

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560d40l1b3e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

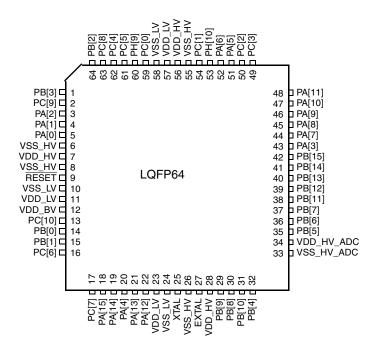
	4.9	Power n	nanagement electrical characteristics
		4.9.1	Voltage regulator electrical characteristics
		4.9.2	Low voltage detector electrical characteristics
	4.10	Power of	consumption
	4.11	Flash m	emory electrical characteristics 49
		4.11.1	Program/Erase characteristics
		4.11.2	Flash power supply DC characteristics51
		4.11.3	Start-up/Switch-off timings
	4.12	Electror	nagnetic compatibility (EMC) characteristics
		4.12.1	Designing hardened software to avoid noise problems
		4.12.2	Electromagnetic interference (EMI)52
		4.12.3	Absolute maximum ratings (electrical sensitivity)53
	4.13	Fast ext	ernal crystal oscillator (4 to 16 MHz) electrical characteristics 55
	4.14	FMPLL	electrical characteristics 58
	4.15	Fast inte	ernal RC oscillator (16 MHz) electrical characteristics 58
	4.16	Slow int	ernal RC oscillator (128 kHz) electrical characteristics 59
	4.17	ADC ele	ectrical characteristics61
		4.17.1	Introduction
		4.17.2	Input impedance and ADC accuracy62
		4.17.3	ADC electrical characteristics
	4.18	On-chip	peripherals
		4.18.1	Current consumption
		4.18.2	DSPI characteristics
		4.18.3	JTAG characteristics
5	Packa	ige cha	racteristics
	5.1	ECOPA	CK®
	5.2	Package	e mechanical data
		5.2.1	LQFP100
		5.2.2	LQFP64
6	Order	ina info	ormation
U	Juer	ing init	
Appendix		bbrevia	tions

6

Table 3 summarizes the functions of all blocks present in the Pictus 512K series of microcontrollers. Please note that the presence and number of blocks varies by device and package.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 12-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase- locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI)	Handles external events that must produce an immediate response, such as power down detection

Table 3. Pictus 512K series block summary



3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please refer to *Table 6*.

Figure 3 shows the Pictus 512K in the LQFP64 package.

Figure 3. LQFP64 pin configuration (top view)

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up.
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
- JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
- Main oscillator pads (EXTAL, XTAL) are tristate.

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization.

		A.U			I/O		T ation	Pin n	umber
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
		AF0	GPIO[39]	SIUL	I/O				
		AF1	—	—	—				
PC[7]	PCR[39]	AF2 AF3	_	_	—	S	Tristate	17	26
		AF5 —	LIN1RX	LINFlex_1					
		_	WKPU[12] ⁽³⁾	WKPU	I				
		AF0	GPIO[40]	SIUL	I/O				
PC[8]	PCR[40]	AF1	LIN2TX	LINFlex_2	0	s	Tristate	63	99
FC[0]		AF2	E0UC[3]	eMIOS_0	I/O	3	mstate	03	99
		AF3	_	_	_				
		AF0	GPIO[41]	SIUL	I/O				
		AF1	-	—	—		Tristate	2	
PC[9]	PCR[41]	AF2	E0UC[7]	eMIOS_0	I/O	S			2
		AF3	LIN2RX	LINFlex_2					
		_	WKPU[13] ⁽³⁾						
	PCR[42]	AF0	GPIO[42]	SIUL	I/O				
DOI101		AF1	_	—	—	5.4	Triatata	10	00
PC[10]		AF2	—	—	—	М	Tristate	13	22
		AF3	MA[1]	ADC	0				
		AF0	GPIO[43]	SIUL	I/O		S Tristate		
		AF1	—	—	—			e —	21
PC[11]	PCR[43]	AF2	—	_	_	S			
		AF3	MA[2] WKPU[5] ⁽³⁾	ADC	0				
				WKPU					
		AF0 AF1	GPIO[44] E0UC[12]	SIUL eMIOS_0	I/O I/O				
PC[12]	PCR[44]	AF2		enviro		м	Tristate	_	97
. 0[]		AF3	_	_	_		motato		07
		—	EIRQ[19]	SIUL	I				
		AF0	GPIO[45]	SIUL	I/O				
PC[13]	PCR[45]	AF1	E0UC[13]	eMIOS_0	I/O	s	Tristate		98
		AF2	—	—	—	Ŭ	motato		
		AF3							
		AF0	GPIO[46]	SIUL	I/O				
		AF1	E0UC[14]	eMIOS_0	I/O		Triatate		3
PC[14]	PCR[46]	AF2 AF3	_	_	_	S	Tristate	—	
		— AFS	EIRQ[8]	SIUL					
				0.02	ı				

