

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2320-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.2 ENTERING POWER-MANAGED MODES

In general, entry, exit and switching between powermanaged clock sources requires clock source switching. In each case, the sequence of events is the same.

Any change in the power-managed mode begins with loading the OSCCON register and executing a SLEEP instruction. The SCS1:SCS0 bits select one of three power-managed clock sources; the primary clock (as defined in Configuration Register 1H), the secondary clock (the Timer1 oscillator) and the internal oscillator block (used in RC modes). Modifying the SCS bits will have no effect until a SLEEP instruction is executed. Entry to the power-managed mode is triggered by the execution of a SLEEP instruction.

Figure 3-5 shows how the system is clocked while switching from the primary clock to the Timer1 oscillator. When the SLEEP instruction is executed, clocks to the device are stopped at the beginning of the next instruction cycle. Eight clock cycles from the new clock source are counted to synchronize with the new clock source are counted, clocks from the new clock source are counted, clocks from the new clock source are counted, clocks from the new clock source resume clocking the system. The actual length of the pause is between eight and nine clock periods from the new clock source. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.

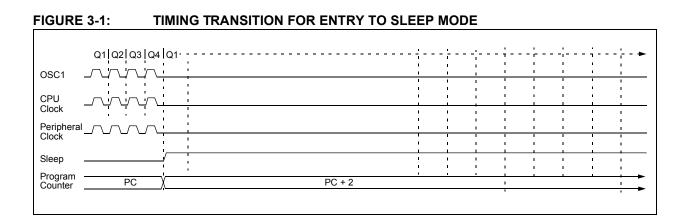
Three bits indicate the current clock source: OSTS and IOFS in the OSCCON register and T1RUN in the T1CON register. Only one of these bits will be set while in a power-managed mode other than PRI_RUN. When the OSTS bit is set, the primary clock is providing the system clock. When the IOFS bit is set, the INTOSC output is providing a stable 8 MHz clock source and is providing the system clock. When the T1RUN bit is set, the Timer1 oscillator is providing the system clock. If none of these bits are set, then either the INTRC clock source is clocking the system or the INTOSC source is not yet stable.

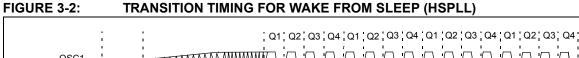
If the internal oscillator block is configured as the primary clock source in Configuration Register 1H, then both the OSTS and IOFS bits may be set when in PRI_RUN or PRI_IDLE modes. This indicates that the primary clock (INTOSC output) is generating a stable 8 MHz output. Entering a power-managed RC mode (same frequency) would clear the OSTS bit.

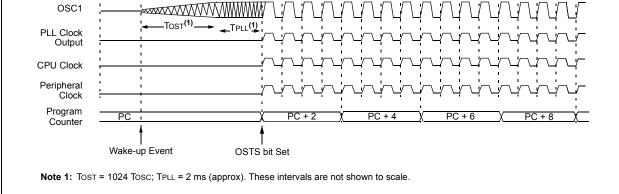
- Note 1: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.
 - 2: Executing a SLEEP instruction does not necessarily place the device into Sleep mode; executing a SLEEP instruction is simply a trigger to place the controller into a power-managed mode selected by the OSCCON register, one of which is Sleep mode.

3.1.3 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the settings of the IDLEN and SCS bits at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by these same bits at that time. If the bits have changed, the device will enter the new power-managed mode specified by the new bit settings.


3.1.4 COMPARISONS BETWEEN RUN AND IDLE MODES


Clock source selection for the Run modes is identical to the corresponding Idle modes. When a SLEEP instruction is executed, the SCS bits in the OSCCON register are used to switch to a different clock source. As a result, if there is a change of clock source at the time a SLEEP instruction is executed, a clock switch will occur.


In Idle modes, the CPU is not clocked and is not running. In Run modes, the CPU is clocked and executing code. This difference modifies the operation of the WDT when it times out. In Idle modes, a WDT time-out results in a wake from power-managed modes. In Run modes, a WDT time-out results in a WDT Reset (see Table 3-2).

During a wake-up from an Idle mode, the CPU starts executing code by entering the corresponding Run mode until the primary clock becomes ready. When the primary clock becomes ready, the clock source is automatically switched to the primary clock. The IDLEN and SCS bits are unchanged during and after the wake-up.

