

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4320-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Pin Name	Pin Number			Pin Buffer		Description		
	PDIP	TQFP	QFN	Туре	Туре	Description		
RE0/AN5/RD	8	25	25			PORTE is a bidirectional I/O port.		
RE0 AN5 RD				I/O I I	ST Analog TTL	Digital I/O. Analog input 5. Read control for Parallel Slave Port (see also WR and CS pins).		
RE1/AN6/WR RE1 AN6 WR	9	26	26	I/O I I	ST Analog TTL	Digital I/O. Analog input 6. Write <u>control for</u> Parallel Slave Port (see CS and RD pins).		
RE2/AN7/CS RE2 AN7 CS	10	27	27	I/O I I	ST Analog TTL	Digital I/O. Analog input 7. Chip select c <u>ont</u> rol fo <u>r P</u> arallel Slave Port (see related RD and WR).		
RE3	1	18	18		_	See MCLR/VPP/RE3 pin.		
Vss	12, 31	6, 29	6, 30, 31	Ρ		Ground reference for logic and I/O pins.		
Vdd	11, 32	7, 28	7, 8 29	Ρ		Positive supply for logic and I/O pins.		
NC			13, 28	NC	NC	No connect.		
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input								

TABLE 1-3: PIC18F4220/4320 PINOUT I/O DESCRIPTIONS (CONTINUED)

O = Output

Ρ = Power

OD = Open-drain (no diode to VDD)

Note 1: Alternate assignment for CCP2 when CCP2MX is cleared.

2: Default assignment for CCP2 when CCP2MX (CONFIG3H<0>) is set.

REGISTER 6-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	— FREE		WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only
L:1 0	
bit 3	WRERR: EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation was prematurely terminated (any Reset during self-timed programming) 0 = The write operation completed normally
bit 2	WREN: Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle completed
bit 0	RD: Read Control bit
	 1 = Initiates a memory read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)
	0 = Read completed
Note 1:	When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error

condition.

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation or until it is written to by the user (during a write operation).

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

EXAMPLE 7-1: DATA EEPROM READ

ADDR

RD

W

EEPGD

;

MOVLW	DATA_EE
MOVWF	EEADR
BCF	EECON1,
BSF	EECON1,
MOVF	EEDATA,

; Data Memory Address to read ; Point to DATA memory ; EEPROM Read ; W = EEDATA

EXAMPLE 7-2: DATA EEPROM WRITE

	MOVLW	DATA EE ADDR	i
	MOVWF	EEADR	; Data Memory Address to write
	MOVLW	DATA EE DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EEPGD	; Point to DATA memory
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	AAh	;
	MOVWF	EECON2	; Write AAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
	SLEEP		; Wait for interrupt to signal write complete
	BCF	EECON1, WREN	; Disable writes

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1L, W	
MULWF	ARG2L	; ARG1L * ARG2L ->
		; PRODH:PRODL
MOVFF	PRODH, RES1	;
MOVFF	PRODL, RESO	;
;		
MOVF	ARG1H, W	
MULWF	ARG2H	; ARG1H * ARG2H ->
		; PRODH:PRODL
MOVFF	PRODH, RES3	;
MOVFF	PRODL, RES2	;
;		
MOVF	ARG1L, W	
MULWF	ARG2H	; ARG1L * ARG2H ->
		; PRODH:PRODL
	PRODL, W	
	RES1, F	
	PRODH, W	-
	RES2, F	;
-	WREG	;
ADDWFC	RES3, F	;
;		
	ARG1H, W	
MULWF'	ARG2L	; ARG1H * ARG2L ->
		; PRODH:PRODL
	PRODL, W	-
	RES1, F	
	PRODH, W	=
	RES2, F	
CLRF		;
ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0