 Table 6.
 Functional port pin descriptions (continued)

		A 14 4			I/O	Deal	T ation	Pin n	umber
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	М	Tristate	_	95
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	М	Tristate	_	96
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] — E0UC[22] —	SIUL — eMIOS_0 —	I/O — I/O —	М	Tristate	_	9
PE[9]	PCR[73]	AF0 AF1 AF2 AF3 —	GPIO[73] — E0UC[23] — WKPU[7] ⁽³⁾	SIUL eMIOS_0 WKPU	I/O — I/O — I	S	Tristate	_	10
PE[10]	PCR[74]	AF0 AF1 AF2 AF3 —	GPIO[74] — CS3_1 — EIRQ[10]	SIUL — DSPI_1 — SIUL	I/O - -	S	Tristate	_	11
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] E0UC[24] CS4_1 — WKPU[14] ⁽³⁾	SIUL eMIOS_0 DSPI_1 — WKPU	1/0 1/0 -	S	Tristate	_	13
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 —	GPIO[76] — — ADC1_S[7] EIRQ[11]	SIUL — — ADC SIUL	I/O — — — — —	S	Tristate	_	76
		I		Port	Н	I		I	I

 Table 6.
 Functional port pin descriptions (continued)

Equation 1 $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O}$ ($P_D = P_{INT} + P_{I/O}$).

 $\mathsf{P}_{\mathsf{INT}}$ is the product of I_{DD} and V_{DD} , expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Equation 2 $P_D = K / (T_J + 273 °C)$

Therefore, solving equations 1 and 2:

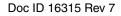
Equation 3 K = $P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$

Where:

K is a constant for the particular part, which may be determined from *Equation 3* by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations *1* and *2* iteratively for any value of T_A .

4.7 I/O pad electrical characteristics

4.7.1 I/O pad types


The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage.

Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance.

4.7.2 I/O input DC characteristics

Table 15 provides input DC electrical characteristics as described in Figure 4.

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- *Table 16* provides weak pull figures. Both pull-up and pull-down resistances are supported.
- *Table 17* provides output driver characteristics for I/O pads when in SLOW configuration.
- *Table 18* provides output driver characteristics for I/O pads when in MEDIUM configuration.