Figure 3-2 shows how the system is clocked during the clock source switch. The example assumes the device was in SEC_IDLE or SEC_RUN mode when a wake is triggered (the primary clock was configured in HSPLL mode).

6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

While writing or erasing program memory, instruction fetches cease until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

6.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into TABLAT in the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from TABLAT in the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 6.5 "Writing to Flash Program Memory"**. Figure 6-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word-aligned (TBLPTRL<0> = 0).

The EEPROM on-chip timer controls the write and erase times. The write and erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

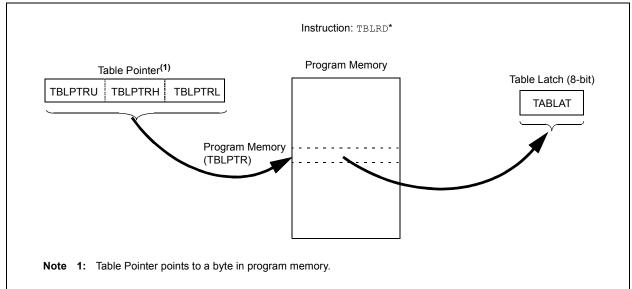


FIGURE 6-1: TABLE READ OPERATION

6.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.3 TBLPTR – TABLE POINTER REGISTER

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. Setting the 22nd bit allows access to the Device ID, the user ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

6.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program or configuration memory into TABLAT.

When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the TBLPTR (TBLPTR<21:3>) will determine which program memory block of 8 bytes is written to (TBLPTR<2:0> are ignored). For more detail, see **Section 6.5 "Writing to Flash Program Memory"**.

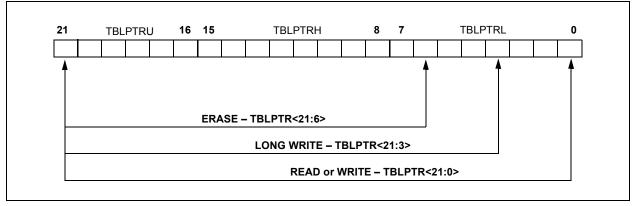

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

Example	Operation on Table Pointer		
TBLRD* TBLWT*	TBLPTR is not modified		
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write		
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write		
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write		

 TABLE 6-1:
 TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

10.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4X20
	devices.

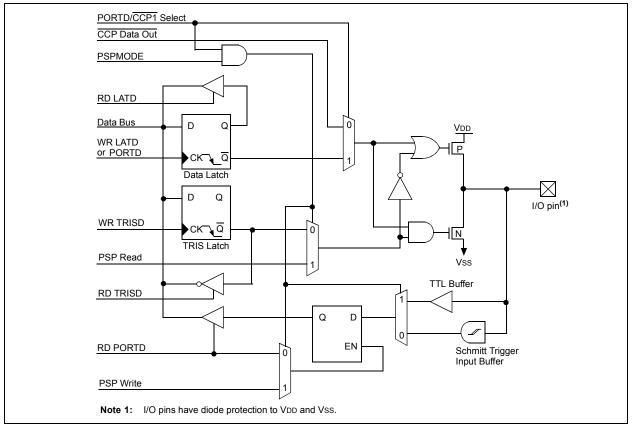
PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Three of the PORTD pins are multiplexed with outputs P1B, P1C and P1D of the Enhanced CCP module. The operation of these additional PWM output pins is covered in greater detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Note: On a Power-on Reset, these pins are configured as digital inputs.


PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.6 "Parallel Slave Port"** for additional information on the Parallel Slave Port (PSP).

Note:	When the enhanced PWM mode is used					
	with either dual or quad outputs, the PSP					
	functions of PORTD are automatically					
	disabled.					

EXAMPLE 10-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	: Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs
		, 100 as inpaces

FIGURE 10-11: BLOCK DIAGRAM OF RD7:RD5 PINS

NOTES:

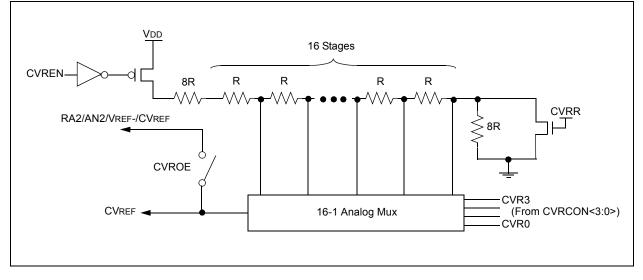
17.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.


