

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

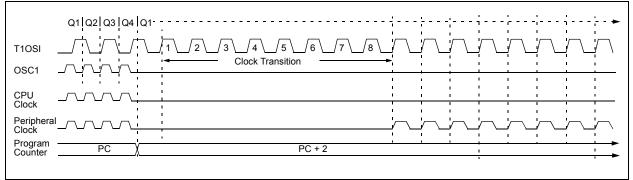
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

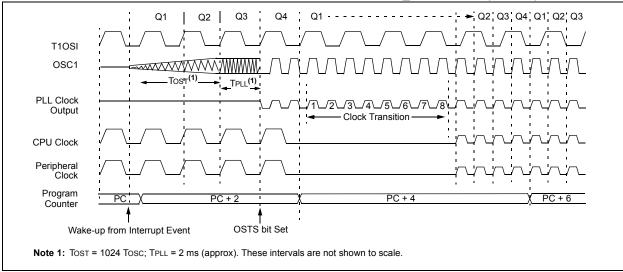
E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4320-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.2 SEC_IDLE MODE


In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered by setting the IDLEN bit, modifying to SCS1:SCS0 = 01 and executing a SLEEP instruction. When the clock source is switched to the Timer1 oscillator (see Figure 3-5), the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when trying to set the SCS0 bit (OSCCON<0>), the write to SCS0 will not occur. If the Timer1 oscillator is enabled but not yet running, peripheral clocks will be delayed until the oscillator has started; in such situations, initial oscillator operation is far from stable and unpredictable operation may result. When a wake-up event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After a 10 μ s delay following the wake-up event, the CPU begins executing code, being clocked by the Timer1 oscillator. The microcontroller operates in SEC_RUN mode until the primary clock becomes ready. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 3-6). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

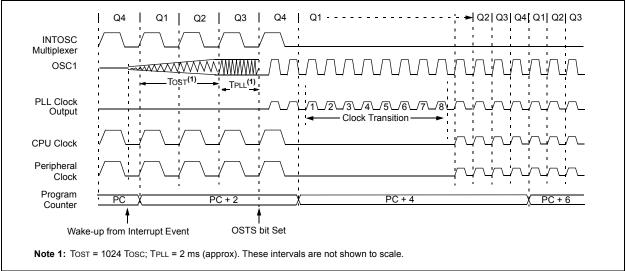
FIGURE 3-5: TIMING TRANSITION FOR ENTRY TO SEC_IDLE MODE

FIGURE 3-6: TIMING TRANSITION FOR WAKE FROM SEC_RUN MODE (HSPLL)

3.3.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

This mode is entered by setting the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer (see Figure 3-7), the primary oscillator is shut down and the OSTS bit is cleared.


If the IRCF bits are set to a non-zero value (thus enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable, in about 1 ms. Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source.

When a wake-up event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a 10 μ s delay following the wake-up event, the CPU begins executing code, being clocked by the INTOSC multiplexer. The microcontroller operates in RC_RUN mode until the primary clock becomes ready. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

Q1 Q2 Q3 Q4	Q1
INTRC	
	Clock Transition
Peripheral	
Program CounterPC	PC + 2

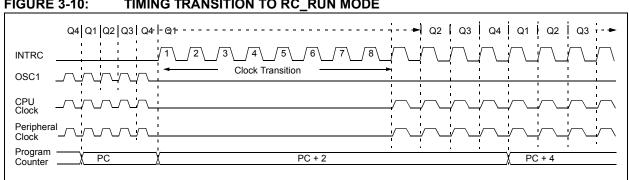
3.4.3 RC_RUN MODE

In RC RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer and the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications which are not highly timing sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either of the INTIO1 or INTIO2 oscillators), there are no distinguishable differences between PRI RUN and RC RUN modes during execution. However, a clock switch delay will occur during entry to, and exit from, RC RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC RUN mode is not recommended.

