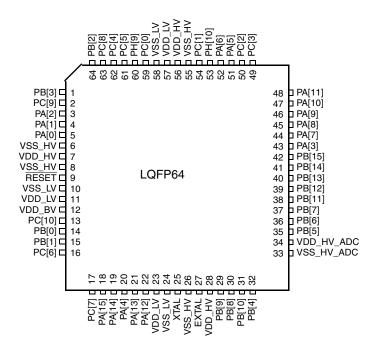


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560d40l1b4e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3 shows the Pictus 512K in the LQFP64 package.

Figure 3. LQFP64 pin configuration (top view)

3.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

- PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
- PA[8] (ABS[0]) is pull-up.
- RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
- JTAG pads (TCK, TMS and TDI) are pull-up while TDO remains tristate.
- Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
- Main oscillator pads (EXTAL, XTAL) are tristate.

3.3 Voltage supply pins

Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V regulator stabilization.

Table 4. Voltage supply pin descriptions

Port nin	Function	Pin number			
Port pin	Function	LQFP64	LQFP100		
VDD_HV	Digital supply voltage	7, 28, 34, 56	15, 37, 52, 70, 84		
VSS_HV	Digital ground	6, 8, 26, 33, 55	14, 16, 35, 51, 69, 83		
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{SS_LV} pin.^{(1)}	11, 23, 57	19, 32, 85		
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin.^{(1)}	10, 24, 58	18, 33, 86		
VDD_BV	Internal regulator supply voltage	12	20		

1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^{(a)}$

M = Medium^{(a) (b)}

 $F = Fast^{(a)}$ (b)

I = Input only with analog feature^(a)

J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.5 System pins

The system pins are listed in Table 5.

Table 5. System pin descriptions

Port pin		Function	I/O	Pad type	RESET	Pin number	
		Function	direction	rau type	configuration	LQFP64	LQFP100
	RESEL	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	Μ	Input, weak pull-up only after PHASE2	9	17

b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see the PCR[SRC] description in the device reference manual).

a. See the I/O pad electrical characteristics in the device datasheet for details.

Table 6.	Functional port pin descriptions (continued)	
----------	--	--

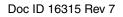

					I/O		T ation	Pin number	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
		AF0	GPIO[3]	SIUL	I/O				
		AF1	E0UC[3]	eMIOS_0	I/O				
PA[3]	PCR[3]	AF2	—	—	— 	S	Tristate	43	68
		AF3	CS4_0	DSPI_0	I/O				
		_	EIRQ[0]	SIUL ADC					
			ADC1_S[0]						
		AF0	GPIO[4]	SIUL	I/O				
		AF1	E0UC[4]	eMIOS_0	I/O	-			
PA[4]	PCR[4]	AF2	—	—	— 	S	Tristate	20	29
		AF3	CS0_1	DSPI_1	I/O				
		—	WKPU[9] ⁽³⁾	WKPU					
		AF0	GPIO[5]	SIUL	I/O				
PA[5]	PCR[5]	AF1	E0UC[5]	eMIOS_0	I/O	м	M Tristate	51	79
[-]	[.]	AF2	—	—	—				
		AF3	—	—	_				
		AF0	GPIO[6]	SIUL	I/O				
		AF1	E0UC[6]	eMIOS_0	I/O				
PA[6]	PCR[6]	AF2	—	—	—	S	Tristate	52	80
		AF3	CS1_1	DSPI_1	I/O				
			EIRQ[1]	SIUL	-				
		AF0	GPIO[7]	SIUL	I/O				
		AF1	E0UC[7]	eMIOS_0	I/O				
PA[7]	PCR[7]	AF2	—	—	—	s	Tristate	44	71
FA[7]	FON[7]	AF3	—	—	—	3	mstate	44	/ 1
		—	EIRQ[2]	SIUL	I				
		—	ADC1_S[1]	ADC	-				
		AF0	GPIO[8]	SIUL	I/O				
		AF1	E0UC[8]	eMIOS_0	I/O				
PA[8]	PCR[8]	AF2	E0UC[14]	eMIOS_0	—	s	Input, weak	45	72
FA[0]	FUN[0]	AF3	—	—	—	3	pull-up	40	12
		—	EIRQ[3]	SIUL	I				
		N/A ⁽⁵⁾	ABS[0]	BAM	I				
		AF0	GPIO[9]	SIUL	I/O				
		AF1	E0UC[9]	eMIOS_0	I/O				
PA[9]	PCR[9]	AF2	—	_	—	S	Pull-down	46	73
		AF3	CS2_1	DSPI_1	I/O				
		N/A ⁽⁵⁾	FAB	BAM	I				

