

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4320t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.7 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if either of these mechanisms are enabled.

The microcontroller itself can both read and write to the internal Data EEPROM regardless of the state of the code-protect Configuration bit. Refer to **Section 23.0 "Special Features of the CPU"** for additional information.

7.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124 or D124A. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124 or D124A.

	CLRF	EEADR	; Start at address 0	
	BCF	EECON1, CFGS	; Set for memory	
	BCF	EECON1, EEPGD	; Set for Data EEPROM	
	BCF	INTCON, GIE	; Disable interrupts	
	BSF	EECON1, WREN	; Enable writes	
LOOP			; Loop to refresh array	
	BSF	EECON1, RD	; Read current address	
	MOVLW	55h	;	
	MOVWF	EECON2	; Write 55h	
	MOVLW	AAh	;	
	MOVWF	EECON2	; Write AAh	
	BSF	EECON1, WR	; Set WR bit to begin write	
	BTFSC	EECON1, WR	; Wait for write to complete	
	BRA	\$-2		
	INCFSZ	EEADR, F	; Increment address	
	BRA	Loop	; Not zero, do it again	
	BCF	EECON1, WREN	; Disable writes	
	BSF	INTCON, GIE	; Enable interrupts	

EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE

TABLE 7-1:	REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
EEADR	EEPROM A	ddress Regis	ter						0000 0000	0000 0000
EEDATA	A EEPROM Data Register							0000 0000	0000 0000	
EECON2	I2 EEPROM Control Register 2 (not a physical register)							—	_	
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	11-1 1111	1 1111
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	00-0 0000	0 0000
PIE2	OSCFIE	CMIE		EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	00-0 0000	0 0000

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

FIGURE 10-3:

BLOCK DIAGRAM OF RA6 PIN

FIGURE 10-4:

BLOCK DIAGRAM OF RA4/T0CKI PIN

FIGURE 10-5:

BLOCK DIAGRAM OF RA7 PIN

FIGURE 10-9: BLOCK DIAGRAM OF RB3/CCP2 PIN

12.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR1H and TMR1L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module Special Event Trigger
- · Status of system clock operation

Figure 12-1 is a simplified block diagram of the Timer1 module.

Register 12-1 details the Timer1 Control register. This register controls the operating mode of the Timer1 module and contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Timer1 oscillator can be used as a secondary clock source in power-managed modes. When the T1RUN bit is set, the Timer1 oscillator is providing the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

0

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

Legend:							
R = Readab	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
h:+ 7		C Dit Deed/W/-ite Mede Erebl	la k:4				
	 1 = Enables register read/write of Timer1 in one 16-bit operation 0 = Enables register read/write of Timer1 in two 8-bit operations 						
bit 6	T1RUN: Timer1 System Clock Status bit 1 = Device clock is derived from Timer1 oscillator 0 = Device clock is derived from another source						
bit 5-4	T1CKPS 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	G1:T1CKPS0: Timer1 Input C Prescale value Prescale value Prescale value Prescale value Prescale value	lock Prescale Select bits				
bit 3	T1OSCE 1 = Time 0 = Tim The osci	TIOSCEN: Timer1 Oscillator Enable bit 1 = Timer1 oscillator is enabled 0 = Timer1 oscillator is shut off The oscillator inverter and feedback resistor are turned off to eliminate power drain					
bit 2	TISYNC: Timer1 External Clock Input Synchronization Select bit When TMR1CS = 1 (External Clock): 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR1CS = 0 (Internal Clock): This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0						
bit 1	TMR1C 1 = Exte 0 = Inte	5: Timer1 Clock Source Selecternal clock from RC0/T1OSO/ rnal clock (Fosc/4)	/T13CKI pin (on the rising edg	ge)			
bit 0	TMR10 1 = Ena 0 = Stop	N: Timer1 On bit bles Timer1 ps Timer1					

13.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit Timer register (TMR2)
- 8-bit Period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2
- MSSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register shown in Register 13-1. TMR2 can be shut-off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption. Figure 13-1 is a simplified block diagram of the Timer2 module. Register 13-1 shows the Timer2 Control register. The prescaler and postscaler selection of Timer2 are controlled by this register.

13.1 Timer2 Operation

Timer2 can be used as the PWM time base for the PWM mode of the CCP module. The TMR2 register is readable and writable and is cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6-3	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- · Reset from CCP module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.

Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP clock source.

Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 Oscillator Enable bit (T1OSCEN) which can be a clock source for Timer3.