Symbol		O Demonster		Conditions ⁽¹⁾			Value		
		С	Parameter	Conditions			Тур	Max	Unit
P	Ρ			PAD3V5V = 0	10	—	150		
ll _{WPU} l		С	absolute value	$V_{IN} = V_{IL}, V_{DD} = 5.0 V \pm 10\%$	$PAD3V5V = 1^{(2)}$	10	—	250	μA
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	
		Ρ		V _{IN} = V _{IH} , V _{DD} = 5.0 V ± 10%	PAD3V5V = 0	10	—	150	
ll _{wpd} l	сс	С	Weak pull-down current absolute value	$V_{\rm IN} - V_{\rm IH}, V_{\rm DD} = 5.0 V \pm 10.8$	$PAD3V5V = 1^{(2)}$	10	_	250	μA
		Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	

 Table 16.
 I/O pull-up/pull-down DC electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Sum	Symbol		Parameter		Conditions ⁽¹⁾			Value			
Sym	1001	C	Falameter		Conditions	Min	Тур	Max	Unit		
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_			
V _{OH}	сс	С	Output high level SLOW configuration	Push Pull	I _{OH} = −2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	0.8V _{DD}	_	_	v		
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} - 0.8	_	_			
		Ρ	Р		$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	_	0.1V _{DD}			
V _{OL}	сс	С	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	_		0.1V _{DD}	v		
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	_		0.5			

Table 17.	SLOW configuration output buffer electrical characteristics
-----------	---

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

Table 22. I/O weight ⁽¹⁾ (continu
--

	LQFP100/LQFP64						
Pad	Weigh	nt 5 V	Weigh	t 3.3 V			
	$SRC^{(2)} = 0$	SRC = 1	SRC = 0	SRC = 1			
PC[14]	8%	8%	10%	10%			
PC[15]	8%	11%	9%	10%			
PA[2]	8%	8%	9%	9%			
PE[0]	7%	7%	9%	9%			
PA[1]	7%	7%	8%	8%			
PE[1]	7%	10%	8%	8%			
PE[8]	6%	9%	8%	8%			
PE[9]	6%	6%	7%	7%			
PE[10]	6%	6%	7%	7%			
PA[0]	5%	7%	6%	7%			
PE[11]	5%	5%	6%	6%			
PC[11]	7%	7%	9%	9%			
PC[10]	8%	11%	9%	10%			
PB[0]	8%	11%	9%	10%			
PB[1]	8%	8%	10%	10%			
PC[6]	8%	8%	10%	10%			
PC[7]	8%	8%	10%	10%			
PA[15]	8%	11%	9%	10%			
PA[14]	7%	11%	9%	9%			
PA[4]	7%	7%	8%	8%			
PA[13]	7%	10%	8%	9%			
PA[12]	7%	7%	8%	8%			
PB[9]	1%	1%	1%	1%			
PB[8]	1%	1%	1%	1%			
PB[10]	5%	5%	6%	6%			
PD[0]	1%	1%	1%	1%			
PD[1]	1%	1%	1%	1%			
PD[2]	1%	1%	1%	1%			
PD[3]	1%	1%	1%	1%			
PD[4]	1%	1%	1%	1%			
PD[5]	1%	1%	1%	1%			
PD[6]	1%	1%	1%	1%			

Symbol		~	Deveneter	Conditions ⁽¹⁾	Value			Unit		
Symbo	DI	С	Parameter	Conditions	Min	Тур	Max	Unit		
				C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	10			
			C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	20				
÷			Output transition time output pin ⁽³⁾	C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	40			
t _{tr} C	СС		MEDIUM configuration	C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	12	- ns		
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	25			
							C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	40
W _{FRST}	SR		RESET input filtered pulse	_	_	_	40	ns		
W _{NFRST}	SR		RESET input not filtered pulse	—	1000	—	_	ns		
				V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	—	150			
I _{WPU}	сс	Р	Weak pull-up current absolute value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	—	150	0 µA		
				$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(4)}$	10	—	250			

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the device reference manual).