This mode is entered by clearing the IDLEN bit, setting SCS1 (SCS0 is ignored) and executing a SLEEP instruction. The IRCF bits may select the clock frequency before the **SLEEP** instruction is executed. When the clock source is switched to the INTOSC multiplexer (see Figure 3-10), the primary oscillator is shut down and the OSTS bit is cleared.

The IRCF bits may be modified at any time to immediately change the system clock speed. Executing a SLEEP instruction is not required to select a new clock frequency from the INTOSC multiplexer.


Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.

If the IRCF bits are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear: there will be no indication of the current clock source. The INTRC source is providing the system clocks.

If the IRCF bits are changed from all clear (thus enabling the INTOSC output), the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the system continue while the INTOSC source stabilizes in approximately 1 ms.

If the IRCF bits were previously at a non-zero value before the **SLEEP** instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set.

When a wake-up event occurs, the system continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-8). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the system clock. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 3-10: TIMING TRANSITION TO RC_RUN MODE

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
EEADR	EEPROM Ad	Idress Registe	er						0000 0000	48, 81	
EEDATA	EEPROM Da	0000 0000	48, 84								
EECON2	EEPROM Co	EEPROM Control Register 2 (not a physical register)									
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	xx-0 x000	48, 73, 82	
IPR2	OSCFIP	CMIP	—	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1111	49, 97	
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0000	49, 93	
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0000	49, 95	
IPR1	PSPIP ⁽⁵⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	49, 96	
PIR1	PSPIF ⁽⁵⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	49, 92	
PIE1	PSPIE ⁽⁵⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	49, 94	
OSCTUNE	—	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	23, 49	
TRISE ⁽⁵⁾	IBF	OBF	IBOV	PSPMODE	_	Data Directio	n bits for POF	RTE	0000 -111	49, 112	
TRISD ⁽⁵⁾	Data Directio	n Control Reg	gister for POR	RTD					1111 1111	49, 110	
TRISC	Data Directio	n Control Reg	gister for POR	RTC					1111 1111	49, 108	
TRISB	Data Directio	n Control Reg	gister for POR	RTB					1111 1111	49, 106	
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽¹⁾	Data Directio	on Control Reg	ister for POR	TA			1111 1111	49, 103	
LATE ⁽⁵⁾	—	_	_	—	—	Read/Write F	PORTE Data L	atch	xxx	49, 113	
LATD ⁽⁵⁾	Read/Write F	PORTD Data I	atch						XXXX XXXX	49, 110	
LATC	Read/Write F	PORTC Data I	atch						XXXX XXXX	49, 108	
LATB	Read/Write F	PORTB Data L	atch						XXXX XXXX	49, 106	
LATA	LATA<7> ⁽²⁾	LATA<6>(1)	Read/Write I	PORTA Data L	atch				XXXX XXXX	49, 103	
PORTE ⁽⁵⁾	_	_	_	—	RE3 ⁽⁶⁾	Read PORTE Write PORTE			дххх	49, 113	
PORTD ⁽⁵⁾	Read PORT	D pins, Write I	PORTD Data	Latch		•			XXXX XXXX	49, 110	
PORTC	Read PORT	C pins, Write I	PORTC Data	Latch					XXXX XXXX	49, 108	
PORTB	Read PORTE	B pins, Write F	PORTB Data	Latch ⁽⁴⁾					XXXX XXXX	49, 106	
PORTA	RA7 ⁽²⁾	RA6 ⁽¹⁾	Read PORT	A pins, Write F	ORTA Data I	_atch			xx0x 0000	49, 103	

TABLE 5-2:REGISTER FILE SUMMARY (PIC18F2220/2320/4220/4320) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read as '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read as '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: If PBADEN = 0, PORTB<4:0> are configured as digital inputs and read unknown and if PBADEN = 1, PORTB<4:0> are configured as analog inputs and read as '0' following a Reset.

5: These registers and/or bits are not implemented on the PIC18F2X20 devices and read as 0x00.