- $= ARG1H:ARG1L \bullet ARG2H:ARG2L$
- = $(ARG1H \bullet ARG2H \bullet 2^{16}) +$ $(ARG1H \bullet ARG2L \bullet 2^{8}) +$ $(ARG1L \bullet ARG2H^{2} 2^{8}) +$ $(ARG1L \bullet ARG2L) +$ $(-1 \bullet ARG2H < 7> \bullet ARG1H: ARG1L \bullet 2^{16}) +$ $(-1 \bullet ARG1H < 7> \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVEE	PRODH, RES1	
	MOVFF MOVFF	PRODL, RESO	
	MOVEE	PRODL, RESU	;
;			
		ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF		; ARG1L * ARG2H ->
	PIOTIME	ANGZII	
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;		,	
'	MOVE	ARG1H, W	
			;
	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
		RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	BTESS	ARG2H, 7	; ARG2H:ARG2L neg?
	BRA	SIGN ARG1	; no, check ARG1
		-	
		ARG1L, W	;
	SUBWF	RES2	;
		ARG1H, W	;
	SUBWFB	RES3	
;			
SIG	N_ARG1		
	BTFSS	ARG1H, 7	; ARG1H:ARG1L neg?
	BRA	CONT CODE	; no, done
	MOVF	ARG2L, W	;
	SUBWF	RES2	;
	MOVF	ARG2H, W	;
	SUBWFB		,
Ι.	SODWED	U U U U U U	
;			
	T_CODE		
	:		
1			

10.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

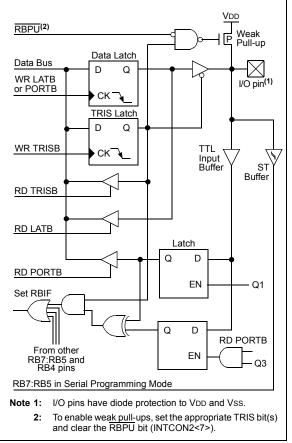
CLRF	PORTB	; ;	Initialize PORTB by clearing output
		;	data latches
CLRF	LATB	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	0x07	;	Set RB<4:0> as
MOVWF	ADCON1	;	digital I/O pins
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

EXAMPLE 10-2: INITIALIZING PORTB

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note: On a Power-on Reset, RB4:RB0 are configured as analog inputs by default and read as '0'; RB7:RB5 are configured as digital inputs.
 By programming the Configuration bit, PBADEN (CONFIG3H<1>), RB4:RB0 will alternatively be configured as digital inputs on POR.

Four of the PORTB pins (RB7:RB4) have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>). This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:


- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB3 can be configured by the Configuration bit, CCP2MX, as the alternate peripheral pin for the CCP2 module (CCP2MX = 0).

NOTES:

19.8 Use of the CCP2 Trigger

An A/D conversion can be started by the "Special Event Trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D acquisition and conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user or an appropriate TACQ time, selected before the "Special Event Trigger", sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "Special Event Trigger" will be ignored by the A/D module but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
PIR2	OSCFIF	CMIF		EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0000	00-0 0000
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0000	00-0 0000
IPR2	OSCFIP	CMIP		EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1111	11-1 1111
ADRESH	A/D Result	Register Hi	gh Byte						XXXX XXXX	uuuu uuuu
ADRESL	A/D Result	Register Lo	w Byte						XXXX XXXX	uuuu uuuu
ADCON0	—	_	CHS3	CHS3	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0qqq	00 0qqq
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	0-00 0000
PORTA	RA7 ⁽⁴⁾	RA6 ⁽⁴⁾	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	TRISA7 ⁽⁴⁾	TRISA6 ⁽⁴⁾							11 1111	11 1111
PORTB	Read POR ⁻	TB pins, Wri	te LATB La	tch					XXXX XXXX	uuuu uuuu
TRISB	PORTB Data Direction Register									1111 1111
LATB	PORTB Output Data Latch									uuuu uuuu
PORTE ⁽²⁾	—	—	xxxx	uuuu						
TRISE ⁽²⁾	IBF	OBE	IBOV	PSPMODE	—	PORTE D	ata Direction		0000 -111	0000 -111
LATE ⁽²⁾	—	—	—	—	PORTE C	Dutput Data	a Latch		xxx	uuu

 TABLE 19-2:
 SUMMARY OF A/D REGISTERS

 $\label{eq:logend: Legend: Legend: x = unknown, u = unchanged, - = unimplemented, read as `0', q = value depends on condition.$

Shaded cells are not used for A/D conversion.

Note 1: The RE3 port bit is available as an input-only pin only in 40-pin devices and when Master Clear functionality is disabled (CONFIG3H<7>=0).

2: This register is not implemented on PIC18F2X20 devices and reads back 0x00.

3: These pins may be configured as port pins depending on the oscillator mode selected.

21.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The CVRCON register controls the operation of the reference as shown in Register 21-1. The block diagram is given in Figure 21-1.

The comparator reference supply voltage comes from VDD and Vss.

