

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4220-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

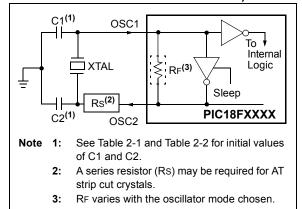
2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18F2X20 and PIC18F4X20 devices can be operated in ten different oscillator modes. The user can program the Configuration bits, FOSC3:FOSC0, in Configuration Register 1H to select one of these ten modes:

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HSPLL High-Speed Crystal/Resonator with PLL Enabled
- 5. RC External Resistor/Capacitor with Fosc/4 Output on RA6
- 6. RCIO External Resistor/Capacitor with I/O on RA6
- 7. INTIO1 Internal Oscillator with Fosc/4 Output on RA6 and I/O on RA7
- 8. INTIO2 Internal Oscillator with I/O on RA6 and RA7
- 9. EC External Clock with Fosc/4 Output
- 10. ECIO External Clock with I/O on RA6

2.2 Crystal Oscillator/Ceramic Resonators


In XT, LP, HS or HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

FIGURE 2-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (XT, LP, HS OR HSPLL CONFIGURATION)

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

٦	Typical Capacitor Values Used:								
Mode	Freq	OSC1	OSC2						
XT	455 kHz	56 pF	56 pF						
	2.0 MHz	47 pF	47 pF						
	4.0 MHz	33 pF	33 pF						
HS	8.0 MHz 16.0 MHz	27 pF 22 pF	27 pF 22 pF						

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes on page 20 for additional information.

Resonators Used:						
455 kHz	4.0 MHz					
2.0 MHz	8.0 MHz					
16.	.0 MHz					

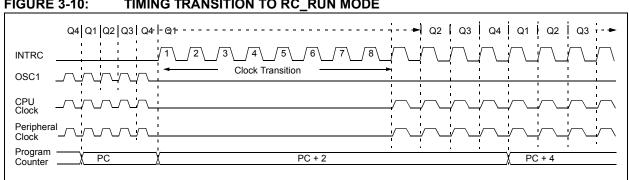
3.4.3 RC_RUN MODE

In RC RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either of the INTIO1 or INTIO2 oscillators), there are no distinguishable differences between PRI RUN and RC RUN modes during execution. However, a clock switch delay will occur during entry to, and exit from, RC RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The IRCF bits may select the clock frequency before the **SLEEP** instruction is executed. When the clock source is switched to the INTOSC multiplexer (see Figure 3-10), the primary oscillator is shut down and the OSTS bit is cleared.

The IRCF bits may be modified at any time to immediately change the system clock speed. Executing a SLEEP instruction is not required to select a new clock frequency from the INTOSC multiplexer.


Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.

If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear: there will be no indication of the current clock source. The INTRC source is providing the system clocks.

If the IRCF bits are changed from all clear (thus enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the system continue while the INTOSC source stabilizes in approximately 1 ms.

If the IRCF bits were previously at a non-zero value before the **SLEEP** instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set.