Table 6.	Functional port pin descriptions (continued)
----------	--

		Alternate I/O		Devi	T ation	Pin number			
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
		AF0	GPIO[17]	SIUL	I/O				
		AF1	—		—				
PB[1]	PCR[17]	AF2				s	Tristate	15	24
		AF3	LIN0RX WKPU[4] ⁽³⁾	LINFlex_0 WKPU					
		_	CANORX	FlexCAN_0	I				
		AF0	GPIO[18]	SIUL	I/O				
וסוסס		AF1	LINOTX	LINFlex_0	0	5.4	Triatata	64	100
PB[2]	PCR[18]	AF2		—	—	М	Tristate	64	100
		AF3	_						
		AF0	GPIO[19]	SIUL	I/O				
		AF1		—	—				
PB[3]	PCR[19]	AF2	—		—	s	Tristate	1	1
		AF3							
		_	WKPU[11] ⁽³⁾ LIN0RX	WKPU LINFlex_0					
					I				
		AF0 AF1	GPIO[20]	SIUL	I				
PB[4]	PCR[20]	AF1 AF2	_			I	Tristate	32	50
	i on(20)	AF3	_	_			motate	02	50
		_	ADC1_P[0]	ADC	I				
		AF0	GPIO[21]	SIUL	I				
		AF1	—	—	—				
PB[5]	PCR[21]	AF2	—	—	—	- I	Tristate	35	53
		AF3	—	—	—				
		—	ADC1_P[1]	ADC	I				
		AF0	GPIO[22]	SIUL	I				
		AF1		—	—				
PB[6]	PCR[22]	AF2	—		—	I	Tristate	36	54
		AF3							
-		-	ADC1_P[2]	ADC	 				
		AF0	GPIO[23]	SIUL	I				
PB[7]	PCR[23]	AF1 AF2	_	_	_	,	Tristate	37	55
	ԲՆՈ[ՀᲐ]	AF2 AF3	_		_	I	mstate	57	55
		—	ADC1_P[3]	ADC	I				

		Altowards I/O			T Ition	Pin number			
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
		AF0	GPIO[24]	SIUL	I				
		AF1	—		—				
PB[8]	PCR[24]	AF2		—	—	I	Tristate	30	39
		AF3		-					
		_	ADC1_S[4] WKPU[25] ⁽³⁾	ADC WKPU					
					I				
		AF0	GPIO[25]	SIUL	I				
		AF1		—	—				
PB[9]	PCR[25]	AF2		—	—	I	Tristate	29	38
		AF3		-					
		_	ADC1_S[5] WKPU[26] ⁽³⁾	ADC WKPU					
		AF0	GPIO[26]	SIUL	I/O				
		AF1		_	_				
PB[10]	PCR[26]	AF2	_			J	Tristate	31	40
		AF3		ADC					
		_	ADC1_S[6] WKPU[8] ⁽³⁾	WKPU					
		AF0	GPIO[27]	SIUL	I/O				
00(141		AF1	E0UC[3]	eMIOS_0	I/O		Triatata	00	50
PB[11]	PCR[27]	AF2 AF3	 CS0_0	DSPI_0	— I/O	J	Tristate	38	59
		AF3 —	ADC1_S[12]	ADC	1/0				
		AF0	GPIO[28]	SIUL	I/O				
		AF1 AF2	E0UC[4]	eMIOS_0	I/O		Tristate	39	61
PB[12]	PCR[28]	AF2 AF3	 CS1_0	DSPI_0	0	J	Instate	39	61
		— —	ADC1_X[0]	ADC	I				
		AF0	GPIO[29]	SIUL	I/O				
DD[10]	DCD[20]	AF1	E0UC[5]	eMIOS_0	I/O		Triototo	40	63
PB[13]	PCR[29]	AF2 AF3	 CS2_0	DSPI_0	0	J	Tristate	40	03
		AF3 —	ADC1_X[1]	ADC	I				
		AF0	GPIO[30]	SIUL	I/O				
		AF1 AF2	E0UC[6]	eMIOS_0	I/O		Triat	41	05
PB[14]	PCR[30]	AF2 AF3	 CS3_0	DSPI_0	0	J	Tristate	41	65
		нго —	ADC1_X[2]	ADC					
				ADC					