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	RD16: 16-Bit	Read/Write Mode Enab	le bit	
	1 = Enables 0 = Enables	register read/write of Tin register read/write of Tin	ner3 in one 16-bit operation ner3 in two 8-bit operations	
bit 6, 3	T3CCP2:T3C	CP1: Timer3 and Timer	1 to CCPx Enable bits	
	1x = Timer3 i	is the capture/compare of the capture/compare of	clock source for both CCP mo	odules
	Timer1 i	is the capture/compare of	clock source for CCP2,	
	00 = Timer1 i	is the capture/compare of	clock source for both CCP mc	odules
bit 5-4	T3CKPS1:T3	CKPS0: Timer3 Input C	lock Prescale Select bits	
	11 = 1:8 Pres	scale value		
	10 = 1:4 Pres	scale value		
	01 = 1:2 Pres	scale value		
hit 2		or3 Extornal Clock Innu	t Synchronization Control hit	
	(Not usable if	the device clock comes	from Timer1/Timer3.)	
	When TMR30	<u>CS = 1:</u>		
	1 = Do not sy	nchronize external clock	cinput	
	0 = Synchron	ize external clock input		
	When IMR30	<u>JS = 0:</u> orod_Timor3 usos the in	tornal clock when TMD3CS -	- 0
hit 1				- 0.
DILI		alaak input from Timor 1	JL DIL Desillator or T12CKL (on the ris	ing adap ofter the first folling adap
	0 = Internal d	clock input from timer to clock (Fosc/4)	DSCIIIATOR OF TISCKI (ON THE IS	ang edge alter the first failing edge)
bit 0	TMR3ON: Tir	mer3 On bit		
	1 = Enables	Timer3		
	0 = Stops Tir	ner3		

16.4.5.1 Auto-Shutdown and Automatic Restart

The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the PWM1CON register (PWM1CON<7>).

In Shutdown mode with PRSEN = 1 (Figure 16-10), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCPASE bit is cleared. If PRSEN = 0 (Figure 16-11), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the enhanced PWM will resume at the beginning of the next PWM period.

Note:	Writing to the ECCPASE bit is disabled
	while a shutdown condition is active.

Independent of the PRSEN bit setting, if the autoshutdown source is one of the comparators, the shutdown condition is a level. The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCPASE bit.

16.4.6 START-UP CONSIDERATIONS

When the ECCP module is used in the PWM mode, the application hardware must use the proper external pullup and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the off state until the microcontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).

The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 16-10: PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)

17.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Register 17-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to '0' and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

17.4.7.1 Baud Rate Generation in Power-Managed Modes

When the device is operating in a power-managed mode, the clock source to the Baud Rate Generator may change frequency or stop, depending on the power-managed mode and clock source selected.

In most power modes, the Baud Rate Generator continues to be clocked but may be clocked from the primary clock (selected in a Configuration Word), the secondary clock (Timer1 oscillator at 32.768 kHz) or the internal oscillator block (one of eight frequencies between 31 kHz and 8 MHz). If the Sleep mode is selected, all clocks are stopped and the Baud Rate Generator will not be clocked.

FIGURE 17-17: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 17-3: I²C CLOCK RATE W/BRG

Fosc	Fcy	Fcy * 2	SSPADD VALUE (See Register 17-4, Mode 1000)	Fsc∟ ⁽²⁾ (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Bh	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

2: Actual clock rate will depend on bus conditions. Bus capacitance can increase rise time and extend the low time of the clock period, reducing the effective clock frequency (see Section 17.4.7.2 "Clock Arbitration").

18.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit, SREN (RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 18.2 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. Ensure bits, CREN and SREN, are clear.

- 4. If interrupts are desired, set enable bit, RCIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCIE, was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
RCREG	USART Receive Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X20 devices; always maintain these bits clear.

FIGURE 22-2: LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the sense voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, LVDIN (Figure 22-3). This gives users flexibility because it allows them to configure the Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

REGISTER 23-12: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2220/2320/4220/4320 DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:		
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7-5	DEV2:DEV0: Device ID bits
	000 = PIC18F2320
	001 = PIC18F4320
	100 = PIC18F2220
	101 = PIC18F4220
bit 4-0	REV3:REV0: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 23-13: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2220/2320/4220/4320 DEVICES

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is un	programmed	u = Unchanged from programmed state

bit 7-0 **DEV10:DEV3:** Device ID bits These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number. 0000 0101 = PIC18F2220/2320/4220/4320 devices

Note 1: These values for DEV10:DEV3 may be shared with other devices. The specific device is always identified by using the entire DEV10:DEV0 bit sequence.