When a wake-up event occurs, the system continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	_			Top-of-Stack	Upper Byte (1	OS<20:16>)			0 0000	46, 54
TOSH	Top-of-Stack	High Byte (TO	DS<15:8>)	•					0000 0000	46, 54
TOSL	L Top-of-Stack Low Byte (TOS<7:0>)								0000 0000	46, 54
STKPTR	STKFUL STKUNF — Return Stack Pointer								00-0 0000	46, 55
PCLATU	_	_	bit 21 ⁽³⁾	Holding Regi	ster for PC<2	D:16>			0 0000	46, 56
PCLATH								0000 0000	46, 56	
PCL	PC Low Byte	(PC<7:0>)							0000 0000	46, 56
TBLPTRU	bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)							00 0000	46, 74	
TBLPTRH	RH Program Memory Table Pointer High Byte (TBLPTR<15:8>)							0000 0000	46, 74	
TBLPTRL	Program Mer	mory Table Po	inter Low Byt	e (TBLPTR<7	:0>)				0000 0000	46, 74
TABLAT	Program Mer	mory Table La	tch						0000 0000	46, 74
PRODH	Product Regi	ster High Byte	9						XXXX XXXX	46, 85
PRODL	Product Regi	ster Low Byte							XXXX XXXX	46, 85
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	46, 89
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	46, 90
INTCON3	INT2IP	INT1IP	-	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	46, 91
INDF0	Uses content	s of FSR0 to	address data	memory – val	ue of FSR0 no	ot changed (n	ot a physical	register)	n/a	46, 66
POSTINC0	Uses content	s of FSR0 to	address data	memory – val	ue of FSR0 po	ost-incremente	ed (not a phys	sical register)	n/a	46, 66
POSTDEC0	Uses content	s of FSR0 to a	address data	memory – val	ue of FSR0 pc	st-decrement	ed (not a phy	sical register)	n/a	46, 66
PREINC0	Uses content	s of FSR0 to	address data	memory – val	ue of FSR0 pr	e-incremente	d (not a physi	cal register)	n/a	46, 66
PLUSW0	Uses content	s of FSR0 to	address data	memory – val	ue of FSR0 of	fset by W (no	t a physical re	egister)	n/a	46, 66
FSR0H	—	_	_	_	Indirect Data	Memory Add	ress Pointer 0	High	0000	46, 66
FSR0L	Indirect Data	Memory Add	ress Pointer 0	Low Byte					XXXX XXXX	46, 66
WREG	Working Reg	ister							XXXX XXXX	46
INDF1	Uses content	s of FSR1 to	address data	memory – val	ue of FSR1 no	ot changed (n	ot a physical i	register)	n/a	46, 66
POSTINC1	Uses content	s of FSR1 to	address data	memory – val	ue of FSR1 po	ost-incremente	ed (not a phys	sical register)	n/a	46, 66
POSTDEC1	Uses content	s of FSR1 to a	address data	memory – val	ue of FSR1 po	st-decrement	ed (not a phy	sical register)	n/a	46, 66
PREINC1	Uses content	s of FSR1 to	address data	memory – val	ue of FSR1 pr	e-incremente	d (not a physi	cal register)	n/a	46, 66
PLUSW1	Uses content	s of FSR1 to	address data	memory – val	ue of FSR1 of	fset by W (no	t a physical re	egister)	n/a	46, 66
FSR1H	—	_	_	_	Indirect Data	Memory Add	ress Pointer 1	High	0000	47, 66
FSR1L	Indirect Data	Memory Add	ress Pointer 1	Low Byte					XXXX XXXX	47, 66
BSR	_	_	_	_	Bank Select	Register			0000	47, 65
INDF2	Uses content	s of FSR2 to	address data	memory – val	ue of FSR2 no	ot changed (n	ot a physical i	register)	n/a	47, 66
POSTINC2	Uses content	s of FSR2 to	address data	memory – val	ue of FSR2 po	ost-incremente	ed (not a phys	sical register)	n/a	47, 66
POSTDEC2	Uses content	s of FSR2 to a	address data	memory – val	ue of FSR2 pc	st-decrement	ed (not a phy	sical register)	n/a	47, 66
PREINC2	Uses content	s of FSR2 to	address data	memory – val	ue of FSR2 pr	e-incremente	d (not a physi	cal register)	n/a	47, 66
PLUSW2	Uses content	s of FSR2 to	address data	memory – val	ue of FSR2 of	fset by W (no	t a physical re	egister)	n/a	47, 66
FSR2H	_	_	_		Indirect Data	Memory Add	ress Pointer 2	High	0000	47, 66
FSR2L	Indirect Data	Memory Add	ress Pointer 2	Low Byte					XXXX XXXX	47, 66
STATUS	—	_		N	OV	Z	DC	С	x xxxx	47, 68
TMR0H	Timer0 Regis	ter High Byte							0000 0000	47, 119
TMR0L	Timer0 Regis	ter Low Byte							XXXX XXXX	47, 119
				1						1

TABLE 5-2: REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read as '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read as '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: If PBADEN = 0, PORTB<4:0> are configured as digital inputs and read unknown and if PBADEN = 1, PORTB<4:0> are configured as analog inputs and read as '0' following a Reset.