During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	SMP : Sa <u>SPI Mast</u>	er mode:		
	0 = Input	data sampled at end of dat data sampled at middle of		
	<u>SPI Slave</u> SMP mus	<u>e mode:</u> st be cleared when SPI is u	sed in Slave mode.	
bit 6	CKE: SP	I Clock Edge Select bit		
		<u>(P = 0:</u> transmitted on rising edge of transmitted on falling edge		
		<u>⟨P = 1:</u> transmitted on falling edge transmitted on rising edge o		
bit 5		a/Address bit ² C mode only.		
bit 4	P: Stop b Used in I ²	it ² C mode only.		
bit 3	S: Start b Used in I ²	it ² C mode only.		
bit 2	R/W : Rea	ad/Write Information bit ² C mode only.		
bit 1		ate Address bit ² C mode only.		
bit 0	1 = Rece	er Full Status bit (Receive m ive complete, SSPBUF is fu ive not complete, SSPBUF	ull	

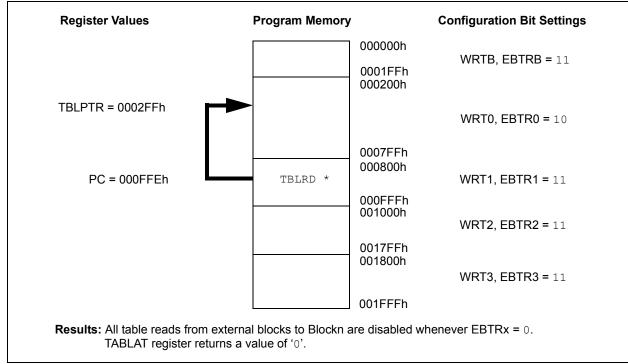
FIGURE 21-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from VDD; therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

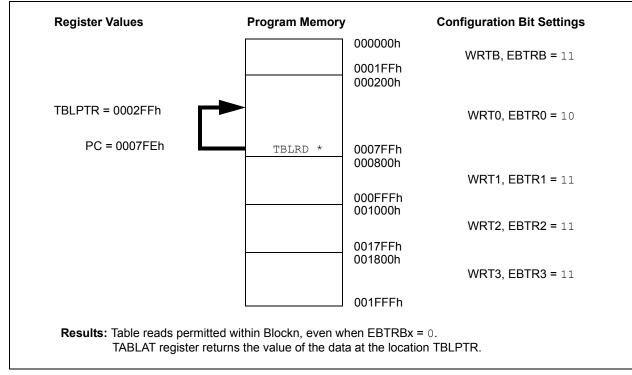
21.3 Operation in Power-Managed Modes

The contents of the CVRCON register are not affected by entry to or exit from power-managed modes. To minimize current consumption in power-managed modes, the voltage reference module should be disabled; however, this can cause an interrupt from the comparators so the comparator interrupt should also be disabled while the CVRCON register is being modified.


21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing the CVRCON register. This also disconnects the reference from the RA2 pin, selects the high-voltage range and selects the lowest voltage tap from the resistor divider.

21.5 Connection Considerations


The voltage reference module operates independently of the comparator module. The output of the reference generator may be output using the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto the RA2 pin, with an input signal present, will increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, an external buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.

FIGURE 23-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 23-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

Mnemo	onic,	Description	Cycles	16-Bit Instruction Word			Vord	Status	Notes
Operands		Description	Cycles	MSb			LSb	Affected	Notes
CONTROL OPERATIONS									
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	C, DC	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation (Note 4)	1	1111	XXXX	XXXX	XXXX	None	
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into Standby mode	1	0000	0000	0000		TO, PD	