23.2 Watchdog Timer (WDT)

For PIC18F2X20/4X20 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: execute a SLEEP or CLRWDT instruction, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

Adjustments to the internal oscillator clock period using the OSCTUNE register also affect the period of the WDT by the same factor. For example, if the INTRC period is increased by 3%, then the WDT period is increased by 3%.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4> clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

23.2.1 CONTROL REGISTER

Register 23-14 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

23.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO bit in Configuration Register 1H (CONFIG1H<7>).

Two-Speed Start-up is available only if the primary oscillator mode is LP, XT, HS or HSPLL (Crystal-Based modes). Other sources do not require a OST start-up delay; for these, Two-Speed Start-up is disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a POR Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.

Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IFRC2:IFRC0 immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IFRC2:IFRC0 prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

23.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 3.1.3 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS1:SCS0 bit settings and issue SLEEP commands before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the system clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the system clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

24.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets.

Most instructions are a single program memory word (16 bits) but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · Control operations

The PIC18 instruction set summary in Table 24-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 24-1 shows the opcode field descriptions.

Most **byte-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word except for three double word instructions. These three instructions were made double word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 24-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 24-2, lists the instructions recognized by the Microchip Assembler (MPASMTM). **Section 24.2** "Instruction **Set**" provides a description of each instruction.

24.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

TABLE 26-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2		_	μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	3.48	4.00	4.71	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	—	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	57.0	65.5	77.2	ms	
34	TIOZ	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200	-	—	μS	$VDD \le BVDD$ (see D005A)
36	TIVRST	Time for Internal Reference Voltage to become stable	—	20	50	μS	
37	Tlvd	Low-Voltage Detect Pulse Width	200	_		μS	$V\text{DD} \leq V\text{LVD}$

FIGURE 26-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param. No.	Symbol	Characterist	Min	Max	Units	Conditions	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDI Data Input to SCK Edge		100	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to t of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input t	100		ns		
75	TDOR	SDO Data Output Rise Time	PIC18FXX20	—	25	ns	
			PIC18 LF XX20		45	ns	
76	TDOF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXX20	—	25	ns	
		(Master mode)	PIC18 LF XX20		45	ns	
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXX20	—	50	ns	
	TscL2doV	SCK Edge PIC18LFXX20			100	ns	
81	TDOV2SCH, TDOV2SCL	SDO Data Output Setup to SO	CK Edge	Тсү	—	ns	

TABLE 26-15:	EXAMPLE SPI MODE REQUIREM	ENTS (MASTER MODE, CKE = 1)
--------------	---------------------------	-----------------------------

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

FIGURE 26-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
103	TF	SDA and SCL	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)	—	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
106	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	TBD	_	ns	-
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
109	ΤΑΑ	Output Valid from	100 kHz mode		3500	ns	
		Clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾	—	_	ns	•
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD	—	ms	can start
D102	Св	Bus Capacitive Loa	ding	—	400	pF	

TABLE 20-21. MACTER OUT TO BOO DATA REQUIREMENT	TABLE 26-21:	MASTER SSP I	² C [™] BUS	DATA REQU	JIREMENTS
---	--------------	--------------	---------------------------------	-----------	-----------

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter #107 ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