5: These registers and/or bits are not implemented on the PIC18F2X20 devices and read as 0x00.

6: The RE3 port bit is available as an input only pin only in 40-pin devices when Master Clear functionality is disabled (CONFIG3H<7>= 0).

NOTES:

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-/CVREF	bit 2	TTL	Input/output, analog input, VREF- or comparator VREF output.
RA3/AN3/VREF+	bit 3	TTL	Input/output, analog input or VREF+.
RA4/T0CKI/C1OUT	bit 4	ST	Input/output, external clock input for Timer0 or Comparator 1 output. Output is open-drain type.
RA5/AN4/SS/LVDIN/C2OUT	bit 5	TTL	Input/output, analog input, slave select input for Master Synchronous Serial Port, Low-Voltage Detect input or Comparator 2 output.
OSC2/CLKO/RA6	bit 6	TTL	OSC2, clock output or I/O pin.
OSC1/CLKI/RA7	bit 7	TTL	OSC1, clock input or I/O pin.

TABLE 10-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	uu0u 0000
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA Data	ATA Data Latch Register						uuuu uuuu
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	PORTA D	ata Directio	n Register				1111 1111	1111 1111
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
CVRCON	CVREN	CVROE	CVRR		CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

Name	Bit#	Buffer	Function
RB0/AN12/INT0	bit 0	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output pin, analog input or external interrupt input 0. Internal software programmable weak pull-up.
RB1/AN10/INT1	bit 1	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output pin, analog input or external interrupt input 1. Internal software programmable weak pull-up.
RB2/AN8/INT2	bit 2	TTL ⁽¹⁾ /ST ⁽²⁾	Input/output pin, analog input or external interrupt input 2. Internal software programmable weak pull-up.
RB3/AN9/CCP2	bit 3	TTL ⁽¹⁾ /ST ⁽³⁾	Input/output pin or analog input. Capture 2 input/Compare 2 output/ PWM output when CCP2MX Configuration bit is set ⁽⁴⁾ . Internal software programmable weak pull-up.
RB4/AN11/KBI0	bit 4	TTL	Input/output pin (with interrupt-on-change) or analog input. Internal software programmable weak pull-up.
RB5/KBI1/PGM	bit 5	TTL/ST ⁽⁵⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low-voltage ICSP™ enable pin.
RB6/KBI2/PGC	bit 6	TTL/ST ⁽⁵⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7/KBI3/PGD	bit 7	TTL/ST ⁽⁵⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 10-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a TTL input when configured as digital I/O.

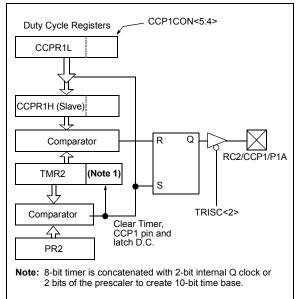
- 2: This buffer is a Schmitt Trigger input when configured as the external interrupt.
- 3: This buffer is a Schmitt Trigger input when configured as the CCP2 input.
- 4: A device Configuration bit selects which I/O pin the CCP2 pin is multiplexed on.
- **5:** This buffer is a Schmitt Trigger input when used in Serial Programming mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
LATB	LATB LATB Data Latch Register								XXXX XXXX	uuuu uuuu
TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	1111 -1-1
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	11-0 0-00
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, — = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

15.5 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

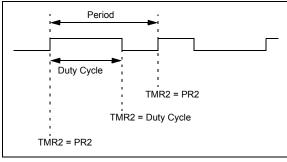

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.5.3** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (*period*) and a time that the output is high (*duty cycle*). The frequency of the PWM is the inverse of the period (1/period).