TABLE 24-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

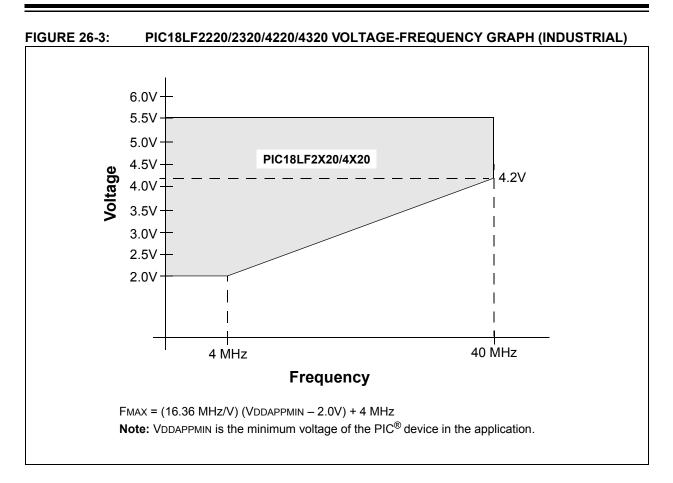
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

ΒZ		Branch if	Zero				
Synta	ax:	[label] B	Zn				
Oper	ands:	-128 ≤ n ≤	127				
Oper	ration:	if Zero bit i (PC) + 2 +	- ,				
Statu	is Affected:	None					
Enco	oding:	1110	0000 nn:	nn nnnn			
Desc	cription:	program w The 2's co added to t have incre instruction PC + 2 + 2	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.				
Word	ds:	1	1				
Cycles: 1(2)							
Q C If Ju	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No	No	No	No			
	operation	operation	operation	operation			
	o Jump: Q1	Q2	Q3	Q4			
[Decode	Read literal	Process	No			
		'n'	Data	operation			
<u>Exan</u>	<u>nple</u> : Before Instru	HERE	BZ Jump				
	PC	= ade	dress (HERE)			
	After Instruction If Zero = 1; PC = address (Jump)						
	If Zero PC	= 0;	dress (HERE				


CALL	Subroutir	ne Call				
Syntax:	[label] (CALL k	[,S]			
Operands:	$0 \le k \le 10$ s \in [0,1]	48575				
Operation:	$k \rightarrow PC<2$ if s = 1, (W) \rightarrow WS (STATUS)	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC < 20:1 >; \\ \text{if s = 1,} \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow STATUSS, \\ (BSR) \rightarrow BSRS \end{array}$				
Status Affected:	None					
Encoding: 1st word (k<7:0> 2nd word(k<19:8		110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈		
Words:	Description: Subroutine call of entire 2 Mbyte memory range. First, return address (PC + 4) is pushed onto the return stack. If 's' = 1, the W, STATUS and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>. CALL is a two-cycle instruction.					
	2					
Cycles:	2					
Q Cycle Activity: Q1	Q2	Q3	2	Q4		
Decode	Read literal 'k'<7:0>,	Push P stac	C to Rea	ad literal <19:8>, te to PC		
No operation	No operation	No operat	ion op	No eration		
Example: HERE CALL THERE, FAST						
Before Instruction PC = address (HERE) After Instruction PC = address (THERE) TOS = address (HERE + 4) WS = W BSRS = BSR STATUSS= STATUS						

DEC	FSZ	Decreme	Decrement f, Skip if 0					
Synt	ax:	[label] [[<i>label</i>] DECFSZ f[,d[,a]]					
Ope	rands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$						
Ope	ration:	(f) – 1 \rightarrow oskip if res						
Statu	us Affected:	None						
Enco	oding:	0010	11da ffi	ff ffff				
Desc	cription:	decremen is placed i is placed l (default). If the resu tion which carded an instead, m instruction Bank will l the BSR v	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruc- tion which is already fetched is dis- carded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the					
14/0	de .	BSR value	bank will be selected as per the BSR value (default).					
Word		1						
Cycl Q C	cs. Cycle Activity	by	ycles if skip a 2-word ins	and followed truction.				
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	Write to destination				
lf sk	kip:							
1	Q1	Q2	Q3	Q4				
	No operation	No operation	No operation	No operation				
lf sk			d instruction:					
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No operation	No operation	No operation	No operation				
Example:		HERE	HERE DECFSZ CNT GOTO LOOF					
	Before Instru PC After Instruc	= Address	S (HERE)					
	Anter Instruc CNT If CNT PC If CNT PC	= CNT – = 0; = Address ≠ 0;	1 s (CONTINUE s (HERE + 2					