6: The RE3 port bit is available as an input only pin only in 40-pin devices when Master Clear functionality is disabled (CONFIG3H<7> = 0).

9.0 INTERRUPTS

The PIC18F2320/4320 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 000008h and the low-priority interrupt vector is at 000018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

There are ten registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2
- PIE1, PIE2
- IPR1, IPR2

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

In general, each interrupt source has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- Priority bit to select high priority or low priority (most interrupt sources have priority bits)

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit which enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a lowpriority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior.

17.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

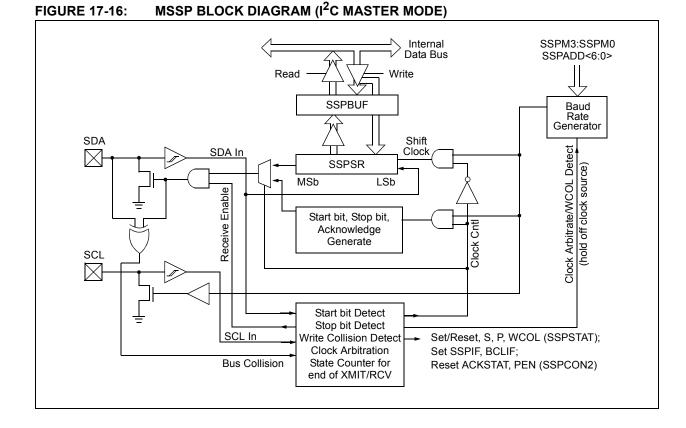
Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	SMP : Sa <u>SPI Mast</u>	er mode:		
	0 = Input	data sampled at end of dat data sampled at middle of		
	<u>SPI Slave</u> SMP mus	<u>e mode:</u> st be cleared when SPI is u	sed in Slave mode.	
bit 6	CKE: SP	I Clock Edge Select bit		
		<u>(P = 0:</u> transmitted on rising edge of transmitted on falling edge		
		<u>⟨P = 1:</u> transmitted on falling edge transmitted on rising edge o		
bit 5		a/Address bit ² C mode only.		
bit 4	P: Stop b Used in I ²	it ² C mode only.		
bit 3	S: Start b Used in I ²	it ² C mode only.		
bit 2	R/W : Rea	ad/Write Information bit ² C mode only.		
bit 1		ate Address bit ² C mode only.		
bit 0	1 = Rece	er Full Status bit (Receive m ive complete, SSPBUF is fu ive not complete, SSPBUF	ull	

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\rm I}^2{\rm C}$ bus operations based on Start and Stop bit conditions.

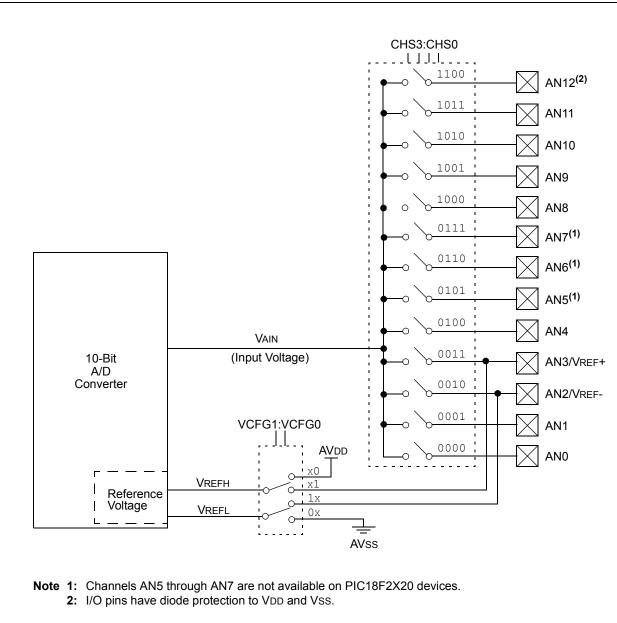

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause MSSP Interrupt Flag bit, SSPIF, to be set (MSSP interrupt if enabled):

- Start Condition
- Stop Condition
- · Data Transfer Byte Transmitted/Received
- Acknowledge Transmit
- Repeated Start



© 2007 Microchip Technology Inc.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF-/CVREF pins.