Table 6.	Functional	port p	in descri	ptions ((continued))

				I/O		T ation	Pin number		
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
		AF0	GPIO[54]	SIUL	I				
DDIel		AF1	—	—	—		Triatata		47
PD[6]	PCR[54]	AF2 AF3	_	_		I	Tristate		47
		—	ADC1_P[10]	ADC	I				
		AF0	GPIO[55]	SIUL	l				
		AF1	—	—	—				
PD[7]	PCR[55]	AF2	—	—	—	Ι	Tristate	—	48
		AF3	—	—	—				
		—	ADC1_P[11]	ADC	Ι				
		AF0	GPIO[56]	SIUL	I				
		AF1	—	—	—				
PD[8]	PCR[56]	AF2	—	—	—	Ι	Tristate	—	49
		AF3	—	—	—				
		—	ADC1_P[12]	ADC	I				
		AF0	GPIO[57]	SIUL	I				
		AF1	—	—	—				
PD[9]	PCR[57]	AF2	—	—	—	Ι	Tristate	—	56
		AF3	—	_					
		—	ADC1_P[13]	ADC	I				
		AF0	GPIO[58]	SIUL	I				
		AF1	—	—	—				
PD[10]	PCR[58]	AF2	—	—	—	I	Tristate	—	57
		AF3		ADC					
		—	ADC1_P[14]						
		AF0	GPIO[59]	SIUL	I				
		AF1	_	_	_		Triatata		50
PD[11]	PCR[59]	AF2 AF3		_		I	Tristate		58
		AF3 —	 ADC1_P[15]	ADC	-				
		AF0	GPIO[60]	SIUL	I/O				
		AF1	CS5_0	DSPI_0	0				
PD[12]	PCR[60]	AF2	 E0UC[24]	eMIOS_0	I/O	J	Tristate	_	60
		AF3		_	—				
		—	ADC1_S[8]	ADC	I				
		AF0	GPIO[61]	SIUL	I/O				
		AF1	CS0_1	DSPI_1	I/O	J			62
PD[13]	PCR[61]	AF2	E0UC[25]	eMIOS_0	I/O		Tristate	—	
		AF3	—	—	—				
		—	ADC1_S[9]	ADC	l				

 Table 6.
 Functional port pin descriptions (continued)

Table 6.	Func	lional port	pin descrip	tions (cont	inuea)				
				I/O		Dead	atio	Pin number	
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESET configuration	LQFP64	LQFP100
		AF0	GPIO[62]	SIUL	I/O				
		AF1	CS1_1	DSPI_1	0				
PD[14]	PCR[62]	AF2	E0UC[26]	eMIOS_0	I/O	J	Tristate	—	64
		AF3	—	-	_				
		—	ADC1_S[10]	ADC	I				
		AF0	GPIO[63]	SIUL	I/O				
		AF1	CS2_1	DSPI_1	0				
PD[15]	PCR[63]	AF2	E0UC[27]	eMIOS_0	I/O	J	Tristate	—	66
		AF3	_	—	—				
		—	ADC1_S[11]	ADC	I				
				Port	E				
		AF0	GPIO[64]	SIUL	I/O				
		AF1	E0UC[16]	eMIOS_0	I/O				
PE[0]	PCR[64]	AF2	—	—	—	S	Tristate	—	6
		AF3	—	—	—				
		—	WKPU[6] ⁽³⁾	WKPU	I				
		AF0	GPIO[65]	SIUL	I/O				8
	DODIGEI	AF1	E0UC[17]	eMIOS_0	I/O	М	Tristate		
PE[1]	PCR[65]	AF2	—	—	—			_	
		AF3	—	—	—				
		AF0	GPIO[66]	SIUL	I/O				
		AF1	E0UC[18]	eMIOS_0	I/O				
	DODION	AF2	_	—	—		Triatata	Tristate —	89
PE[2]	PCR[66]	AF3		—	—	М	Iristate		
		—	EIRQ[21]	SIUL	I				
		—	SIN_1	DSPI_1	l I				
		AF0	GPIO[67]	SIUL	I/O				
		AF1	E0UC[19]	eMIOS_0	I/O	NA	Triatata		00
PE[3]	PCR[67]	AF2	SOUT_1	DSPI_1	0	М	Tristate	_	90
		AF3	—	—	—				
		AF0	GPIO[68]	SIUL	I/O				
		AF1	E0UC[20]	eMIOS_0	I/O				
PE[4] F	PCR[68]	AF2	SCK_1	DSPI_1	I/O	М	Tristate	_	93
		AF3	_	—	_				
		—	EIRQ[9]	SIUL	I				
		AF0	GPIO[69]	SIUL	I/O				
סרורי		AF1	E0UC[21]	eMIOS_0	I/O		Triate		0.1
PE[5]	PCR[69]	AF2	CS0_1	DSPI_1	I/O	М	Tristate	_	94
		AF3	MA[2]	ADC	0				