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the comparator voltage reference are as follows:

EQUATION 21-1:

If CVRR = 1:
CVREF = (CVR<3:0>) •
$$\frac{VDD}{24}$$

If CVRR = 0:
CVREF = (CVR<3:0> + 8) • $\frac{VDD}{32}$

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 26-2 in Section 26.0 "Electrical Characteristics").

REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE ⁽¹⁾	CVRR	—	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CVREN : Comparator Voltage Reference Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down				
bit 6	CVROE : Comparator VREF Output Enable bit ⁽¹⁾ 1 = CVREF voltage level is also output on the RA2/AN2/VREF-/CVREF pin 0 = CVREF voltage is disconnected from the RA2/AN2/VREF-/CVREF pin				
bit 5	CVRR : Comparator VREF Range Selection bit 1 = 0.00 VDD to 0.667 VDD, with VDD/24 step size 0 = 0.25 VDD to 0.75 VDD, with VDD/32 step size				
bit 4	Unimplemented: Read as '0'				
bit 3-0	CVR3:CVR0: Comparator VREF Value Selection $0 \le VR3:VR0 \le 15$ bits $\frac{When CVRR = 1:}{CVREF = (CVR<3:0>) \bullet \frac{VDD}{24}}$ $\frac{When CVRR = 0:}{CVREF = 1/4 \bullet (CVRSRC) + (CVR<3:0> + 8) \bullet \frac{VDD}{32}}$				

Note 1: CVROE overrides the TRISA<2> bit setting.

23.5 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other $\text{PIC}^{\texttt{R}}$ devices.

The user program memory is divided into five blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into four blocks on binary boundaries. Each of the five blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 23-5 shows the program memory organization for 4 and 8-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 23-3.

FIGURE 23-5: CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2X20/4X20

MEMORY SI	ZE/DEVICE		Block Code Protection		
4 Kbytes (PIC18F2220/4220)	8 Kbytes (PIC18F2320/4320)	Address Range	Controlled By:		
Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB		
Block 0	Block 0	000200h 0007FFh	CP0, WRT0, EBTR0		
Block 1	Block 1	000800h 000FFFh	CP1, WRT1, EBTR1		
Unimplemented Read '0's	Block 2	001000h 0017FFh	CP2, WRT2, EBTR2		
Unimplemented Read '0's	Block 3	001800h 001FFFh	CP3, WRT3, EBTR3		
Unimplemented Read '0's	Unimplemented Read '0's	002000h	(Unimplemented Memory Space)		
		1FFFFFh			

TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	_	_	—	—	CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	—	—	—	—	—	_
30000Ah	CONFIG6L	_	—	—	—	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—	—	—	_	_
30000Ch	CONFIG7L	_	_	—	_	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H		EBTRB	—	—	—	_	—	

Legend: Shaded cells are unimplemented.

24.2 Instruction Set

ADD	DLW		ADD Literal to W						
Synt	ax:		[label] A	[<i>label</i>] ADDLW k					
Ope	rands:		$0 \le k \le 255$						
Ope	ration:		(W) + k –	$(W) + k \to W$					
Statu	us Affecte	d:	N, OV, C,	DC, Z					
Enco	oding:		0000	1111	kk}	c k	kkkk		
Deso	cription:		The contents of W are added to th 8-bit literal 'k' and the result is placed in W.						
Wor	ds:		1	1					
Cycl	es:		1	1					
QC	ycle Activ	vity:							
	Q1		Q2	Q	Q3		Q4		
	Decode		Read literal 'k'	Proce Data		Wr	ite to W		
	<u>nple</u> : Before In:	stru		0x15					
	W	=	0x10						
	After Instr	uct	ion						
	W =	=	0x25						

ADDWF	ADD W to f						
Syntax:	[<i>label</i>] A	[<i>label</i>] ADDWF f [,d [,a]]					
Operands:	$0 \le f \le 250$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(W) + (f) -	\rightarrow dest					
Status Affected:	N, OV, C,	DC, Z					
Encoding:	0010	01da	ffi	f	ffff		
Description:	result is s result is s (default). Bank will	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR is used.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q Cycle Activity: Q1	Q2	Q	3		Q4		
		Q3 Proce Data	SS		Q4 /rite to stination		
Q1	Q2 Read	Proce	SS		/rite to		
Q1 Decode	Q2 Read register 'f'	Proce	ess a		/rite to		
Q1 Decode <u>Example</u> :	Q2 Read register 'f'	Proce	ess a		/rite to		
Q1 Decode <u>Example</u> : Before Instru W	Q2 Read register 'f' ADDWF iction = 0x17 = 0xC2	Proce	ess a		/rite to		