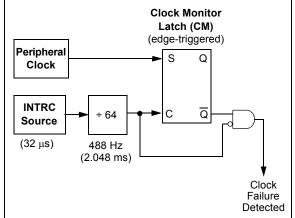
The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter which generates the result via successive approximation.

FIGURE 19-1: A/D BLOCK DIAGRAM

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 19-1.


NOTES:

23.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation, in the event of an external oscillator failure, by automatically switching the system clock to the internal oscillator block. The FSCM function is enabled by setting the Fail-Safe Clock Monitor Enable bit, FCMEN (CONFIG1H<6>).

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide an instant backup clock in the event of a clock failure. Clock monitoring (shown in Figure 23-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral system clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the system clock source but cleared on the rising edge of the sample clock.

Clock failure is tested on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 23-4). This causes the following:

- The FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>)
- The system clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source this is the fail-safe condition)
- The WDT is reset

Since the postscaler frequency from the internal oscillator block may not be sufficiently stable, it may be desirable to select another clock configuration and enter an alternate power-managed mode (see Section 23.3.1 "Special Considerations for Using Two-Speed Start-up" and Section 3.1.3 "Multiple Sleep Commands" for more details). This can be done to attempt a partial recovery or execute a controlled shutdown. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IFRC2:IFRC0 immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode.

Adjustments to the internal oscillator block using the OSCTUNE register also affect the period of the FSCM by the same factor. This can usually be neglected, as the clock frequency being monitored is generally much higher than the sample clock frequency.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

23.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF2:IRCF0 bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, fail-safe clock events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

LFS	R	Load FSF	R		MOVF	Move f		
Synt	ax:	[label]	LFSR f,k		Syntax:	[label]	MOVF f[,c	l [,a]]
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		Operands:	$\begin{array}{l} 0 \leq f \leq 258 \\ d \in [0,1] \end{array}$	5	
Ope	ration:	$k \rightarrow FSRf$				a ∈ [0,1]		
Statu	us Affected:	None			Operation:	$f \rightarrow dest$		
Enco	oding:	1110 1111)ff k ₁₁ kkk kkk kkkk	Status Affected: Encoding:	N, Z	00da ff	ff ffff
Deso	cription:		literal 'k' is l lect register		Description:	moved to	nts of registe a destinatior status of 'd'. I	
Wor	ds:	2						f 'd' is '1', the
Cycl	es:	2					aced back ir Location 'f' c	
QC	ycle Activity	:				. ,		bank. If 'a' is
	Q1	Q2	Q3	Q4		•	cess Bank w	
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		lf 'a' = 1, t	overriding the hen the banl is per the BS	
	Decode	Read literal	Process	Write literal	Words:	1		
		ʻk' LSB	Data	'k' to FSRfL	Cycles:	1		
Exar	nple:	LFSR 2,	0x3AB		Q Cycle Activity	:		
	After Instruc	tion			Q1	Q2	Q3	Q4
	FSR2H FSR2L	= 0x	03 AB		Decode	Read register 'f'	Process Data	Write W
					Example:	MOVF RI	EG, W	
					Before Instru REG W		22 FF	
					After Instruc REG	tion = 0x	22	