Table 6.	Functional port pin descriptions (continued)
----------	--

4.5 Recommended operating conditions

Cumb a		с	Deventer	Conditions	Va	lue	11
Symbo	1	C	Parameter	Conditions	Min	Max	Unit
V_{SS}	SR	_	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ⁽¹⁾	SR	_	Voltage on VDD_HV pins with respect to ground (V _{SS})	—	3.0	3.6	v
V _{SS_LV} ⁽²⁾	SR	_	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	—	V _{SS} - 0.1	V _{SS} + 0.1	v
V _{DD_BV} ⁽³⁾	SR		Voltage on VDD_BV pin (regulator supply) with	—	3.0	3.6	v
VDD_BV`	Ъп		respect to ground (V _{SS})	Relative to V _{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1	v
V _{SS_ADC}	SR		Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} + 0.1	v
V _{DD_ADC}	SR		Voltage on VDD_HV_ADC pin (ADC reference)	—	3.0 ⁽⁵⁾	3.6	v
(4)	эп		with respect to ground (V _{SS})	Relative to V _{DD}	$V_{DD}-0.1$	V _{DD} + 0.1	V
M	SR		Voltage on any GPIO pin with respect to ground	—	$V_{SS} - 0.1$	—	v
V _{IN}	эп		(V _{SS})	Relative to V _{DD}	—	V _{DD} + 0.1	v
I _{INJPAD}	SR	_	Injected input current on any pin during overload condition	_	-5	5	mA
I _{INJSUM}	SR		Absolute sum of all injected input currents during overload condition	_	-50	50	mA
TV _{DD}	SR		V _{DD} slope to ensure correct power up ⁽⁶⁾	_	3.0 ⁽⁷⁾	250 x 10 ³ (0.25 [V/μs])	V/s

Table 12. Recommended operating conditions (3.3 V)

1. 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

- 2. 330 nF capacitance needs to be provided between each $V_{DD_{L}V}/V_{SS_{L}V}$ supply pair.
- 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).
- 4. 100 nF capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair.
- Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.
- 6. Guaranteed by device validation
- 7. Minimum value of TV_{DD} must be guaranteed until V_{DD} reaches 2.6 V (maximum value of V_{PORH})

Table 13. Recommended operating conditions (5.0 V)

	Symbol		с	Parameter	Conditions	Va	Unit		
			C	Farameter	Min Max				
l	V_{SS}	SR		Digital ground on VSS_HV pins	—	0	0	V	
Ī	V _{DD} ⁽¹⁾	SR		Voltage on VDD_HV pins with respect to ground	_	4.5	5.5	V	
	V DD` '	on		(V _{SS})	Voltage drop ⁽²⁾	3.0	5.5	ľ	

4.6 Thermal characteristics

4.6.1 Package thermal characteristics

Table 14.	LQFP thermal	characteristics ⁽¹⁾
1able 14.		characteristics ?