MULLW	Multiply I	_iteral with \	v	MULWF	Multiply V	V with f	
Syntax:	[label]	MULLW k		Syntax:	[label]	MULWF f	[,a]
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 258$	5	
Operation:	(W) x k \rightarrow	PRODH:PR	ODL		a ∈ [0,1]		
Status Affected:	None			Operation:	(W) x (f) –	→ PRODH:P	RODL
Encoding:	0000	1101 kk	kk kkkk	Status Affected:	None		
Description:	An unsign	ed multiplica	tion is	Encoding:	0000	001a ffi	ff ffff
	of W and 16-bit resu PRODH:F PRODH c W is unch	t between the the 8-bit litera ult is placed i PRODL regist contains the h anged. he Status flag	al 'k'. The n ter pair. ligh byte.	Description:	carried ou of W and t 'f'. The 16 the PROD pair. PRO byte.	ed multiplica t between th he register fi -bit result is H:PRODL re DH contains nd 'f' are unc	e contents le location stored in egister the high
	Note that carry is po	neither overf ossible in this ro result is po red.	opera-		None of th affected. Note that carry is po	ne Status flag neither overl ossible in this	gs are flow nor s opera-
Words:	1					o result is po ed. If 'a' is '0	
Cycles:	1					ank will be se	
Q Cycle Activity:					•	the BSR va	
Q1	Q2	Q3	Q4	1		n the bank v is per the BS	
Decode	Read literal 'k'	Process Data	Write registers		(default).	o por allo 20	
			PRODH:	Words:	1		
			PRODL	Cycles:	1		
Example:	MULLW	0xC4		Q Cycle Activity	:		
Before Instru		01101		Q1	Q2	Q3	Q4
W PRODH PRODL		E2		Decode	Read register 'f'	Process Data	Write registers PRODH:
After Instruct	ion						PRODL
W PRODH PRODL	= 0x	E2 AD 08		<u>Example</u> : Before Instru		REG	
				W REG PRODH PRODL	= 0x = 0x = ? = ?		
				After Instruc		C 4	

atter instruction		
W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

SUBLW	Subtract	Subtract W from Literal					
Syntax:	[label] S	[<i>label</i>] SUBLW k					
Operands:	$0 \le k \le 255$						
Operation:	k – (W) –	$k - (W) \rightarrow W$					
Status Affected:	N, OV, C,	DC, Z					
Encoding:	0000	1000 kkł	k kkkk				
Description:	W is subt	racted from t	he eiaht-bit				
·		The result is					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read literal 'k'	Process Data	Write to W				
Example 1:	SUBLW (x02					
Before Instru	iction						
W	= 1						
С	= ?						
After Instruct							
W C	= 1 = 1 :re	sult is positive	9				
C Z N	= 0 = 0						
Example 2:	-	x02					
Before Instru	iction						
W	= 2						
С	= ?						
After Instruct	ion						
W	= 0 = 1 ; re	sult is zero					
Z	= 1	Sult 15 2010					
Example 3:	= 0 SUBLW (x02					
Before Instru		X02					
W	= 3						
C	= ?						
After Instruct	ion						
W		's complemen					
C Z N	= 0 ; re = 0	sult is negativ	e				
Ν	= 1						

SUBWF	Subtract	W from f				
Syntax:	[label] S	SUBWF f[,	d [,a]]			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5				
Operation:	(f) – (W)	\rightarrow dest				
Status Affected:	N, OV, C	, DC, Z				
Encoding:	0101	11da ff	ff ffff			
Description:	complem the result '1', the re register 'f the Acce overriding '1', then t	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If = 'a' is '0', the Access Bank will be selected overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1		. ,			
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example 1:	SUBWF I	REG				
Before Instru						
REG W	= 3 = 2					
C	= ?					
After Instruct REG	= 1					
W	= 2					
C Z N	= 0	sult is positive				
	= 0					
Example 2:		REG, W				
Before Instru REG	= 2					
W	= 2					
C After Instruct	= ? tion					
REG	= 2					
W	= 0					
C		sult is zero				
C Z N	= 1 ; re = 1 = 0					
C Z N <u>Example 3</u> :	= 1 ; re = 1 = 0 SUBWF H	sult is zero REG				
Example 3: Before Instru	= 1 ; re = 1 = 0 SUBWF I					
C Z N <u>Example 3</u> :	= 1 ; re = 1 = 0 SUBWF H					
Example 3: Before Instru REG W C	= 1 ; re = 1 = 0 SUBWF I uction = 0x01 = 0x02 = ?					
Example 3: Example 3: Before Instru- REG W C After Instruct	= 1 ; re = 1 = 0 SUBWF I uction = 0x01 = 0x02 = ? tion	REG	pent)			
Example 3: Before Instru REG W C	= 1 ; re = 1 = 0 SUBWF I uction = 0x01 = 0x02 = ?	REG	nent)			
Example 3: Example 3: Before Instru REG W C After Instruct REG	= 1 ; re = 1 = 0 SUBWF I = 0x01 = 0x02 = ? tion = 0xFFh	REG	,			