DCF	SNZ	Decreme	nt f, Skip if r	not 0			
Synt	tax:	[label]	DCFSNZ f[,d [,a]]			
Оре	rands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$					
Ope	ration:		(f) $-1 \rightarrow \text{dest}$, skip if result $\neq 0$				
Statu	us Affected:	None					
Enco	oding:	0100	11da fff	f ffff			
Wor Cycl		The contents of register 'f' are decremented. If 'd' is '0', the resu is placed in W. If 'd' is '1', the resu is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetche is discarded and a NOP is execute instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). 1 1(2)					
QC	Cycle Activity:	by	cycles if skip a 2-word ins				
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	Write to			
		register 'f'	Data	destination			
lf sl		00	02	04			
	Q1 No	Q2 No	Q3 No	Q4 No			
	operation	operation	operation	operation			
lf sł	kip and follow	ed by 2-wor	d instruction:				
	Q1	Q2	Q3	Q4			
	No operation	No operation	No operation	No operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exa</u>	<u>mple</u> :	ZERO	DCFSNZ TEM : :	IP			
	Before Instru TEMP	=	?				
	After Instruct TEMP If TEMP PC If TEMP PC	tion = = = ≠	0;	ZERO) NZERO)			

SUBLW	Subtract	W from Lite	eral
Syntax:	[label] S	SUBLW k	
Operands:	$0 \le k \le 25$	55	
Operation:	k – (W) –	→ W	
Status Affected:	N, OV, C,	DC, Z	
Encoding:	0000	1000 kkł	k kkkk
Description:	W is subt	racted from t	he eiaht-bit
·		The result is	
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process Data	Write to W
Example 1:	SUBLW (x02	
Before Instru	iction		
W	= 1		
С	= ?		
After Instruct			
W C	= 1 = 1 :re	sult is positive	9
C Z N	= 0 = 0		
Example 2:	-	x02	
Before Instru	iction		
W	= 2		
С	= ?		
After Instruct	ion		
W	= 0 = 1 ; re	sult is zero	
Z	= 1	Sult 15 2010	
Example 3:	= 0 SUBLW (x02	
Before Instru		X02	
W	= 3		
C	= ?		
After Instruct	ion		
W		's complemen	
C Z N	= 0 ; re = 0	sult is negativ	e
Ν	= 1		

SUBWF	Subtrac	t W from f	
Syntax:	[label]	SUBWF f[,	d [,a]]
Operands:	0 ≤ f ≤ 28 d ∈ [0,1] a ∈ [0,1]		
Operation:	(f) – (W)		
Status Affected:	N, OV, C		
Encoding:	0101	11da ff	ff ffff
Description:	complem the resul '1', the re register ' the Acce overridin '1', then	W from regis nent method). t is stored in esult is stored f' (default). If ss Bank will I g the BSR va the bank will e BSR value	If 'd' is '0', W. If 'd' is back in = 'a' is '0', be selected alue. If 'a' is be selected
Words:	1		· · ·
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example 1:	SUBWF	REG	
Before Instru			
REG W	= 3 = 2		
С	= ?		
After Instruct REG	tion = 1		
W	= 2		
C Z N	= 1 ; re = 0	esult is positive	
	= 0		
Example 2:		REG, W	
Before Instru REG	uction = 2		
W	= 2		
C After Instruct	= ?		
After Instruct	lion		
REG	= 2		
W	= 2 = 0		
W C	= 0 = 1 ; re	esult is zero	
W	= 0 = 1;re	esult is zero	
W C	= 0 = 1 ; re = 1 = 0	e sult is zero REG	
W C Z N <u>Example 3</u> : Before Instru	= 0 = 1 ; re = 1 = 0 SUBWF		
W C Z N <u>Example 3</u> : Before Instru REG	= 0 = 1 ; re = 0 SUBWF = 0x01		
W C Z N <u>Example 3</u> : Before Instru	= 0 = 1 ; re = 1 = 0 SUBWF		
W C Z N Example 3: Before Instru REG W C After Instruct	= 0 = 1 ; re = 0 SUBWF uction = 0x01 = 0x02 = ? tion	REG	
W C Z N Example 3: Before Instru- REG W C After Instruct REG	= 0 = 1 ; re = 0 SUBWF uction = 0x01 = 0x02 = ? tion = 0xFFh	REG	nent)
W C Z N Example 3: Before Instru REG W C After Instruct	= 0 = 1 ; re = 0 SUBWF uction = 0x01 = 0x02 = ? tion	REG	,