Sym	bol	С	Parameter	Conditions ⁽²⁾		Value	Unit										
				Cingle lover beard to	LQFP64	72.1											
Б	сс	П	Thermal resistance, junction-to-ambient natural	Single-layer board —1s	LQFP100	65.2	°C/W										
$R_{\theta J A}$	00		convection ⁽³⁾	Four-layer board — 2s2p	LQFP64	57.3	0/10										
				Four-layer board — 252p	LQFP100	51.8											
Б	~~	_	Р	Р	Thermal resistance, junction-to-board ⁽⁴⁾	Four-layer board — 2s2p	LQFP64	44.1	°C/W								
$R_{\theta JB}$		memai resistance, junction-to-board	Four-layer board — 252p	LQFP100	41.3	0/10											
	R _{θJC} CC D	D	П		Cingle lover board to	LQFP64	26.5	°C/W									
Б				Thermal resistance, junction-to-case ⁽⁵⁾	Single-layer board — 1s	LQFP100	23.9										
п _ө јс		U			LQFP64	26.2	0,00										
				Four-layer board — 2s2p	LQFP100	23.7											
					Cingle lover board to	LQFP64	41										
)T(~~							_	_				_		Junction-to-board thermal characterization	Single-layer board — 1s	LQFP100
Ψ_{JB}	CC	U	parameter, natural convection		LQFP64	43	- °C/W										
				Four-layer board — 2s2p	LQFP100	43.4											
				Cingle lover board to	LQFP64	11.5	°C AM										
)1(~~	D Junction-to-case thermal characterization	Junction-to-case thermal characterization	Single-layer board — 1s	LQFP100	10.4											
AlC	Ψ _{JC} CC		ט ;	D	טוי	D	D	parameter, natural convection	Four lover board 0000	LQFP64	11.1	°C/W					
			Four-layer board — 2s2p	LQFP100	10.2												

1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.

2. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C

Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA}.

 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{thJB}.

 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

4.6.2 Power considerations

The average chip-junction temperature, T_J , in degrees Celsius, may be calculated using *Equation 1*:

57

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- *Table 16* provides weak pull figures. Both pull-up and pull-down resistances are supported.
- *Table 17* provides output driver characteristics for I/O pads when in SLOW configuration.
- *Table 18* provides output driver characteristics for I/O pads when in MEDIUM configuration.

		•	Deveneter	Conditions ⁽¹⁾			Value		
Symb	100	С	Parameter	Conditions	,	Min	Тур	Max	Unit
		Ρ			PAD3V5V = 0	10	—	150	
ll _{WPU} l	сс	С	absolute value	$V_{IN} = V_{IL}, V_{DD} = 5.0 V \pm 10\%$	$PAD3V5V = 1^{(2)}$	10	—	250	μA
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	
		Ρ		V _{IN} = V _{IH} , V _{DD} = 5.0 V ± 10%	PAD3V5V = 0	10	—	150	
ll _{wpd} l	сс	С	Weak pull-down current absolute value	$V_{\rm IN} - V_{\rm IH}, V_{\rm DD} = 5.0 V \pm 10.8$	$PAD3V5V = 1^{(2)}$	10	_	250	μA
		Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	

 Table 16.
 I/O pull-up/pull-down DC electrical characteristics

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Sum	Symbol	6	Parameter		Conditions ⁽¹⁾		Value		
Sym				Conditions	Min	Тур	Max	Unit	
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	
V _{OH}	сс	С	Output high level SLOW configuration	Push Pull	I _{OH} = −2 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	0.8V _{DD}	_	_	v
	с	С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} - 0.8	_	_	
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_	_	0.1V _{DD}	
V _{OL}	сс	С	Output low level SLOW configuration	Push Pull	$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	_		0.1V _{DD}	v
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	_		0.5	

Table 17.	SLOW configuration output buffer electrical characteristics
-----------	---