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial) (Continued)

PIC18LF (Indu		rd Oper	•	•	s otherwise stated $x \le +85^{\circ}$ C for indust				
-	220/2320/4220/4320 strial, Extended)		rd Oper	•	ponditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LF2X20/4X20	100	220	μA	-40°C				
		110	220	μA	+25°C	VDD = 2.0V			
		120	220	μA	+85°C				
	PIC18LF2X20/4X20	180	330	μA	-40°C				
		180	330	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz (RC RUN mode,		
		170	330	μA	+85°C		internal oscillator source)		
	All devices	340	550	μA	-40°C		·····,		
		330	550	μA	+25°C				
		310	550	μA	+85°C	VDD - 5.0V			
	Extended devices	410	650	μA	+125°C				
	PIC18LF2X20/4X20	350	600	μA	-40°C				
		360	600	μA	+25°C	VDD = 2.0V			
		370	600	μA	+85°C				
	PIC18LF2X20/4X20	580	900	μA	-40°C				
		580	900	μA	+25°C	VDD = 3.0V	Fosc = 4 MHz (RC RUN mode,		
		560	900	μA	+85°C		internal oscillator source)		
	All devices	1.1	1.8	mA	-40°C				
		1.1	1.8	mA	+25°C	VDD = 5.0V			
		1.0	1.8	mA	+85°C				
	Extended devices	1.2	1.8	mA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

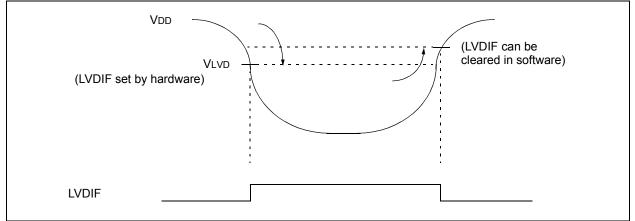
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 26-2: COMPARATOR SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D300	VIOFF	Input Offset Voltage		±5.0	±10	mV	
D301	VICM	Input Common Mode Voltage*	0	—	Vdd - 1.5	V	
D302	CMRR	Common Mode Rejection Ratio*	55	_	_	dB	
300 300A	TRESP	Response Time ^{(1)*}		150	400 600	ns ns	PIC18FXX20 PIC18LFXX20
301	Тмс2о∨	Comparator Mode Change to Output Valid*	_	—	10	μS	

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.


TABLE 26-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.							
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	_		1/2	LSb	Low Range (VRR = 1)
			—		1/2	LSb	High Range (VRR = 0)
D312	VRur	Unit Resistor Value (R)*	—	2k	_	Ω	
310	TSET	Settling Time ^{(1)*}	—	_	10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

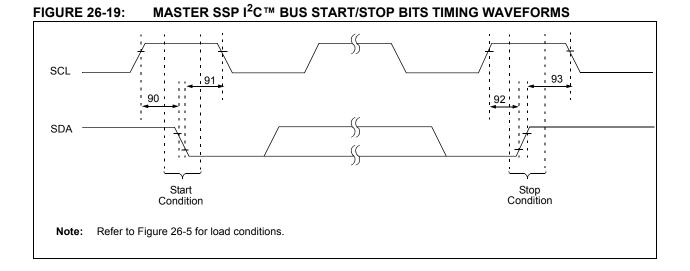
FIGURE 26-4: LOW-VOLTAGE DETECT CHARACTERISTICS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
F10	Fosc	Oscillator Frequency Range	4	—	10	MHz	HS mode only		
F11	Fsys	On-Chip VCO System Frequency	16	_	40	MHz	HS mode only		
F12	t _{PLL}	PLL Start-up Time (Lock Time)	_	—	2	ms			
F13	∆CLK	CLKO Stability (Jitter)	-2	—	+2	%			

