADD	WFC	ADD W ar	ADD W and Carry bit to f					
Synt	ax:	[<i>label</i>] A[[<i>label</i>] ADDWFC f [,d [,a]]					
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Ope	ration:	(W) + (f) +	$(C) \rightarrow de$	est				
•	us Affected:	N, OV, C,						
Enco	oding:	0010	00da	ffff	ffff			
Deso	cription:	Add W, the memory lo result is pl tion 'f'. If 'a will be sele will not be	ocation 'f'. aced in V aced in d a' is '0', th ected. If 'a	. If 'd' is ' V. If 'd' is ata mem ne Acces a' is '1', t	0', the '1', the ory loca- s Bank			
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process Data		ite to ination			
<u>Exar</u>	<u>mple</u> :	ADDWFC	REG, W	V				
	Before Instru Carry bit REG W After Instruct Carry bit	= 1 = 0x02 = 0x4D						
	REG	= 0x02						

ANDLW		AND Lite	ral with	W			
Syntax:		[label] A	NDLW	k			
Operands:		$0 \le k \le 25$	$0 \le k \le 255$				
Operation:		(W) .AND	(W) .AND. $k \rightarrow W$				
Status A	ffected:	N, Z					
Encodin	g:	0000	1011	kkkk	kkkk		
Description:		The conte the 8-bit I placed in	iteral 'k'.				
Words:		•	1				
Cycles:		1					
Q Cycle	e Activity:						
	Q1	Q2	Q3	3	Q4		
D	ecode	Read literal 'k'	Proce Data		/rite to W		
Example	2.	ANDI.W	0x5F				

Example: ANDLW 0x5F

Before instruction						
W	=	0xA3				
After Instruction						
W	=	0x03				

W

=

0x50

GOT	ю	Uncondit	ional B	ranch				
Synt	ax:	[label]	GOTO	k				
Ope	rands:	$0 \le k \le 10$	$0 \leq k \leq 1048575$					
Ope	ration:	$k \rightarrow PC < 20:1 >$						
Statu	us Affected:	None						
1st v	oding: vord (k<7:0>) word(k<19:8>		1111 k ₁₉ kkk	k ₇ kk kkk	0			
Desi	cription:		nywhere nemory s loaded lways a	within range into F	n entire . The 20-bit PC<20:1>.			
Words:								
**01	ds:	2						
Cycl		2 2						
Cycl		-						
Cycl	es:	-	Q	3	Q4			
Cycl	es: Sycle Activity:	2	Q3 No operat	ion	Q4 Read literal 'k'<19:8>, Write to PC			

Example: GOTO THERE

After Instruction

operation

PC = Address (THERE)

operation

operation

operation

INCF	Incremen	t f		
Syntax:	[label]	INCF	f [,d [,a]]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(f) + 1 \rightarrow 0	dest		
Status Affected:	C, DC, N,	OV, Z		
Encoding:	0010	10da	ffff	ffff
	increment is placed i is placed b (default). I Bank will b the BSR v bank will b BSR value	n W. If ' back in r f 'a' is ' be selec alue. If be selec	d' is '1', register 0', the A ted, ove 'a' = 1, t ted as p	the result 'f' ccess erriding then the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
· · · ·	Q2	Q3		-
Q1	QZ		,	Q4
	Read register 'f'	Proce	SS	Q4 Write to estination
Q1	Read register 'f'	Proce	SS	Write to

RLNCF	Rotate Le	eft f (no car	ry)			
Syntax:	[label]	RLNCF f	[,d [,a]]			
Operands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5				
Operation:	$(f \le n >) \rightarrow$ $(f \le 7 >) \rightarrow$	dest <n +="" 1=""> dest<0></n>	•,			
Status Affected:	N, Z					
Encoding:	0100	01da f	fff ffff			
	the result the result 'f' (default Bank will the BSR bank will	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example:	RLNCF	REG				
Before Instruction REG = 1010 1011						
After Instructi REG	on = 0101 0	111				

RRCF	Rotate Ri	ght f th	rough C	arry	
Syntax:	[label]	RRCF	f [,d [,a]]	
Operands:	0 ≤ f ≤ 258 d ∈ [0,1] a ∈ [0,1]	5			
Operation:	$(f < n >) \rightarrow (f < n >) \rightarrow (f < 0) \rightarrow (f <$	C,	- 1>,		
Status Affected:	C, N, Z				
Encoding:	0011	00da	ffff	ffff	
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is '0', the resul is placed in W. If 'd' is '1', the resul is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read register 'f'	Proce Data		Vrite to stination	
Example:	RRCF F	REG, W			
Before Instru REG	ction = 1110 (110			