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

		LQFP10	0/LQFP64	
Pad	Weigl	nt 5 V	Weigh	it 3.3 V
	SRC ⁽²⁾ = 0	SRC = 1	SRC = 0	SRC = 1
PD[7]	1%	1%	1%	1%
PD[8]	1%	1%	1%	1%
PB[4]	1%	1%	1%	1%
PB[5]	1%	1%	1%	1%
PB[6]	1%	1%	1%	1%
PB[7]	1%	1%	1%	1%
PD[9]	1%	1%	1%	1%
PD[10]	1%	1%	1%	1%
PD[11]	1%	1%	1%	1%
PB[11]	9%	9%	11%	11%
PD[12]	8%	8%	10%	10%
PB[12]	8%	8%	10%	10%
PD[13]	8%	8%	9%	9%
PB[13]	8%	8%	9%	9%
PD[14]	7%	7%	9%	9%
PB[14]	7%	7%	8%	8%
PD[15]	7%	7%	8%	8%
PB[15]	6%	6%	7%	7%
PA[3]	6%	6%	7%	7%
PA[7]	4%	4%	5%	5%
PA[8]	4%	4%	5%	5%
PA[9]	4%	4%	5%	5%
PA[10]	5%	5%	6%	6%
PA[11]	5%	5%	6%	6%
PE[12]	5%	5%	6%	6%
PC[3]	5%	5%	6%	6%
PC[2]	5%	7%	6%	6%
PA[5]	5%	6%	5%	6%
PA[6]	4%	4%	5%	5%
PC[1]	5%	17%	4%	12%
PC[0]	6%	9%	7%	8%
PE[2]	7%	10%	8%	9%
	1			1

 Table 22.
 I/O weight⁽¹⁾ (continued)

Symbol		~	Devemeter	Conditions ⁽¹⁾		Value		Unit		
Symbol		С	Parameter	Conditions	Min	Тур	Max	Unit		
C _{REGn}	SR		Internal voltage regulator external capacitance	—	200	_	500	nF		
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_	_	0.2	Ω		
6	00		Descuriting annotice (2) hallast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 4.5 V to 5.5 V	100 ⁽³⁾	470 ⁽⁴⁾				
C _{DEC1} SR		_	Decoupling capacitance ⁽²⁾ ballast	V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400	470(*)		nF		
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	_	nF		
M	<u> </u>	Т	Main regulator output voltage	Before exiting from reset	—	1.32		v		
V _{MREG}	СС	Ρ	Main regulator output voltage	After trimming	1.16	1.28		v		
I _{MREG}	SR		Main regulator current provided to V _{DD_LV} domain	—	_	_	150	mA		
1	сс	D	Main regulator module current	I _{MREG} = 200 mA	_	—	2	mA		
IMREGINT	00		consumption	I _{MREG} = 0 mA	_	—	1			
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28		V		
I _{LPREG}	SR		Low power regulator current provided to $V_{DD_{LV}}$ domain	_	_	_	15	mA		
1	CC	сс	<u> </u>	D	Low-power regulator module current	I _{LPREG} = 15 mA; T _A = 55 °C	_	—	600	μA
I _{LPREGINT}	00		consumption	I _{LPREG} = 0 mA; T _A = 55 °C	— 5 —		μΑ			
V _{ULPREG}	сс		Ultra low power regulator output voltage	After trimming	1.16	1.28		v		
I _{ULPREG}	SR		Ultra low power regulator current provided to V _{DD_LV} domain	_	_	_	5	mA		
I.	сс	D	Ultra low power regulator module	I _{ULPREG} = 5 mA; T _A = 55 °C	_	_	100	μA		
ULPREGINT	00		current consumption	I _{ULPREG} = 0 mA; T _A = 55 °C		2		μΛ		
I _{DD_BV}	сс	D	In-rush average current on V _{DD_BV} during power-up ⁽⁵⁾	—	_	_	300 ⁽⁶⁾	mA		

Table 24.	Voltage regulator electrical characteristics
-----------	--

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

2. This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V.

4. External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.

 In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on external capacitances to be loaded).