15.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H
 - Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

15.5.2 PWM DUTY CYCLE

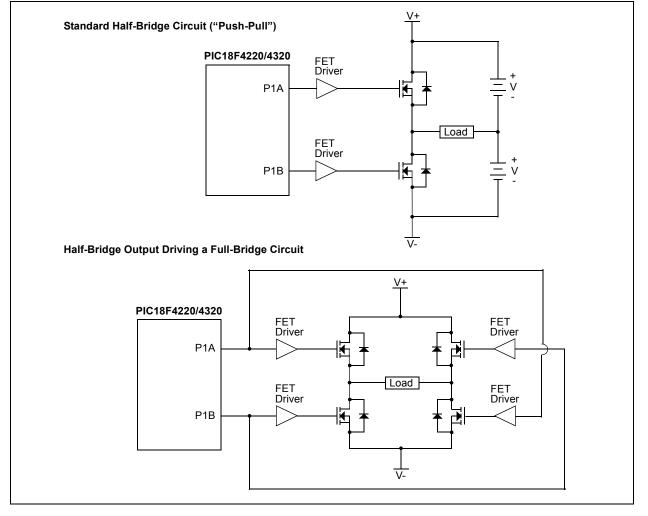
The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 15-2:

CCPR1L and CCP1CON<5:4> can be written to at any time but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

16.4.2 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the RC2/CCP1/P1A pin, while the complementary PWM output signal is output on the RD5/ PSP5/P1B pin (Figure 16-4). This mode can be used for half-bridge applications, as shown in Figure 16-5, or for full-bridge applications where four power switches are being modulated with two PWM signals.


In Half-Bridge Output mode, the programmable dead band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits PDC6:PDC0 sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 16.4.4 "Programmable Dead-Band Delay"** for more details of the dead band delay operations.

Since the P1A and P1B outputs are multiplexed with the PORTC<2> and PORTD<5> data latches, the TRISC<2> and TRISD<5> bits must be cleared to configure P1A and P1B as outputs.

FIGURE 16-4: HALF-BRIDGE PWM OUTPUT

- **Note 1:** At this time, the TMR2 register is equal to the PR2 register.
 - 2: Output signals are shown as active-high.

FIGURE 16-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

16.4.4 PROGRAMMABLE DEAD-BAND DELAY

In half-bridge applications, where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shootthrough current*) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable dead band delay is available to avoid shootthrough current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 16-4 for illustration. The lower seven bits of the PWM1CON register (Register 16-2) set the delay period in terms of microcontroller instruction cycles (TCY or 4 TOSC).

16.4.5 ENHANCED PWM AUTO-SHUTDOWN

When the ECCP is programmed for any of the enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the enhanced PWM output pins into a defined shutdown state when a shutdown event occurs. A shutdown event can be caused by either of the two comparator modules or the INT0 pin (or any combination of these three sources). The comparators may be used to monitor a voltage input proportional to a current being monitored in the bridge circuit. If the voltage exceeds a threshold, the comparator switches state and triggers a shutdown. Alternatively, a digital signal on the INT0 pin can also trigger a shutdown. The autoshutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS2:ECCPAS0 bits (ECCPAS<6:4>).

When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits (ECCPAS<3:0>). Each pin pair (P1A/P1C and P1B/ P1D) may be set to drive high, drive low or be tri-stated (not driving). The ECCPASE bit (ECCPAS<7>) is also set to hold the enhanced PWM outputs in their shutdown states.

The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit is cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared.

If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period.

Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.

-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
R = Readable bit		W = Writable I		U = Unimpler	nented bit, read	as '0'		
Legend:								
bit 7							bit 0	
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

REGISTER 16-2: PWM1CON: PWM CONFIGURATION REGISTER

	the PWM restarts automatically
	0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0	PDC6:PDC0: PWM Delay Count bits

Delay time, in number of Fosc/4 (4 * Tosc) cycles, between the scheduled time when a PWM signal should transition to active and the actual time it transitions active.