W

=

0x22

SUBLW Subtract W from Literal									
Syntax:	[label] S	SUBLW k							
Operands: $0 \le k \le 255$									
Operation:	k – (W) –	→ W							
Status Affected:	N, OV, C,	DC, Z							
Encoding:	0000								
Description: W is subtracted from the eight-b									
·		The result is							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read literal 'k'	Process Data	Write to W						
Example 1:	SUBLW (x02							
Before Instru	iction								
W	= 1								
С	= ?								
After Instruct									
W C	= 1 = 1 :re	sult is positive	9						
C Z N	= 0 = 0								
Example 2:	-	x02							
Before Instru	iction								
W	= 2								
С	= ?								
After Instruct	ion								
W	= 0 = 1 ; re	sult is zero							
Z	= 1	Sult 15 2010							
Example 3:	= 0 SUBLW (x02							
Before Instru		X02							
W	= 3								
C	= ?								
After Instruct	ion								
W		's complemen							
C Z N	= 0 ; re = 0	sult is negativ	e						
Ν	= 1								

SUBWF	Subtract	W from f				
Syntax:	[label] S	SUBWF f[,	d [,a]]			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5				
Operation:	(f) – (W)	\rightarrow dest				
Status Affected:	N, OV, C	, DC, Z				
Encoding:	0101	11da ff	ff ffff			
Description:	complem the result '1', the re register 'f the Acce overriding '1', then	Subtract W from register 'f' (2's complement method). If 'd' is '0' the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If = 'a' is '0', the Access Bank will be selected overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Words:	1		. ,			
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example 1:	SUBWF I	REG				
Before Instru						
REG W	= 3 = 2					
C	= ?					
After Instruct REG	= 1					
W	= 2					
C Z N	= 0	sult is positive				
	= 0					
Example 2:		REG, W				
Before Instru REG	= 2					
W	= 2					
C After Instruct	= ? tion					
REG	= 2					
W	= 0					
C		sult is zero				
C Z N	= 1 ; re = 1 = 0					
C Z N <u>Example 3</u> :	= 1 ; re = 1 = 0 SUBWF H	sult is zero REG				
Example 3: Before Instru	= 1 ; re = 1 = 0 SUBWF I					
C Z N <u>Example 3</u> :	= 1 ; re = 1 = 0 SUBWF H					
Example 3: Before Instru REG W C	= 1 ; re = 1 = 0 SUBWF I uction = 0x01 = 0x02 = ?					
Example 3: Example 3: Before Instru- REG W C After Instruct	= 1 ; re = 1 = 0 SUBWF I uction = 0x01 = 0x02 = ? tion	REG	pent)			
Example 3: Before Instru REG W C	= 1 ; re = 1 = 0 SUBWF I uction = 0x01 = 0x02 = ?	REG	nent)			
Example 3: Example 3: Before Instru REG W C After Instruct REG	= 1 ; re = 1 = 0 SUBWF I = 0x01 = 0x02 = ? tion = 0xFFh	REG	,			

SUBWFB Subtract W from f with Borrow										
Synt	ax:	[<i>label</i>] SUBWFB f[,d[,a]]								
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
Ope	ration:	$(f) - (W) - (\overline{C}) \rightarrow dest$								
Statu	us Affected:	N, OV, C,	DC, Z							
Enco	oding:	0101	10da	fff	f ffff					
Desi	cription:	row) from method). I stored in N stored bac 'a' is '0', th selected, c 'a' is '1', th	Subtract W and the Carry flag (bor- row) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).							
Wor	ds:	1								
Cycl	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	Read register 'f'	Proce Dat		Write to destination					

Example 1:	S	UBWFB	REG,	1,	0
Before Instruc	ctior	า			
REG	=	0x19	(00	01	1001)
	=	0x0D	(00	00	1101)
0	=	0x01			
After Instruction	on				
NEO	=	0x0C	(00	000	1011)
**	=	0x0D	(00	000	1101)
0	=	0x01 0x00			
N	=	0x00 0x00	; res	sult	is positive
Example 2:	S	UBWFB	REG,	Ο,	0
Before Instruc	ctior	า			
REG	=	0x1B	(00	01	1011)
	=	0x1A	(00	01	1010)
0	=	0x00			
After Instruction	on				
NEO	=	0x1B	(00	01	1011)
	=	0x00			
2	=	0x01 0x01	· roo	sult	is zero
Ň	=	0x00	, 100	Suit	13 2010
Example 3:	S	UBWFB	REG,	1,	0
Before Instruc	ctior	ו			
REG	=	0x03	(00	000	0011)
**	=	0x0E	(00	000	1101)
0	=	0x01			
After Instruction					
REG	=	0xF5			0100) mp]
W	=	0x0E			1101)
	=	0x00	,00		
<u>_</u>	=	0x00		•	
N	=	0x01	; res	sult	is negative