3. C_L includes device and package capacitance ($C_{PKG} < 5 \text{ pF}$).

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

4.9 **Power management electrical characteristics**

4.9.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage ballast supply V_{DD_BV} . The regulator itself is supplied by the common I/O supply V_{DD} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through V_{DD_BV} power pin. Voltage values should be aligned with V_{DD}.
- LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability

 The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

4.9.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

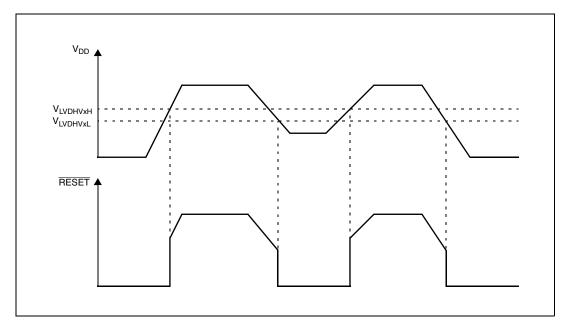


Figure 8. Low voltage detector vs reset

5/

Table 26. Pow	ver consumption	on VDD_	BV and VDD	_HV ((continued)
---------------	-----------------	---------	------------	-------	-------------

Symbol	wind a l		Parameter	Conditions ⁽¹⁾			Value		Unit
Symbol		С	Farameter			Min	Тур	Max	Unit
		Ρ		Claw internal DC assillator	T _A = 25 °C	_	30	100	
		D			T _A = 55 °C	_	75	_	
I _{DDSTDBY}	сс	D	STANDBY mode current ⁽⁹⁾		T _A = 85 °C	_	180	700	μA
		D			T _A = 105 °C		315	1000	
		Ρ			T _A = 125 °C	_	560	1700	

1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified

2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- 3. Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current on *Table 24*.
- 4. RUN current measured with typical application with accesses on both flash memory and SRAM.
- Only for the "P" classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled.
- 6. Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
- 7. Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- 9. Only for the "P" classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off.

4.11 Flash memory electrical characteristics

The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled.

4.11.1 **Program/Erase characteristics**

Table 27 shows the program and erase characteristics.

Table 27. Program and erase specifications (code flash)

				Value					
Symbol		С	Parameter	Min	Typ ⁽¹⁾	Initial max ⁽²⁾	Max ⁽³⁾	Unit	Unit
t _{dwprogram}	СС	С	Double word (64 bits) program time ⁽⁴⁾		22	50	500	μs	
t _{16Kpperase}	СС	С	16 KB block preprogram and erase time		300	500	5000	ms]

Symb	Symbol		Parameter	Conditions			Unit		
Synib		С	Falameter				Тур	Max	Unit
—	SR		Scan range	—	0.150	—	1000	MHz	
f _{CPU}	SR		Operating frequency	_			48	—	MHz
V _{DD_LV}	SR		LV operating voltages	_	—			—	V
e			Deals lavel	LQFP100 package	No PLL frequency modulation	_	_	18	dBµV
S _{EMI}		-		Test conforming to IEC 61967-2, f _{OSC} = 8 MHz/f _{CPU} = 48 MHz	± 2% PLL frequency modulation	_	_	14	dBµV

Table 33.	EMI radiated	emission	measurement ⁽¹⁾⁽²⁾
-----------	--------------	----------	-------------------------------

1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

4.12.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the application note *Electrostatic Discharge Sensitivity Measurement* (AN1181).

Table 34.	ESD absolute maximum ratings ⁽	1) (2)
-----------	---	--------

Symbol	Symbol		Ratings	Conditions	Class	Max value	Unit
V _{ESD(HBM)}	C C	Т	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	C C	Т	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-003	M2	200	V
V	С	с с	Electrostatic discharge voltage (Charged Device Model)	T _A = 25 °C	СЗА	500	V
V _{ESD(CDM)}	С		(Charged Device Model)	conforming to AEC-Q100-011	USA	750 (corners)	V

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance (ESR) Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C ₁ = C ₂ (pF) ⁽¹⁾	Shunt capacitance between xtalout and xtalin C0 ⁽²⁾ (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8		300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12	NX5032GA	120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