TABLE 26-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 26-8:INTERNAL RC ACCURACY: PIC18F2220/2320/4220/4320 (Industrial)PIC18LF2220/2320/4220/4320 (Industrial, Extended)

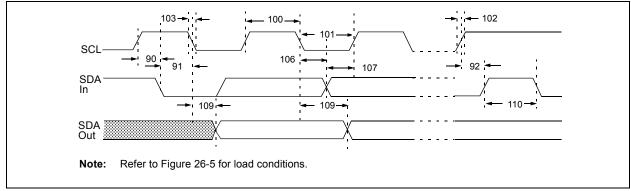

1220/1320 Istrial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
220/1320		,						
Device	Min	Тур	Max	Units				
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾								
PIC18LF2220/2320/4220/4320	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V		
	-5	_	5	%	-10°C to +85°C	VDD = 2.7-3.3V		
	-10	_	10	%	-40°C to +85°C	VDD = 2.7-3.3V		
PIC18F2220/2320/4220/4320	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V		
	-5	_	5	%	-10°C to +85°C	VDD = 4.5-5.5V		
	-10	_	10	%	-40°C to +85°C	VDD = 4.5-5.5V		
INTRC Accuracy @ Freq = 31 kHz ⁽²⁾								
PIC18LF2220/2320/4220/4320	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V		
PIC18F2220/2320/4220/4320	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V		
	strial) 220/1320 istrial, Extended) Device INTOSC Accuracy @ Freq = 8 I PIC18LF2220/2320/4220/4320 PIC18F2220/2320/4220/4320 INTRC Accuracy @ Freq = 31 k PIC18LF2220/2320/4220/4320 PIC18LF2220/2320/4220/4320 PIC18LF2220/2320/4220/4320	strial) Operatin 220/1320 Standard istrial, Extended) Operatin Device Min INTOSC Accuracy @ Freq = 8 HHz, 4 M PIC18LF2220/2320/4220/4320 -2 -5 -10 PIC18F2220/2320/4220/4320 -2 -5 -10 PIC18F2220/2320/4220/4320 -2 -5 -10 INTRC Accuracy @ Freq = 31 Hz ⁽²⁾ -10 INTRC Accuracy @ Freq = 31 Hz ⁽²⁾ -10 PIC18LF2220/2320/4220/4320 26.562 PIC18F2220/2320/4220/4320 26.562	Strial) Operating temperating temperat	Operating temperature 220/1320 (strial, Extended) Standard Operating Cond Operating temperature Device Min Typ Max INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz PIC18LF2220/2320/4220/4320 -2 +/-1 2 PIC18LF2220/2320/4220/4320 -2 +/-1 2 -5 -5 PIC18F2220/2320/4220/4320 -2 +/-1 2 -5 -5 PIC18F2220/2320/4220/4320 -2 +/-1 2 -5 -5 -10 -10 10 PIC18F2220/2320/4220/4320 2-2 +/-1 2 -5	Strial) Operating temperature -40 220/1320 Standard Operating Conditions (u Operating temperature -40 Device Min Typ Max Units INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz -2 +/-1 2 % PIC18LF2220/2320/4220/4320 -2 +/-1 2 % -5 - 5 % -10 - 10 % PIC18F2220/2320/4220/4320 -2 +/-1 2 % -5 - 5 % -10 - 10 % 10 % 10 - 10 % 10 % 10 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10<	strial) Operating temperature -40°C ≤ TA ≤ +85°C 220/1320 Standard Operating Conditions (unless otherwise Operating temperature -40°C ≤ TA ≤ +85°C Istrial, Extended) Min Typ Max Units INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 N PiC18LF2220/2320/4220/4320 -2 +/-1 2 % +25°C PIC18LF2220/2320/4220/4320 -2 +/-1 2 % +25°C PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25°C PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25°C Operating temperature -10 % -40°C to +85°C -10°C to +85°C PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25°C INTRC Accuracy @ Freq = 31 kHz ⁽²⁾ Intro to +85°C -10°C to +85°C -10°C to +85°C INTRC Accuracy @ Freq = 31 kHz ⁽²⁾ Intro to +85°C -35.938 kHz -40°C to +85°C PIC18F2220/2320/4220/4320 26.562 -35.938 kHz -40°C to +85°C	Instrial) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial 220/1320 Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Device Min Typ Max Units Conditions INTOSC Accuracy @ Freq = 8 HHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾ Conditions PIC18LF2220/2320/4220/4320 -2 +/-1 2 % +25^{\circ}C VDD = 2.7-3.3V PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25^{\circ}C VDD = 2.7-3.3V PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25^{\circ}C VDD = 2.7-3.3V PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25^{\circ}C VDD = 2.7-3.3V PIC18F2220/2320/4220/4320 -2 +/-1 2 % +25^{\circ}C VDD = 4.5-5.5V INTRC Accuracy @ Freq = 31 kHz ⁽²⁾ -10 % -40^{\circ}C to +85^{\circ}C VDD = 4.5-5.5V PIC18F2220/2320/4220/4320 26.562 -35.938 kHz -40^{\circ}C to +85^{\circ}C VDD = 2.7-3.3V PIC18F2220/2320/4220/4320 26.562 -35.938 kHz -40^	