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial)

PIC18LF2220/2320/4220/4320 (Industrial) PIC18F2220/2320/4220/4320 (Industrial, Extended)			rd Oper	•	•	s otherwise stated $A \le +85^{\circ}C$ for indust			
Param No.	Device Typ Max Units Condi			ions					
	Power-down Current (IPD)	(1)							
l	PIC18LF2X20/4X20	0.1	0.5	μA	-4	40°C			
		0.1	0.5	μA	+2	25°C	VDD = 2.0V (Sleep mode)		
		0.2	1.7	μA	+8	85°C	()		
	PIC18LF2X20/4X20	0.1	0.5	μA	-4	10°C	$V_{DD} = 3.0V$		
		0.1	0.5	μΑ		25°C	(Sleep mode)		
		0.3	1.7	μΑ		35°C	· · /		
	All devices	0.1	2.0	μA		10°C			
		0.1	2.0	μA		25°C	VDD = 5.0V		
	Estavolado da visca	0.4	6.5	μA		35°C	(Sleep mode)		
	Extended devices	11.2	50	μA	+1	25°C			
	Supply Current (IDD) ^(2,3) PIC18LF2X20/4X20	11	25		-40°C				
	PIC 10LF2X20/4X20	13	25 25	μΑ μΑ	-40 C +25°C	VDD = 2.0V			
		13	25	μΑ	+25 C +85°C	VDD - 2.0V			
	PIC18LF2X20/4X20	34	40	μΑ	-40°C				
		28	40	μΑ	+25°C	VDD = 3.0V	Fosc = 31 kHz		
		25	40	μΑ	+85°C		(RC_RUN mode,		
	All devices	77	80	μA	-40°C		internal oscillator source)		
		62	80	μΑ	+25°C				
		53	80	μA	+85°C	VDD = 5.0V			
	Extended devices	50	80	μA	+125°C	1			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

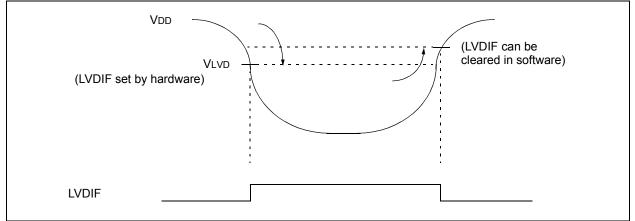
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 26-2: COMPARATOR SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D300	VIOFF	Input Offset Voltage		±5.0	±10	mV	
D301	VICM	Input Common Mode Voltage*	0	—	Vdd - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	_	_	dB	
300 300A	TRESP	Response Time ^{(1)*}	_	150	400 600	ns ns	PIC18FXX20 PIC18LFXX20
301	Тмс2о∨	Comparator Mode Change to Output Valid*	_	-	10	μS	

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.


TABLE 26-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.							
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	_	_	1/2	LSb	Low Range (VRR = 1)
			—	—	1/2	LSb	High Range (VRR = 0)
D312	VRur	Unit Resistor Value (R)*	—	2k	—	Ω	
310	TSET	Settling Time ^{(1)*}	—	_	10	μS	

* These parameters are characterized but not tested.