Table 36.Crystal description

1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

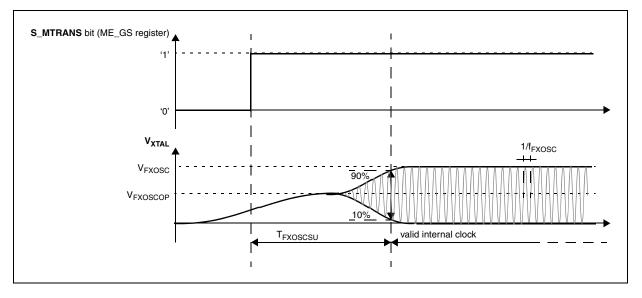


Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram

Table 37.	Fast external cr	vstal oscillator (4	4 to 16 MHz	electrical characteristics

Symbol	Symbol					Conditions ⁽¹⁾		Unit
Symbol		C	Farameter	Conditions	Min	Тур	Мах	Onit
f _{FXOSC}	SR		Fast external crystal oscillator frequency	_	4.0		16.0	MHz

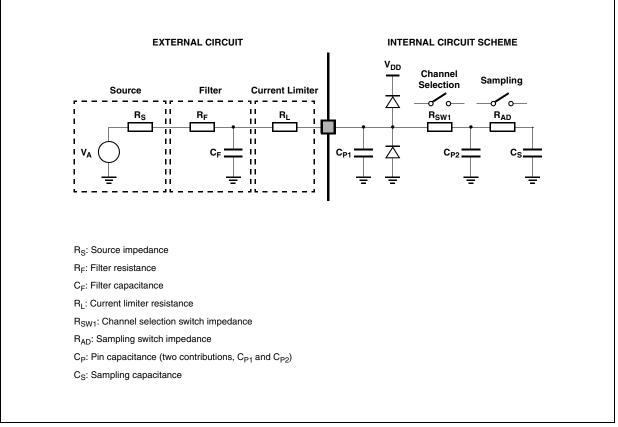


Figure 12. Input equivalent circuit (precise channels)

Symbol	Symbol		Parameter		Conditions	Typical value ⁽²⁾	Unit
				Ballast static	consumption (only clocked)	1	μA
I _{DD_BV(SPI)} CC		т	SPI (DSPI) supply current on V _{DD_BV}	Ballast dynamic consumption (continuous communication): – Baudrate: 2 Mbit/s – Transmission every 8 µs – Frame: 16 bits		16 × f _{periph}	μΑ
					Ballast static consumption (no conversion)	$41 \times f_{periph}$	μA
I _{DD_BV(ADC)}	СС	Т	ADC supply current on V _{DD_BV}	V _{DD} = 5.5 V	Ballast dynamic consumption (continuous conversion) ⁽³⁾	$5 imes f_{periph}$	μA
		т			Analog static consumption (no conversion)	$2 imes f_{periph}$	μA
IDD_HV_ADC(ADC)	CC		ADC supply current on V _{DD_HV_ADC}	V _{DD} = 5.5 V	Analog dynamic consumption (continuous conversion)	$75 imes f_{periph} + 32$	μA
I _{DD_HV} (FLASH)	сс	Т	CFlash + DFlash supply current on V _{DD_HV}	V _{DD} = 5.5 V —		8.21	mA
I _{DD_HV(PLL)}	сс	т	PLL supply current on V _{DD_HV}	V _{DD} = 5.5 V	_	$30 imes f_{periph}$	μΑ

Table 43.	On-chip peripherals curren	t consumption ⁽¹⁾	(continued)
-----------	----------------------------	------------------------------	-------------

1. Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 48 MHz

2. f_{periph} is an absolute value.