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2220/2320/4220/4320 (Industrial) PIC18LF2220/2320/4220/4320 (Industrial) (Continued)

	2220/2320/4220/4320 (strial)		rd Oper			s otherwise stated $A \leq +85^{\circ}C$ for industr						
	220/2320/4220/4320 strial, Extended)		$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Device	Тур	Max	Units	Conditions							
	Supply Current (IDD) ^(2,3)											
	PIC18LF2X20/4X20	440	600	μA	-40°C							
		450	600	μA	+25°C	VDD = 2.0V						
		460	600	μA	+85°C							
	PIC18LF2X20/4X20	0.80	1.0	mA	-40°C							
		0.78	1.0	mA	+25°C	VDD = 3.0V	Fosc = 4 MHz					
		0.77	1.0	mA	+85°C		(PRI_RUN , EC oscillator)					
	All devices	1.6	2.0	mA	-40°C							
		1.5	2.0	mA	+25°C	VDD = 5.0V						
		1.5	2.0	mA	+85°C	VDD = 5.0V						
	Extended devices	1.5	2.0	mA	+125°C							
	Extended devices	6.3	9.0	mA	+125°C	VDD = 4.2V	Fosc = 25 MHz (PRI_RUN ,					
		7.9	10.0	mA	+125°C	VDD = 5.0V	EC oscillator)					
	All devices	9.5	12	mA	-40°C							
		9.7	12	mA	+25°C	VDD = 4.2V						
		9.9	12	mA	+85°C]	Fosc = 40 MHz					
	All devices	11.9	15	mA	-40°C		(PRI_RUN , EC oscillator)					
		12.1	15	mA	+25°C	VDD = 5.0V						
		12.3	15	mA	+85°C							

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

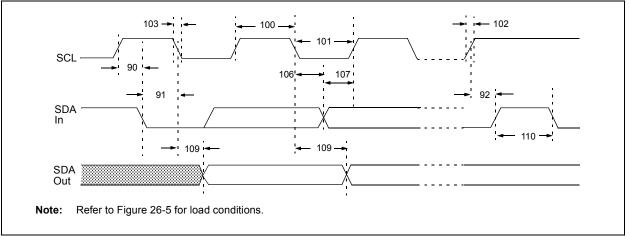
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- 4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 26-4: LOW-VOLTAGE DETECT CHARACTERISTICS (CONTINUED)