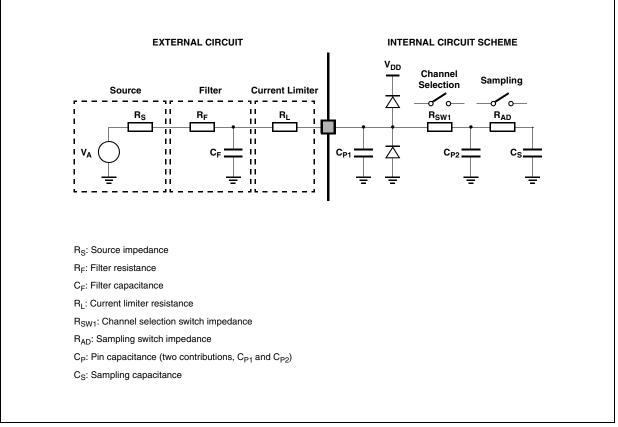


Figure 12. Input equivalent circuit (precise channels)

Table 42. ADC conversion characteristics (continued)

Symbo	Symbol		vmbol		Parameter	Conditions ⁽¹⁾		Value		Unit
Symbol		С	Farameter	Conditions	Min	Тур	Max	Unit		
TUEX ⁽⁷⁾	СС	Т	Total unadjusted error	Without current injection	-10		10	LSB		
TUEX	CC		Т	for extended channel	With current injection	-12		12	LOD	

1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified.

- 2. Analog and digital V_{SS} must be common (to be tied together externally).
- V_{AINx} may exceed V_{SS ADC} and V_{DD ADC} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF.
- 4. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.
- 5. During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sampling time t_S , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.
- This parameter does not include the sampling time t_S, but only the time for determining the digital result and the time to load the result's register with the conversion result.
- 7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

4.18 On-chip peripherals

4.18.1 Current consumption

Table 43.	On-chip	peripherals curren	t consumption ⁽¹⁾
-----------	---------	--------------------	------------------------------

Symbol		С	Parameter	Conditions		Typical value ⁽²⁾	Unit
				500 Kbyte/s	Total (static + dynamic)	$8 imes f_{periph} + 85$	μA
IDD_BV(CAN)	сс	т	CAN (FlexCAN) supply current on V _{DD_BV} 125 Kbyte/s – FlexCA mode – XTAL a CAN en – Messa		 consumption: FlexCAN in loop-back mode XTAL at 8 MHz used as CAN engine clock source Message sending period is 580 µs 	8 × f _{periph} + 27	μΑ
	сс		eMIOS supply current	Static consur – eMIOS cha – Global pres		$29 imes f_{periph}$	μA
IDD_BV(eMIOS)	00				sumption: change varying the (0.003 mA)	3	μA
I _{DD_BV(SCI)}	сс	т	SCI (LINFlex) supply current on V _{DD_BV}	Total (static + – LIN mode – Baudrate: :	- dynamic) consumption: 20 Kbyte/s	$5 imes f_{periph} + 31$	μA

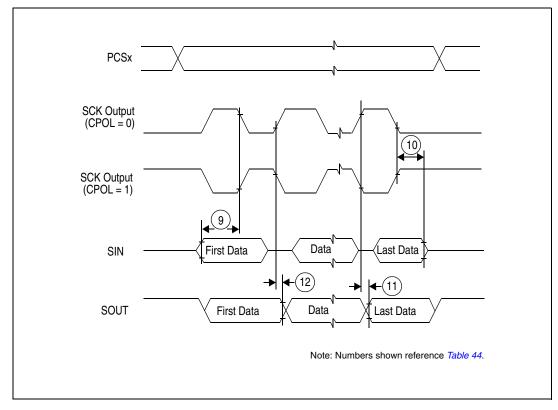
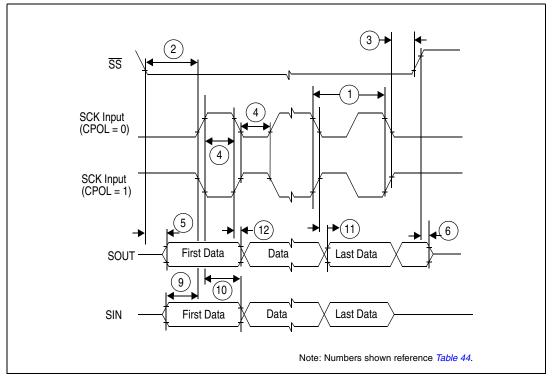