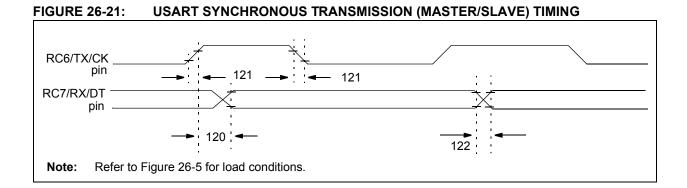
Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

3: Change of INTRC frequency as VDD changes.




TABLE 26-20: MASTER SSP FC III BUS START/STOP BITS REQUIREMENTS	TABLE 26-20:	MASTER SSP I ² C [™] BUS START/STOP BITS REQUIREMENTS
---	--------------	---

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	Only relevant for
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
91	THD:STA	Start condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	After this period, the first
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	—		clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
		Setup time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
		Hold time	400 kHz mode	2(Tosc)(BRG + 1)	_]	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_]	

Note 1: Maximum pin capacitance = 10 pF for all I²C pins.

FIGURE 26-20: MASTER SSP I²C[™] BUS DATA TIMING

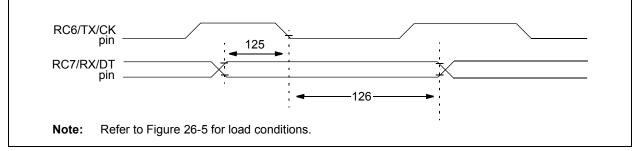


TABLE 26-22: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic			Мах	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER & SLAVE) Clock High to Data Out Valid	PIC18 F XX20	_	40	ns	
			PIC18LFXX20	_	100	ns	
121	TCKRF	(Master mede)	PIC18FXX20		20	ns	
			PIC18 LF XX20	—	50	ns	
122	TDTRF	Data Out Rise Time and Fall Time	PIC18FXX20	_	20	ns	
			PIC18 LF XX20		50	ns	

FIGURE 26-22: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 26-23: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125		<u>SYNC RCV (MASTER & SLAVE)</u> Data Hold before CK ↓ (DT hold time)	10		ns	
126		Data Hold after CK \downarrow (DT hold time)	15		ns	

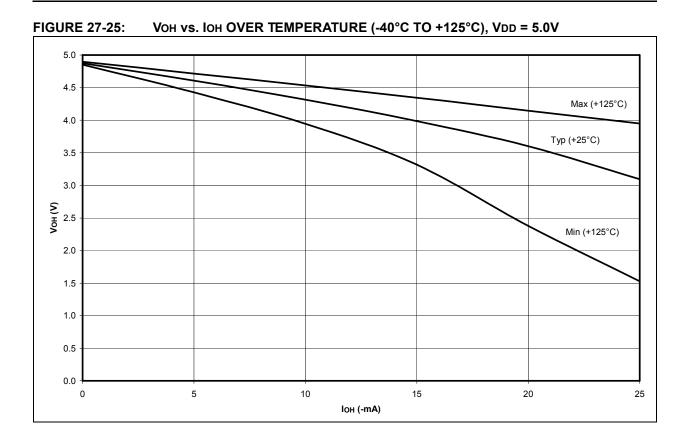
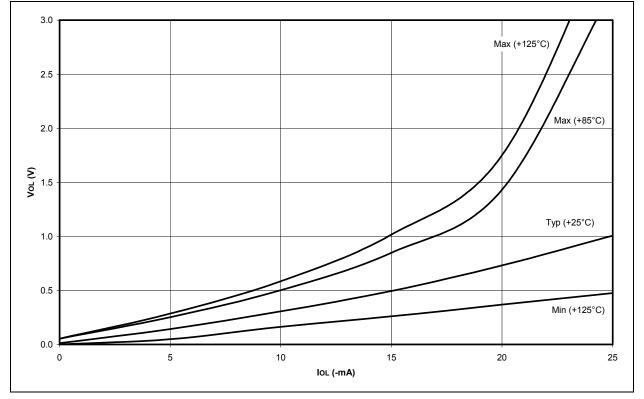