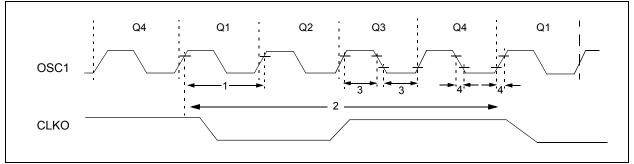

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

FIGURE 26-4: LOW-VOLTAGE DETECT CHARACTERISTICS

26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

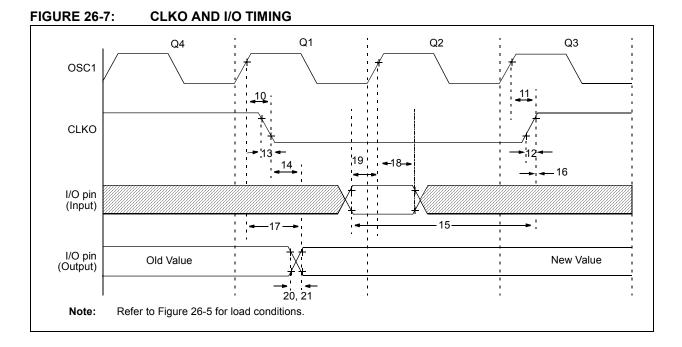

FIGURE 26-6: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 26-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO (industrial)
			DC	25	MHz	EC, ECIO (extended)
		Oscillator Frequency ⁽¹⁾	DC	4	MHz	RC osc
			0.1	1	MHz	XT osc
			4	25	MHz	HS osc
			4	10	MHz	HS + PLL osc (industrial)
			4	6.25	MHz	HS + PLL osc (extended)
			5	33	kHz	LP Osc mode
1	Tosc	External CLKI Period ⁽¹⁾	25	_	ns	EC, ECIO (industrial)
			40	_	ns	EC, ECIO (extended)
		Oscillator Period ⁽¹⁾	250	_	ns	RC osc
			1	—	μs	XT osc
			40 100	250 250	ns ns	HS osc HS + PLL osc (industrial)
			160	250	ns	HS + PLL osc (extended)
			30	_	μS	LP osc
2	Тсү	Instruction Cycle Time ⁽¹⁾	100 160		ns ns	Tcy = 4/Fosc (industrial) Tcy = 4/Fosc (extended)
3	TosL,	External Clock in (OSC1)	30		ns	XT osc
	TosH	High or Low Time	2.5	—	μS	LP osc
			10	—	ns	HS osc
4	TosR,	External Clock in (OSC1)	_	20	ns	XT osc
	TosF	Rise or Fall Time	_	50	ns	LP osc
			_	7.5	ns	HS osc

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
10	TosH2cĸL	OSC1 \uparrow to CLKO \downarrow		_	75	200	ns	(1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(1)
12	TCKR	CLKO Rise Time		—	35	100	ns	(1)
13	ТскF	CLKO Fall Time		—	35	100	ns	(1)
14	TckL2IoV	CLKO \downarrow to Port Out Valid		—		0.5 Tcy + 20	ns	(1)
15	ТюV2скН	Port In Valid before CLKO ↑		0.25 Tcy + 25		_	ns	(1)
16	TckH2iol	Port In Hold after CLKO ↑		0		_	ns	(1)
17	TosH2IoV	OSC1↑ (Q1 cycle) to Port Out Valid		—	50	150	ns	
18	TosH2iol	OSC1↑ (Q2 cycle) to Port	PIC18 F XX20	100		_	ns	
18A		Input Invalid (I/O in hold time)	PIC18 LF XX20	200	—	—	ns	
19	TioV2osH	Port Input Valid to OSC1 [↑] (I	/O in setup time)	0	_	—	ns	
20	TIOR	Port Output Rise Time	PIC18 F XX20	—	10	25	ns	
20A			PIC18 LF XX20	—		60	ns	
21	TIOF	Port Output Fall Time	PIC18 F XX20	—	10	25	ns	
21A			PIC18 LF XX20	—	_	60	ns	

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

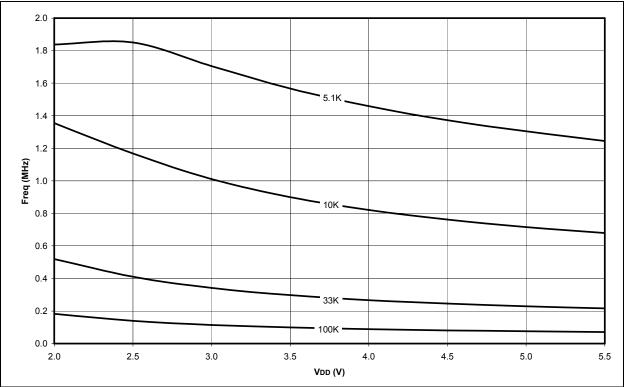
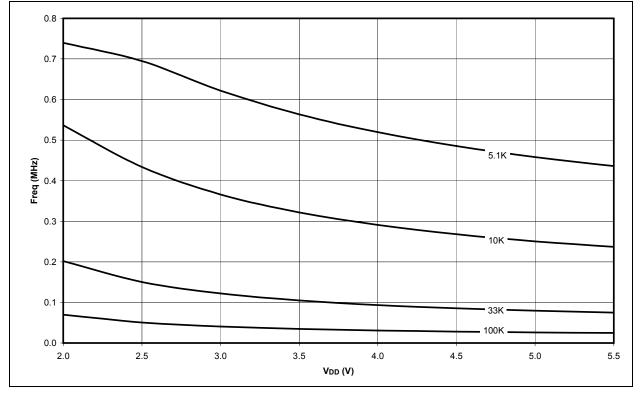