3. During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) \times f_{periph}$.

4.18.2 DSPI characteristics

Table 44.	DSPI characteristics ⁽¹⁾	
-----------	-------------------------------------	--

No.	Symbol		С	Parameter		DSPI0/DSPI1			Unit
NO.			C			Min	Тур	Max	Unit
		SR D D D	D	SCK cycle time	Master mode (MTFE = 0)	125	_	_	- ns
1	1 t _{SCK} SF		D		Slave mode (MTFE = 0)	125	_	_	
1			D		Master mode (MTFE = 1)	83	_	_	
			D		Slave mode (MTFE = 1)	83	_	_	
_	f _{DSPI}	SR	D	DSPI digital controller frequency		—	_	f _{CPU}	MHz

Cumbal		mm		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	_	—	1.600	—	—	0.0630	
A1	0.050	—	0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	—	0.200	0.0035	—	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	_	12.000	_	_	0.4724	—	
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	_	12.000	_	_	0.4724	—	
е	_	0.500	—	_	0.0197	—	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	_	1.000	—	—	0.0394	—	
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °	
Tolerance	mm			inches			
CCC		0.080			0.0031		

Table 46. LQFP100 mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

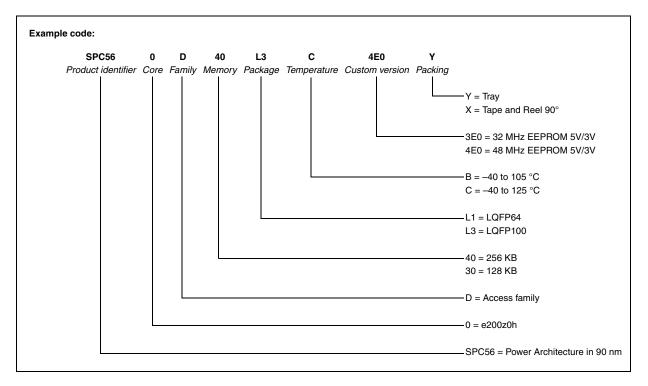


Figure 28. Commercial product code structure

Appendix A Abbreviations

Table 50 lists abbreviations used in this document.

Table 50. Ab	breviations				
Abbreviation	Meaning				
APU	Auxilliary processing unit				
CMOS	Complementary metal-oxide-semiconductor				
CPHA	Clock phase				
CPOL	Clock polarity				
CS	Peripheral chip select				
DAOC	Double action output compare				
ECC	Error code correction				
EVTO	Event out				
GPIO	General purpose input/output				
IPM	Input period measurement				
IPWM	Input pulse width measurement				
MB	Message buffer				
MC	Modulus counter				
МСВ	Modulus counter buffered (up / down)				
МСКО	Message clock out				
MDO	Message data out				
MSEO	Message start/end out				
MTFE	Modified timing format enable				
NVUSRO	Non-volatile user options register				
OPWFMB	Output pulse width and frequency modulation buffered				
OPWMB	Output pulse width modulation buffered				
OPWMCB	Center aligned output pulse width modulation buffered with dead time				
OPWMT	Output pulse width modulation trigger				
PWM	Pulse width modulation				
SAIC	Single action input capture				
SAOC	Single action output compare				
SCK	Serial communications clock				
SOUT	Serial data out				
TBD	To be defined				
TCK	Test clock input				
TDI	Test data input				

Table 50. Abbreviations

Date	Revision	Changes		
04-Feb-2013	6	 Removed all instances of table footnote "All values need to be confirmed during device validation" Section 4.1, Introduction, removed Caution note. Table 11 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 12 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Updated Section 4.17.2, Input impedance and ADC accuracy In Table 24, changed V_{LVDHV3L}, V_{LVDHV3BL} from 2.7 V to 2.6 V. Revised the Table 28 (Flash module life) Updated Table 43, DSPI characteristics, to add specifications 7 and 8, t_{PCSC} and t_{PASC}. Inserted Figure 24, DSPI PCS strobe (PCSS) timing. 		
17-Sep-2013	7	Updated Disclaimer.		

Table 51.	Document revision history (continu	(beu
-----------	------------------------------------	------