FIGURE 27-26: Vol vs. lol OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V

PORTD

Associated Registers	
LATD Register	
Parallel Slave Port (PSP) Function	
PORTD Register	
TRISD Register	
PORTE Analog Port Pins	110
-	
Associated Registers	
PORTE Register	
PSP Mode Select (PSPMODE Bit)	
RE0/AN5/RD Pin	
RE1/AN6/WR Pin	
RE2/AN7/CS Pin	
TRISE Register	
Postscaler, WDT	
Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits)	119
Power-Managed Modes	
Entering	
Idle Modes	31
Run Modes	
Sleep Mode	31
Summary (table)	29
Wake from	
Power-on Reset (POR)	44, 237
Power-up Delays	
Power-up Timer (PWRT) 2	8, 44, 237
Prescaler, Capture	
Prescaler, Timer0	
Assignment (PSA Bit)	119
Rate Select (T0PS2:T0PS0 Bits)	119
Prescaler, Timer2	119 139
Prescaler, Timer2 Product Identification System	119 139
Prescaler, Timer2 Product Identification System Program Counter	119 139 391
Prescaler, Timer2 Product Identification System Program Counter PCL Register	119 139 391 56
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory	119
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection	119 391 56 56 56 58 58 53 53 53 53 53 53 53 53
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification	119 391 56 56 56 58 58 53 53 53 53 53 53 53 53
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification Program Verification and Code Protection	119 391 56 56 56 56 58 53 53 53 53 53 53 53 253 252
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers	119 391 391 56 56 56 58 53 53 53 53 53 53 53 53 53 53 53 53 53 53 52 54
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions	119 391 391 56 56 56 58 53 53 53 53 53 53 53 53 53 53 53 53 53 53 52 54
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port.	119 391 391 56 56 56 58 53 53 53 53 53 53 53 53 53 53 53 53 53 53 52 54
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions	119 391 391 56 56 56 58 53 53 53 53 53 53 53 53 53 53 53 53 53 53 52 54
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module)	119 391 391 56 56 56 58 53 53 53 53 53 53 53 252 252 252
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module).	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module)	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Memory Code Protection Program Verification and Code Protection Associated Registers PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Reset Vector Program Memory Code Protection Program Memory Code Protection Program Verification and Code Protection Associated Registers PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle Example Frequencies/Resolutions	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle Example Frequencies/Resolutions Period	
Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle Example Frequencies/Resolutions	

PWM (ECCP Module) Associated Registers	
Direction Change in Full-Bridge Output Mode	
Effects of a Reset Full-Bridge Application Example	147
Full-Bridge Mode Half-Bridge Mode	145
Half-Bridge Output Mode Applications Example . Operation in Power-Managed Modes	152
Operation with Fail-Safe Clock Monitor Output Configurations	143
Output Relationships (Active-High State) Output Relationships (Active-Low State)	144
Programmable Dead-Band Delay	152
Shoot-Through Current Start-up Considerations	

Q

Q Clock	139
Q Clock	139

R

RAM. See Data Memory.	
RC Oscillator	
RCIO Oscillator Mode	21
RCALL	287
RCON Register	
Bit Status During Initialization	45
Bits and Positions	45
RCSTA Register	
SPEN Bit	195
Reader Response	390
Register File	59
Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	212
ADCON2 (A/D Control 2)	
CCP1CON (ECCP Control)	
CCPxCON (CCPx Control)	
CMCON (Comparator Control)	
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG3H (Configuration 3 High)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	244
CVRCON (Comparator Voltage	~~-
Reference Control)	
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	245
ECCPAS (Enhanced Capture/Compare/PWM	450
Auto-Shutdown Control)	
EECON1 (Data EEPROM Control 1)	
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	
IPR1 (Peripheral Interrupt Priority 1)	
IPR2 (Peripheral Interrupt Priority 2)	
LVDCON (Low-Voltage Detect Control)	233
OSCCON (Oscillator Control)	