FIGURE 27-36: AVERAGE FOSC vs. VDD FOR VARIOUS R'S EXTERNAL RC MODE, C = 300 pF, TEMPERATURE = +25°C

С

C Compilers	
MPLAB C18	
MPLAB C30	
CALL	
Capture (CCP Module)	135
Associated Registers	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	
Timer1/Timer3 Mode Selection	
Capture (ECCP Module)	
Capture/Compare/PWM (CCP)	
Capture Mode. See Capture.	
CCP1	
CCPR1H Register	
CCPR1L Register	
CCP2	
CCPR2H Register	
CCPR2L Register	134
Compare Mode. See Compare.	
Interaction of Two CCP Modules	134
PWM Mode. See PWM.	
Timer Resources	
Clock Sources	
Selection Using OSCCON Register	
Clocking Scheme/Instruction Cycle	
CLRF	
CLRWDT	
Code Examples	
16 x 16 Signed Multiply Routine	
16 x 16 Unsigned Multiply Routine	
8 x 8 Signed Multiply Routine	
8 x 8 Unsigned Multiply Routine	
Changing Between Capture Prescalers	135
Computed GOTO Using an Offset Value	
Data EEPROM Read	
Data EEPROM Refresh Routine	
Data EEPROM Write	
Erasing a Flash Program Memory Row	
Fast Register Stack	
How to Clear RAM (Bank 1) Using	
Indirect Addressing	66
Implementing a Real-Time Clock Using a	
Timer1 Interrupt Service	
Initializing PORTA	
Initializing PORTB	
Initializing PORTE	
Loading the SSPBUF (SSPSR) Register	
Reading a Flash Program Memory Word	75
Saving STATUS, WREG and BSR	
Registers in RAM	
Writing to Flash Program Memory	
Code Protection	,
COMF	
Comparator	
Analog Input Connection Considerations	
Associated Registers	
Configuration	
Effects of a Reset	
Interrupts	
Operation	
Operation in Power-Managed Modes	

Outputs	223
Reference	223
Response Time	223
Comparator Specifications	
Comparator Voltage Reference	227
Accuracy and Error	
Associated Registers	229
Configuring	227
Connection Considerations	228
Effects of a Reset	228
Operation in Power-Managed Modes	228
Compare (CCP Module)	136
Associated Registers	137
CCP Pin Configuration	136
CCPR1 Register	
Software Interrupt	136
Special Event Trigger	136, 220
Timer1/Timer3 Mode Selection	
Compare (ECCP Mode)	142
Computed GOTO	
Configuration Bits	
Configuration Register Protection	255
Context Saving During Interrupts	
Control Registers	
EECON1 and EECON2	
Conversion Considerations	
CPFSEQ	
CPFSGT	
CPFSLT	275
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
D	
Data EEPROM Code Protection	255
Data EEPROM Memory	81
Associated Registers	84
EEADR Register	81
EECON1 and EECON2 Registers	81
Operation During Code-Protect	84
Protection Against Spurious Write	83
Reading	83
Using	84
Write Verify	83
Writing	83
Data Memory	
General Purpose Registers	59
Map for PIC18F2X20/4X20	
Special Function Registers	
DAW	
DC and AC Characteristics	
Graphs and Tables	347
DC Characteristics	
Power-Down and Supply Current	

 Supply Voltage
 308

 DCFSNZ
 277

 DECF
 276

 DECFSZ
 277

 Development Support
 301

 Device Differences
 376

 Device Overview
 7

 Features (table)
 8

 New Core Features
 7

 Other Special Features
 7

 Direct Addressing
 67