(Industrial)			$\label{eq:standard operating Conditions (unless otherwise stated)} Operating temperature -40°C \leq TA \leq +85°C \ for industrial \\ \end{standard operating Conditions (unless otherwise stated)} Operating temperature -40°C \leq TA \leq +85°C \ for industrial -40°C \leq TA \leq +125°C \ for extended \\ \end{standard operating temperature}$					
								Param No.
	Vlvd	LVD Voltage on VDD Tra	Date cod	es above	0417xx	x		
D420D		PIC18LF2X20/4X20		Industria	I Low Volt	age (-10°	°C to +85°	°C)
			LVDL<3:0> = 0000	N/A	N/A	N/A	V	Reserved
			LVDL<3:0> = 0001	N/A	N/A	N/A	V	Reserved
			LVDL<3:0> = 0010	2.08	2.26	2.44	V	
			LVDL<3:0> = 0011	2.26	2.45	2.65	V	
			LVDL<3:0> = 0100	2.35	2.55	2.76	V	
			LVDL<3:0> = 0101	2.55	2.77	2.99	V	
			LVDL<3:0> = 0110	2.64	2.87	3.10	V	
			LVDL<3:0> = 0111	2.82	3.07	3.31	V	
			LVDL<3:0> = 1000	3.09	3.36	3.63	V	
			LVDL<3:0> = 1001	3.29	3.57	3.86	V	
			LVDL<3:0> = 1010	3.38	3.67	3.96	V	
			LVDL<3:0> = 1011	3.56	3.87	4.18	V	
			LVDL<3:0> = 1100	3.75	4.07	4.40	V	
			LVDL<3:0> = 1101	3.93	4.28	4.62	V	
			LVDL<3:0> = 1110	4.23	4.60	4.96	V	
D420F		PIC18LF2X20/4X20		Industria	I Low Volt	age (-40°	°C to -10°	C)
			LVDL<3:0> = 0000	N/A	N/A	N/A	V	Reserved
			LVDL<3:0> = 0001	N/A	N/A	N/A	V	Reserved
			LVDL<3:0> = 0010	1.99	2.26	2.53	V	
			LVDL<3:0> = 0011	2.16	2.45	2.75	V	
			LVDL<3:0> = 0100	2.25	2.55	2.86	V	
			LVDL<3:0> = 0101	2.43	2.77	3.10	V	
			LVDL<3:0> = 0110	2.53	2.87	3.21	V	
			LVDL<3:0> = 0111	2.70	3.07	3.43	V	
			LVDL<3:0> = 1000	2.96	3.36	3.77	V	
			LVDL<3:0> = 1001	3.14	3.57	4.00	V	
			LVDL<3:0> = 1010	3.23	3.67	4.11	V	
			LVDL<3:0> = 1011	3.41	3.87	4.34	V	
			LVDL<3:0> = 1100	3.58	4.07	4.56	V	
			LVDL<3:0> = 1101	3.76	4.28	4.79	V	
			LVDL<3:0> = 1110	4.04	4.60	5.15	V	

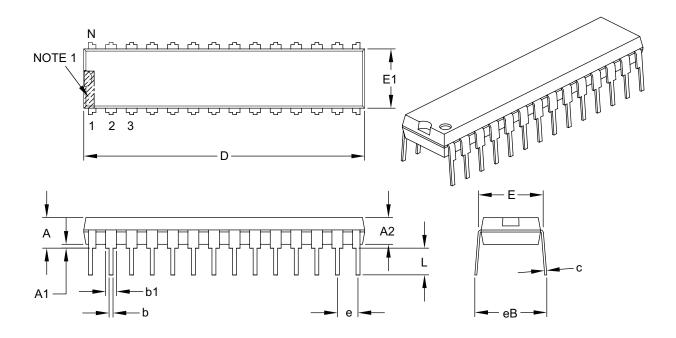

Legend: Shading of rows is to assist in readability of the table.

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

Param. No.	Symbol	Characte	ristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated Start condition
		Setup Time	400 kHz mode	600	—		
91	THD:STA	Start Condition	100 kHz mode	4000		ns	After this period, the first
		Hold Time	400 kHz mode	600			clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600			
93	THD:STO	Stop Condition	100 kHz mode	4000		ns	
		Hold Time	400 kHz mode	600	_		

TABLE 26-18: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

FIGURE 26-18: I²C[™] BUS DATA TIMING



28.2 Package Details

The following sections give the technical details of the packages.