1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away;

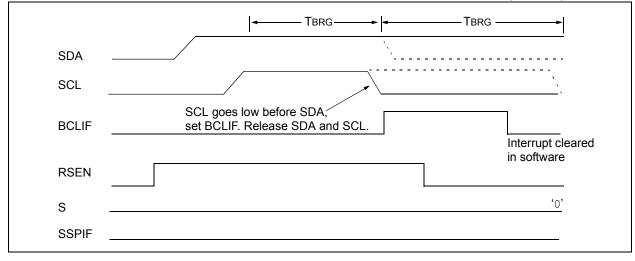
17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 17-30).

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

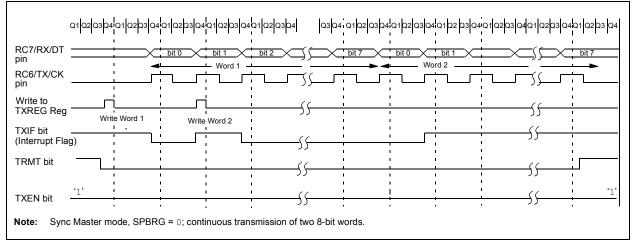
FIGURE 17-30: BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7		L					bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	SPEN: Seria	al Port Enable bi	t							
		ort enabled (con		and TX/CK pir	ns as serial por	t pins)				
	•	ort disabled (hel	•	·		. ,				
bit 6	RX9: 9-Bit F	Receive Enable I	oit							
		9-bit reception 8-bit reception								
bit 5	SREN: Sing	le Receive Enat	ole bit							
	<u>Asynchrono</u> Don't care.	<u>us mode:</u>								
	1 = Enable 0 = Disable	<u>is mode – Maste</u> s single receive s single receive eared after rece		ete						
		s mode – Slave:								
bit 4	CREN: Con	tinuous Receive	Enable bit							
	Asynchrono 1 = Enables 0 = Disables Synchronou 1 = Enables	s receiver s receiver	eive until enab	ble bit, CREN, is	s cleared (CRE	N overrides SR	EN)			
	0 = Disables	s continuous rec	eive							
bit 3		Idress Detect En								
	1 = Enables	<u>us mode 9-bit (F</u> s address detect s address detec	ion, enables i							
bit 2	FERR: Framing Error bit									
	1 = Framing 0 = No fram	ı error (can be u ing error	odated by rea	ding RCREG re	egister and rece	eiving next valio	l byte)			
bit 1	OERR: Ove	rrun Error bit								
	1 = Overrun 0 = No over	error (can be cl run error	eared by clea	ring bit CREN)						
bit 0	RX9D: 9th b	oit of Received D)ata							

18.4 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit, CSRC (TXSTA<7>).


18.4.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and interrupt bit, TXIF (PIR1<4>), is set. The interrupt can be enabled/disabled by setting/clearing enable bit, TXIE

(PIE1<4>). Flag bit, TXIF, will be set regardless of the state of enable bit, TXIE, and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit, TXIF, indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 18.2 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-6: SYNCHRONOUS TRANSMISSION

NEGF	Negate f							
Syntax:	[label]	NEGF f[,a	a]					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	$(\overline{f}) + 1 \rightarrow$	f						
Status Affected:	N, OV, C,	DC, Z						
Encoding:	0110	110a ff:	ff ffff					
Description:	compleme the data m is '0', the A selected, c If 'a' = 1, t	nemory locat Access Bank	t is placed in ion 'f'. If 'a' will be BSR value.					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write register 'f'					
Example:	NEGF R	EG , 1						
Before Instruc REG	= 0011 1	010 [0x3A]						
After Instructi REG	on = 1100 0	110 [0xC6]						

NOF	•	No Opera	No Operation					
Synt	ax:	[label]	NOP					
Ope	rands:	None						
Operation: No operation								
Statu	us Affected:	None	None					
Enco	oding:	0000	0000	0000 000		0000		
		1111	XXXX	XXXX XXXX				
Desc	cription:	No operat	tion.					
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	No	No			No		
		operation	operation operation					

Example:

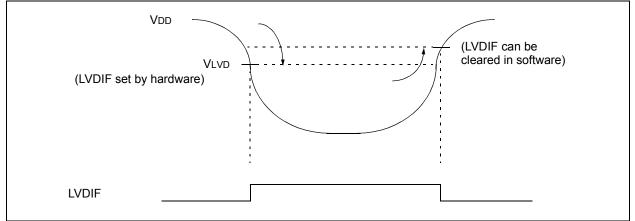
None.