After Instruction

 $\begin{array}{rcl} REG & = & 1110 & 0110 \\ W & = & 0111 & 0011 \\ C & = & 0 \end{array}$

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial) (Continued)

PIC18LF2220/2320/4220/4320 (Industrial)		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC18F22 (Indus	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param Device		Тур	Max	Units	Conditions			
Module Differential Currents (ΔΙωDT, ΔΙΒΟR, ΔΙLVD, ΔΙΟSCΒ, ΔΙΑD)								
D022	Watchdog Timer	1.5	3.8	μA	-40°C			
(∆IWDT)		2.2	3.8	μA	+25°C	VDD = 2.0V		
	2.7 4.0 μA	μA	+85°C					
		2.3	4.6	μA	-40°C			
		2.7	4.6	μA	+25°C	VDD = 3.0V		
		3.1	4.8	μA	+85°C			
		3.0	10.0	μA	-40°C			
		3.3	10.0	μA	+25°C	VDD = 5.0V		
		3.9	10.0	μA	+85°C	100 0.01		
	Extended devices only	4.0	13.0	μA	+125°C			
D022A	Brown-out Reset	35	50	μA	-40°C to +85°C -	VDD = 3.0V		
(Δ IBOR)		42	60	μA	40 0 10 700 0	VDD = 5.0V		
	Extended devices only	46	65	μA	-40°C to +125°C			
D022B	Low-Voltage Detect	31	45	μA		VDD = 2.0V		
(∆ILVD)		33	50	μA	-40°C to +85°C	VDD = 3.0V		
		42	60	μA		VDD = 5.0V		
	Extended devices only	46	65	μA	-40°C to +125°C	vuu – 5.0V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

 $\frac{OSC1}{MCLR}$ = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

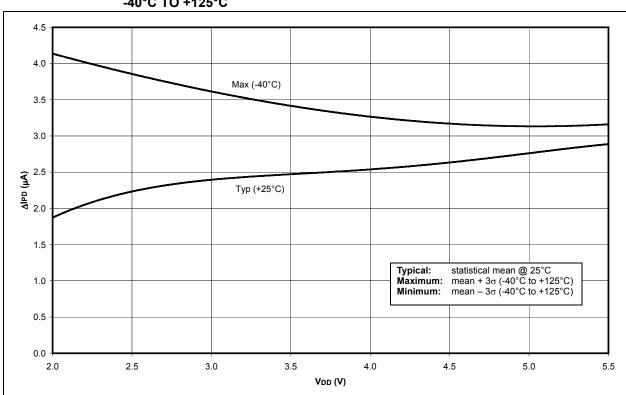
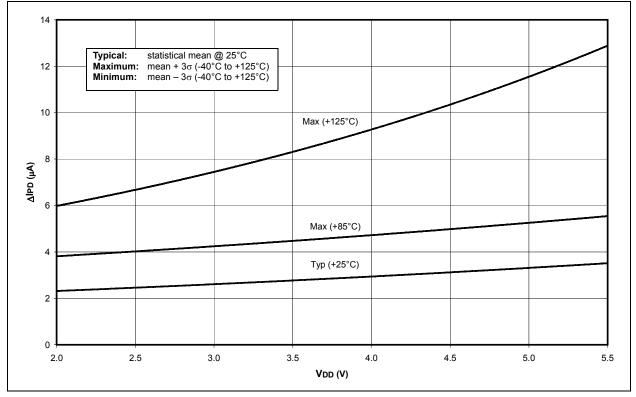



FIGURE 27-29: △IPD FSCM vs. VDD OVER TEMPERATURE PRI_IDLE, EC OSCILLATOR AT 32 kHz, -40°C TO +125°C

PIC18F2220/2320/4220/4320 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	_ <u>X /XX XXX</u> │ │ │ Temperature Package Pattern Range	 Examples: a) PIC18LF4320-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301. b) PIC18LF2220-I/SO = Industrial temp.,
Device	PIC18F2220/2320/4220/4320 ⁽¹⁾ , PIC18F2220/2320/4220/4320T ^(1,2) ; VDD range 4.2V to 5.5V PIC18LF2220/2320/4220/4320T ^(1,2) ; PIC18LF2220/2320/4220/4320T ^(1,2) ; VDD range 2.0V to 5.5V	 c) PIC10E12220-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F4220-I/P = Industrial temp., PDIP package, normal VDD limits.
Temperature Range	I = -40°C to +85°C (Industrial)	Note 1: F = Standard Voltage Range LF = Wide Voltage Range
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP ML = QFN	2: T = in tape and reel – SOIC and TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara, CA Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

10/05/07