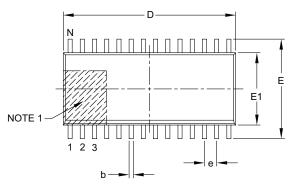
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

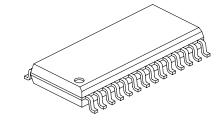
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

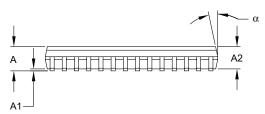
	Units		INCHES	
Dime	ension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e	.100 BSC		
Top to Seating Plane	A	_	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

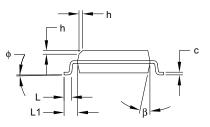
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B


28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	—	-
Standoff §	A1	0.10	—	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (optional)	h	0.25	_	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Foot Angle Top	ф	0°	_	8°
Lead Thickness	С	0.18	—	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

С

C Compilers	
MPLAB C18	
MPLAB C30	
CALL	
Capture (CCP Module)	
Associated Registers	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	135
Timer1/Timer3 Mode Selection	
Capture (ECCP Module)	
Capture/Compare/PWM (CCP)	
Capture Mode. See Capture.	
CCP1	
CCPR1H Register	
CCPR1L Register	
CCP2	
CCPR2H Register	
CCPR2L Register	134
Compare Mode. See Compare.	
Interaction of Two CCP Modules	134
PWM Mode. See PWM.	
Timer Resources	
Clock Sources	
Selection Using OSCCON Register	
Clocking Scheme/Instruction Cycle	
CLRF	
CLRWDT	
Code Examples	
16 x 16 Signed Multiply Routine	
16 x 16 Unsigned Multiply Routine	
8 x 8 Signed Multiply Routine	
8 x 8 Unsigned Multiply Routine	
Changing Between Capture Prescalers	135
Computed GOTO Using an Offset Value	
Data EEPROM Read	
Data EEPROM Refresh Routine	
Data EEPROM Write	
Erasing a Flash Program Memory Row	
Fast Register Stack	56
How to Clear RAM (Bank 1) Using	
Indirect Addressing	66
Implementing a Real-Time Clock Using a	
Timer1 Interrupt Service	
Initializing PORTA	
Initializing PORTB	
Initializing PORTD	
Initializing PORTE	
Loading the SSPBUF (SSPSR) Register	
Reading a Flash Program Memory Word	75
Saving STATUS, WREG and BSR	
Registers in RAM	
Writing to Flash Program Memory	
Code Protection	,
COMF	
Comparator	
Analog Input Connection Considerations	
Associated Registers	
Configuration	
Effects of a Reset	
Interrupts	
Operation	
Operation in Power-Managed Modes	

Outputs	223
Reference	223
Response Time	223
Comparator Specifications	
Comparator Voltage Reference	227
Accuracy and Error	
Associated Registers	229
Configuring	227
Connection Considerations	228
Effects of a Reset	228
Operation in Power-Managed Modes	228
Compare (CCP Module)	136
Associated Registers	137
CCP Pin Configuration	136
CCPR1 Register	
Software Interrupt	136
Special Event Trigger	136, 220
Timer1/Timer3 Mode Selection	
Compare (ECCP Mode)	142
Computed GOTO	
Configuration Bits	
Configuration Register Protection	255
Context Saving During Interrupts	
Control Registers	
EECON1 and EECON2	
Conversion Considerations	
CPFSEQ	
CPFSGT	
CPFSLT	275
Crystal Oscillator/Ceramic Resonator	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
D	
Data EEPROM Code Protection	255
Data EEPROM Memory	81
Associated Registers	84
EEADR Register	81
EECON1 and EECON2 Registers	81
Operation During Code-Protect	84
Protection Against Spurious Write	83
Reading	83
Using	84
Write Verify	83
Writing	83
Data Memory	
General Purpose Registers	59
Map for PIC18F2X20/4X20	
Special Function Registers	
DAW	
DC and AC Characteristics	
Graphs and Tables	347
DC Characteristics	
Power-Down and Supply Current	

 Supply Voltage
 308

 DCFSNZ
 277

 DECF
 276

 DECFSZ
 277

 Development Support
 301

 Device Differences
 376

 Device Overview
 7

 Features (table)
 8

 New Core Features
 7

 Other Special Features
 7

 Direct Addressing
 67

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com