TABLE 26-2: COMPARATOR SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D300	VIOFF	Input Offset Voltage		±5.0	±10	mV	
D301	VICM	Input Common Mode Voltage*	0	—	Vdd - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	_	_	dB	
300 300A	TRESP	Response Time ^{(1)*}		150	400 600	ns ns	PIC18FXX20 PIC18LFXX20
301	Тмс2о∨	Comparator Mode Change to Output Valid*	_	—	10	μS	

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.


TABLE 26-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V < VDD < 5.5V$, $-40^{\circ}C < TA < +125^{\circ}C$, unless otherwise stated.							
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	_		1/2	LSb	Low Range (VRR = 1)
			—		1/2	LSb	High Range (VRR = 0)
D312	VRur	Unit Resistor Value (R)*	—	2k	_	Ω	
310	TSET	Settling Time ^{(1)*}	—	_	10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

FIGURE 26-4: LOW-VOLTAGE DETECT CHARACTERISTICS

Param. No.	Symbol	Characterist	ic	Min	Max	Units	Conditions
71	TscH	SCK Input High Time Continuous		1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Edge		100	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2		1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	_	ns	
75	TDOR	SDO Data Output Rise Time PIC18FXX20		—	25	ns	
			PIC18 LF XX20		45	ns	
76	TDOF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXX20	—	25	ns	
		(Master mode)	PIC18 LF XX20		45	ns	
79	TscF	SCK Output Fall Time (Maste	r mode)	—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXX20	—	50	ns	
	TscL2DoV	SCK Edge	PIC18 LF XX20		100	ns	
81	TDOV2SCH, TDOV2SCL	SDO Data Output Setup to SO	CK Edge	Тсү	—	ns	

TABLE 26-15:	EXAMPLE SPI MODE REQUIREMENTS	(MASTER MODE, CKE = 1)
--------------	-------------------------------	------------------------

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

FIGURE 26-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characte	eristic	Min	Мах	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms	
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		100	ns	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		ms	Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period, the first
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
106	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	
		Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free
			400 kHz mode	1.3	_	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD		ms	can start
D102	Св	Bus Capacitive Loa	dina	_	400	pF	

TABLE 26-21: MASTER SSP I ² C™ BUS DATA REQUIREMENT
--

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter #107 ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

FIGURE 27-19: MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_IDLE, ALL PERIPHERALS DISABLED

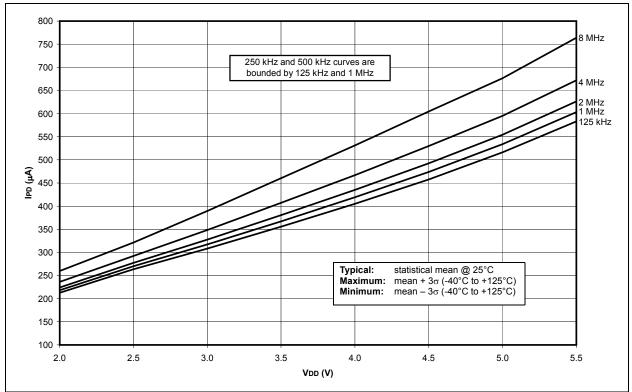
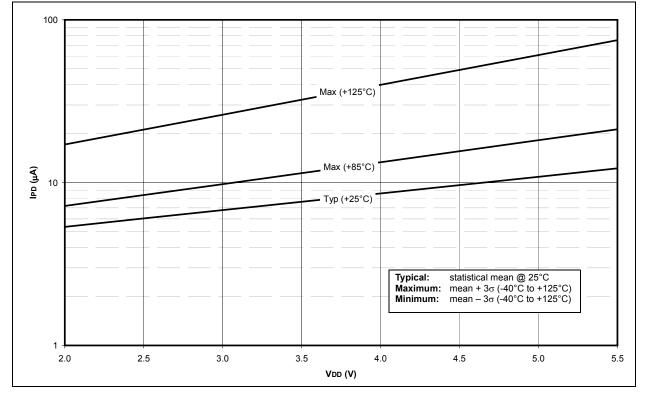