FIGURE 27-23: TOTAL IPD, -40°C TO +125°C SLEEP MODE, ALL PERIPHERALS DISABLED

PORTD

Associated Registers	110
LATD Register	109
Parallel Slave Port (PSP) Function	109
PORTD Register	
TRISD Register	
PORIE	
Analog Port Pins	
	113
DORTE Register	۱۱۱ 111
PORTE REGISTER	100
PSF MODE Select (PSFMODE Bit) PE0/AN5/PD Pin	
	113
	113
TRISE Register	110
Postscaler WDT	
Assignment (PSA Bit)	119
Rate Select (T0PS2:T0PS0 Bits)	
Power-Managed Modes	
Entering	
Idle Modes	
Run Modes	
Sleep Mode	
Summary (table)	29
Wake from	
Power-on Reset (POR)	44, 237
Power-up Delays	
Power-up Timer (PWRT) 2	8, 44, 237
Prescaler, Capture	135
Prescaler, Timer0	119
Assignment (PSA Bit)	119
o ()	
Rate Select (T0PS2:T0PS0 Bits)	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2	119 139
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System	119 139 391
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter	119 139 391
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register Program Memory Instructions Two-Word	119
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register Program Memory Instructions Two-Word Interrupt Vector	119
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220	119
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Peset Vector	119
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection	119
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection	119 139 391 56 56 58 58 58 53 53 53 53 53 253 252
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming. Device Instructions	
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port.	119 139 391 56 56 58 58 53 53 53 53 253 252 252 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module)	119 139 391 56 56 58 58 53 53 53 53 53 253 252 252 252 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module).	119 139 391 56 56 58 58 53 53 53 53 53 253 252 252 252 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH	119 139 391 56 56 58 58 53 53 53 53 253 252 252 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions	119 139 391 56 56 58 58 53 53 53 253 252 252 252 257 257 286 55
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Program Memory Code Protection Program Verification Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module)	119 139 391 56 56 58 58 53 53 53 53 253 252 252 252 257 257 257 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers	119 139 391 56 56 58 58 53 53 53 53 253 252 252 257 257 257 257 257 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers	119 139 391 56 56 58 58 53 53 53 53 253 252 252 257 257 257 257 257 257 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. PUSH PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle	119 139 391 56 56 58 58 53 53 53 53 53 253 252 252 257 257 257 257 257 257 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. PUSH PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle Example Frequencies/Resolutions	119 139 391 56 56 58 58 53 53 53 53 53 253 252 252 257 257 257 257 257 257 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle Example Frequencies/Resolutions Period	119 139 391 56 56 58 58 53 53 53 53 253 252 252 257 257 257 257 257 257 257 257
Rate Select (T0PS2:T0PS0 Bits) Prescaler, Timer2 Product Identification System Program Counter PCL Register PCLATH Register PCLATU Register PCLATU Register PCLATU Register Program Memory Instructions Two-Word Interrupt Vector Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2220/4220 Map and Stack for PIC18F2320/4320 Reset Vector Program Memory Code Protection Program Verification and Code Protection Associated Registers Programming, Device Instructions PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). PUSH PUSH and POP Instructions PWM (CCP Module) Associated Registers CCPR1H:CCPR1L Registers Duty Cycle Example Frequencies/Resolutions Period Setup for PWM Operation	119 139 391 56 56 58 58 53 53 53 53 253 252 252 257 257 257 257 257 257 257 257

PWM (ECCP Module) Associated Registers	143 153
Direction Change in Full-Bridge Output Mode	147
Effects of a Reset	152
Full-Bridge Mode	146
Half-Bridge Output Mode Applications Example Operation in Power-Managed Modes	145
Operation with Fail-Safe Clock Monitor	152
Output Relationships (Active-High State) Output Relationships (Active-Low State)	144
Programmable Dead-Band Delay Setup for Operation	149 152
Shoot-Through Current Start-up Considerations	149 151

Q Q Clock

ζ	 139	

R

RAM. See Data Memory.	
RC Oscillator	
RCIO Oscillator Mode	21
RCALL	287
RCON Register	
Bit Status During Initialization	45
Bits and Positions	45
RCSTA Register	
SPEN Bit	195
Reader Response	390
Register File	59
Registers	
ADCON0 (A/D Control 0)	211
ADCON1 (A/D Control 1)	212
ADCON2 (A/D Control 2)	213
CCP1CON (ECCP Control)	141
CCPxCON (CCPx Control)	133
CMCON (Comparator Control)	221
CONFIG1H (Configuration 1 High)	238
CONFIG2H (Configuration 2 High)	240
CONFIG2L (Configuration 2 Low)	239
CONFIG3H (Configuration 3 High)	241
CONFIG4L (Configuration 4 Low)	241
CONFIG5H (Configuration 5 High)	242
CONFIG5L (Configuration 5 Low)	242
CONFIG6H (Configuration 6 High)	243
CONFIG6L (Configuration 6 Low)	243
CONFIG7H (Configuration 7 High)	244
CONFIG7L (Configuration 7 Low)	244
CVRCON (Comparator Voltage	
Reference Control)	227
DEVID1 (Device ID 1)	245
DEVID2 (Device ID 2)	245
ECCPAS (Enhanced Capture/Compare/PWM	
Auto-Shutdown Control)	150
EECON1 (Data EEPROM Control 1)	73, 82
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	
INICON3 (Interrupt Control 3)	
IPRT (Peripheral Interrupt Priority 1)	
IPRZ (Peripheral Interrupt Priority 2)	
LVDCON (LOW-VOITage Detect Control)	
USCCON (Oscillator Control)	