Figure 17. DSPI classic SPI timing – master, CPHA = 1

57

Symbol -		mm		inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Max		
А	_	—	1.600	—	—	0.0630		
A1	0.050	—	0.150	0.0020		0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	—	0.200	0.0035	—	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	_	12.000	_	_	0.4724	—		
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	_	12.000	_	_	0.4724	—		
е	_	0.500	—	_	0.0197	—		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	_	1.000	—	—	0.0394	—		
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °		
Tolerance		mm	•	inches				
CCC		0.080			0.0031			

Table 46. LQFP100 mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 47. LQFP64 mechanical data (continued)

Symbol		mm		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	—	—	0.08	—		0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

57

6 Ordering information

Table 48.Order codes

		Memory			Op. temp.	Speed				
Order code	CPU	Code flash / SRAM (KB)	Data flash	Package	(°C)	(MHz)	Voltage	Packing		
SPC560D30L1B3E0X	e200z0h	128 / 12	4 x 16 KB	LQFP64	-40 to 105	32	3.3 / 5 V	Tape & Reel		
SPC560D30L1C3E0X	62002011	120712		LOITOF	-40 to 125	02				
SPC560D30L1B4E0X	e200z0h	128 / 12	4 x 16 KB	LQFP64	-40 to 105	48	3.3 / 5 V	Tape & Reel		
SPC560D30L1C4E0X	62002011	120712	4 X 10 KD	LQII 04	-40 to 125	40	3.3/5V	Tape & neer		
SPC560D30L1B3E0X	e200z0h	0h 128 / 12	4 x 16 KB	LQFP64	-40 to 105	32	3.3 / 5 V	Tape & Reel		
SPC560D30L1C3E0X					-40 to 125			1000 a 11001		
SPC560D30L1B4E0X	e200z0h	128 / 12	4 x 16 KB	LQFP64	-40 to 105	48	3.3 / 5 V	Tape & Reel		
SPC560D30L1C4E0X		e2002011 1287	120/12	20/12 4210100	LQIT 04	-40 to 125		3.3/5V	iape à neei	
SPC560D40L3B3E0X	e200z0h			0h 256 / 16	4 x 16 KB	LQFP100	-40 to 105	32	22/51	Tape & Reel
SPC560D40L3C3E0X		230710	4 10 10		-40 to 125	52	0.07 J V	Tape & neer		
SPC560D40L3B4E0X	e200z0h	e200z0h	e200z0h	256 / 16	4 x 16 KB	LQFP100	-40 to 105	48	2 2 / E V	Topo & Dool
SPC560D40L3C4E0X					LQFF100	-40 to 125		3.3/5V	Tape & Reel	
SPC560D40L3B3E0X	e200z0h			256 / 16			-40 to 105		00/51/	Topo 9 Dool
SPC560D40L3C3E0X		200/10	4 x 16 KB	LQFP100	-40 to 125	32	3.3 / 5 V	Tape & Reel		
SPC560D40L3B4E0X	e200z0h	200z0h 256 / 16	4 x 16 KB	LQFP100	-40 to 105	48	0.0 / 5. 1/	Tape & Reel		
SPC560D40L3C4E0X	62002011	2007 10			-40 to 125	40	3.3 / 5 V	iape à néel		

Table 49. Order codes for engineering samples⁽¹⁾

	CPU	Memory			On tomp	Speed		
Order code		Code flash / SRAM (KB)	Data flash	Package		Speed (MHz)	Voltage	Packing
SPC560D40L1-ENG	e200z0h	256 / 16	4 x 16 KB	LQFP64	-40 to 125	48	22/51	Tape & Reel
SPC560D40L3-ENG		200/10	4 X 10 KB	LQFP100		40	3.375V	Tape & neer

1. Engineering samples are suitable only for evaluation and development purpose but NOT for qualification and production. Their silicon version and maturity may vary until the product has reached qualification.

Date	Revision	Changes
Date 16-Sep-2011	Revision	ChangesMEDIUM configuration output buffer electrical characteristics: changed "I _{OH} = 100 µA" to "I _{OL} = 100 µA" in V _{OL} conditions I/O consumption: replaced instances of "Root medium square" with "Root mean square"Updated section "Voltage regulator electrical characteristics"
01-Dec-2011	5	Removed Order codes tables. Replaced "TBD" with "8.21 mA" in I _{DD_HV(FLASH)} cell of On-chip peripherals current consumption table

Table 51.	Document revision history (continued)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