FIGURE 27-20: TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_IDLE, ALL PERIPHERALS DISABLED

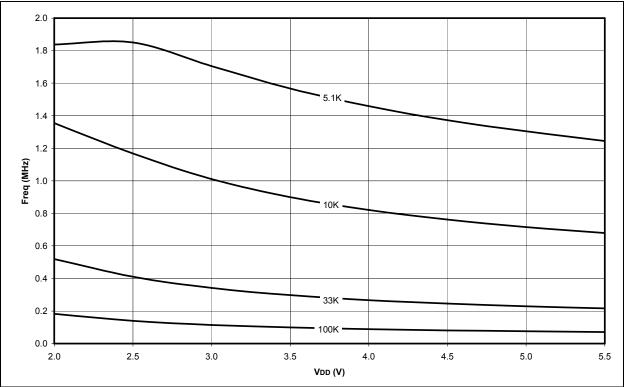
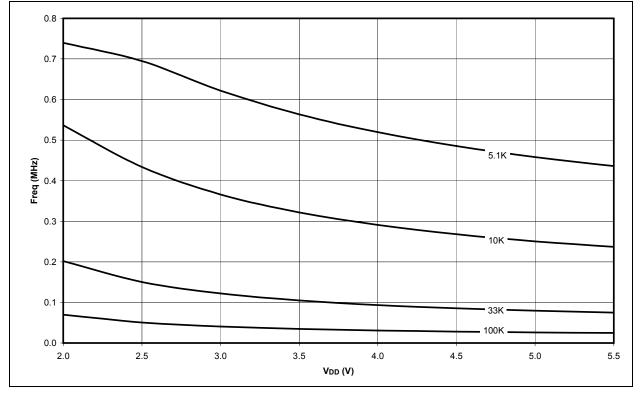



FIGURE 27-36: AVERAGE FOSC vs. VDD FOR VARIOUS R'S EXTERNAL RC MODE, C = 300 pF, TEMPERATURE = +25°C

MPLINK Object Linker/MPLIB Object Librarian	
MSSP	155
Control Registers (General)	155
Enabling SPI I/O	159
I ² C Master Mode	179
I ² C Mode	
I ² C Mode. See I ² C	
I ² C Slave Mode	168
Operation	158
Overview	155
Slave Select Control	
SPI Master Mode	160
SPI Master/Slave Connection	159
SPI Mode	
SPI Slave Mode	
SSPBUF Register	
SSPSR Register	160
TMR2 Output for Clock Shift	
Typical Connection	159
MULLW	
MULWF	

Ν

NEGF	285
NOP	285

0

Opcode Field Descriptions	
Oscillator Configuration	
EC	
ECIO	
HS	
HSPLL	
Internal Oscillator Block	
INTIO1	
INTIO2	
LP	
RC	
RCIO	
ХТ	
Oscillator Selection	
Oscillator Start-up Timer (OST)	28, 44, 237
Oscillator Switching	
Oscillator Transitions	
Oscillator, Timer1	
Oscillator, Timer3	

Ρ

Packaging Information
Details
Marking
Parallel Slave Port (PSP) 109, 114
Associated Registers
CS (Chip Select)
PORTD
RD (Read Input)
RE0/AN5/RD Pin
RE1/AN6/WR Pin113
RE2/AN7/CS Pin113
Select (PSPMODE Bit) 109, 114
WR (Write Input) 113, 114
PICSTART Plus Development Programmer
PIE Registers
Pin Functions
MCLR/Vpp/RE3
OSC1/CLKI/RA7 11, 14

OSC2/CLKO/RA611, 14	
RA0/AN0	4
RA1/AN1	
RA2/AN2/Vref-/CVref11, 14	4
RA3/AN3/Vref+11, 14	4
RA4/T0CKI/C1OUT11, 14	
	*
RA5/AN4/SS/LVDIN/C2OUT11, 14	4
RB0/AN12/INT012, 15	5
RB1/AN10/INT1	
RB2/AN8/INT212, 15	
RB3/AN9/CCP212, 15	5
RB4/AN11/KBI0	5
- , , , , , , , , , , , , , , , , , , ,	
RB5/KBI1/PGM12, 15	
RB6/KBI2/PGC12, 15	5
RB7/KBI3/PGD	2
RB7/PGD15	
RC0/T10S0/T1CKI13, 16	6
RC1/T10SI/CCP2	6
RC2/CCP1/P1A13, 16	
RC3/SCK/SCL	6
RC4/SDI/SDA	6
RC5/SDO13, 16	
RC6/TX/CK13, 16	ô
RC7/RX/DT	
RD0/PSP017	
RD1/PSP1	7
RD2/PSP2	7
RD3/PSP317	
RD4/PSP417	7
RD5/PSP5/P1B17	7
RD6/PSP6/P1C 17	
RD7/PSP7/P1D 17	
RE0/AN5/RD 18	8
RE1/AN6/ <u>WR</u>	
RE2/AN7/CS 18	8
RE3 18	
VDD13, 18	
Vss	8
Pinout I/O Descriptions	
PIC18F2220/2320	
PIC18F4220/432014	4
PIR Registers	2
PLL Lock Time-out	
Pointer, FSRn	
Pointer, FSRn	6
Pointer, FSRn	6
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286	6
Pointer, FSRn	6
Pointer, FSRn	6 6
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 103	6 6 3
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 103	6 6 3 1
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 103	6 6 3 1
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 107 PORTA Register 107 107	6 6 3 1
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 107 PORTA Register 107 107 TRISA Register 107 107	6 6 3 1
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 TRISA Register 107 PORTB 107	6 6 3 1 1
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 TRISA Register 107 PORTB Associated Registers 106	6 6 3 1 1 6
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 TRISA Register 107 PORTB Associated Registers 106	6 6 3 1 1 6
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 TRISA Register 107 PORTB Associated Registers 106 LATB Register 107	6 6 3 1 1 6 4
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 TRISA Register 107 PORTB 106 LATB Register 106 PORTB 106 PORTB Register 106 PORTB Register 104	6 6 3 1 1 6 4 4
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 106 LATB Register 106 LATB Register 106 RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) 104	6 6 3 1 1 6 4 4 4
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 106 LATB Register 106 LATB Register 106 RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) 104	6 6 3 1 1 6 4 4 4
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB Associated Registers 106 LATB Register 104 PORTB Register 104 RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) 104 TRISB Register 104	6 6 3111 6444
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 106 LATB Register 106 LATB Register 104 PORTB Register 104 PORTC 104	6 6 3111 6444
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 106 LATB Register 106 PORTB Register 104 PORTC Associated Registers Associated Registers 104	6 6 3111 6444 8
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 106 LATB Register 106 PORTB Register 104 PORTC Associated Registers Associated Registers 104	6 6 3111 6444 8
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 107 PORTB Register 106 LATB Register 104 PORTB Register 104 PORTC Associated Registers Associated Register 104 TRISB Register 104 LATC Register 105	6 6 3111 6444 87
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 107 Associated Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 107 Associated Registers 106 LATB Register 104 PORTB Register 104 PORTC Register 104 PORTC Register 106 LATC Register 107 PORTC Register 107 PORTC Register 107	66311164444877
Pointer, FSRn 66 POP 286 POR. See Power-on Reset. 286 PORTA Associated Registers 103 LATA Register 107 PORTA Register 107 PORTA Register 107 PORTA Register 107 PORTB 107 PORTB Register 106 LATB Register 104 PORTB Register 104 PORTC Associated Registers Associated Register 104 TRISB Register 104 LATC Register 105	6 6 3 1 1 1 6 4 4 4 4 8 7 7