

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560d40l3b3e0x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	luction
	1.1	Document overview
	1.2	Description
2	Bloc	diagram
3	Pack	age pinouts and signal descriptions
	3.1	Package pinouts 12
	3.2	Pad configuration during reset phases 14
	3.3	Voltage supply pins 14
	3.4	Pad types
	3.5	System pins
	3.6	Functional ports
л	Elas	vical abaractariation 20
4		
	4.1	Devenue de calification
	4.2	
	4.3	NVUSRO register 29 4.0.1 NVUSRO register
		4.3.1 NVUSRO[PAD3V5V] lield description
		4.3.3 NVUSRO[WATCHDOG EN] field description
	4.4	Absolute maximum ratings
	4.5	Becommended operating conditions
	4.6	Thermal characteristics 33
		4.6.1 Package thermal characteristics
		4.6.2 Power considerations
	4.7	I/O pad electrical characteristics
		4.7.1 I/O pad types
		4.7.2 I/O input DC characteristics
		4.7.3 I/O output DC characteristics
		4.7.4 Output pin transition times
		4.7.5 I/O pad current specification
	4.8	RESET electrical characteristics

1 Introduction

1.1 Document overview

This document describes the device features and highlights the important electrical and physical characteristics.

1.2 Description

These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices designed to be central to the development of the next wave of central vehicle body controller, smart junction box, front module, peripheral body, door control and seat control applications.

This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology and designed specifically for embedded applications.

The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (auxiliary processing unit), providing improved code density. It operates at speeds of up to 48 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with the user's implementations.

The device platform has a single level of memory hierarchy and can support a wide range of on-chip static random access memory (SRAM) and internal flash memory.

Footuro		De	vice			
Feature	SPC560D30L1	SPC560D30L3	SPC560D40L1	SPC560D40L3		
CPU		e20	0z0h			
Execution speed		Static – up to 48 MHz				
Code flash memory	128	KB	256 KB			
Data flash memory		64 KB (4	× 16 KB)			
SRAM	12 KB 16 KB					
eDMA		16	16 ch			
ADC (12-bit)	16 ch	33 ch	16 ch	33 ch		
СТU		16	ch			
Total timer I/O ⁽¹⁾ eMIOS	14 ch, 16-bit	28 ch, 16-bit	14 ch, 16-bit	28 ch, 16-bit		
– Type X ⁽²⁾	2 ch	5 ch	2 ch	5 ch		
– Type Y ⁽³⁾	—	9 ch	—	9 ch		
– Type G ⁽⁴⁾	7 ch	7 ch	7 ch	7 ch		

Table 2. Pictus 512K device comparison

Table 2. Pictus 512K device comparison (continued)

Footuro	Device						
reature	SPC560D30L1	SPC560D30L3	Device SPC560D40L1 SPC560D40L3 1 4 ch 7 ch 3 - - 2 - - 1 45 79 JTAG - - 0 LQFP64 LQFP100				
– Туре Н ⁽⁵⁾	4 ch	7 ch	4 ch	7 ch			
SCI (LINFlex)		;	3				
SPI (DSPI)	2						
CAN (FlexCAN)	1						
GPIO ⁽⁶⁾	45	79	79 45				
Debug		JT	AG				
Package	LQFP64	LQFP100	LQFP64	LQFP100			

1. Refer to eMIOS chapter of device reference manual for information on the channel configuration and functions.

2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC

3. Type Y = OPWMT + OPWMB + SAIC + SAOC

4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC

5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC

6. I/O count based on multiplexing with peripherals

Figure 2. LQFP100 pin configuration (top view)

	Table 6.	Functional	port pin	descriptions	(continued)
--	----------	------------	----------	--------------	-------------

					I/O		T ation	Pin n	umber
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESE	LQFP64	LQFP100
PA[3]	PCR[3]	AF0 AF1 AF2 AF3 —	GPIO[3] E0UC[3] — CS4_0 EIRQ[0]	SIUL eMIOS_0 DSPI_0 SIUL	I/O I/O I/O I	S	Tristate	43	68
PA[4]	PCR[4]	— AF0 AF1 AF2 AF3 —	GPIO[4] E0UC[4] CS0_1 WKPU[9] ⁽³⁾	SIUL eMIOS_0 — DSPI_1 WKPU	I I/O I/O I/O I	S	Tristate	20	29
PA[5]	PCR[5]	AF0 AF1 AF2 AF3	GPIO[5] E0UC[5] —	SIUL eMIOS_0 —	I/O I/O —	М	Tristate	51	79
PA[6]	PCR[6]	AF0 AF1 AF2 AF3 —	GPIO[6] E0UC[6] — CS1_1 EIRQ[1]	SIUL eMIOS_0 — DSPI_1 SIUL	I/O I/O — I/O I	S	Tristate	52	80
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 — SIUL ADC	I/O I/O — I I	S	Tristate	44	71
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁽⁵⁾	GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0]	SIUL eMIOS_0 eMIOS_0 SIUL BAM	I/O I/O — I I	S	Input, weak pull-up	45	72
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁽⁵⁾	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 — DSPI_1 BAM	I/O I/O I/O I	S	Pull-down	46	73

					1/0		T ition	Pin n	umber
Port pin	PCR	Alternate function ⁽¹⁾	Function	Peripheral	direction (2)	Pad type	RESE [.] configura	LQFP64	LQFP100
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ⁽³⁾	SIUL — — LINFlex_1 WKPU	I/O — — — — —	S	Tristate	17	26
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] —	SIUL LINFlex_2 eMIOS_0 —	I/O O I/O —	S	Tristate	63	99
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 —	GPIO[41] — E0UC[7] — LIN2RX WKPU[13] ⁽³⁾	SIUL — eMIOS_0 — LINFlex_2 WKPU	I/O — I/O — I	S	Tristate	2	2
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] — — MA[1]	SIUL — ADC	I/O — — O	М	Tristate	13	22
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 —	GPIO[43] — — MA[2] WKPU[5] ⁽³⁾	SIUL — ADC WKPU	I/O — — — 0 I	S	Tristate	_	21
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — — EIRQ[19]	SIUL eMIOS_0 — SIUL	I/O I/O — I	М	Tristate	_	97
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] — —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	_	98
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] — EIRQ[8]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	_	3

 Table 6.
 Functional port pin descriptions (continued)

4.3 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

4.3.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. *Table 8* shows how NVUSRO[PAD3V5V] controls the device configuration.

Table 8.PAD3V5V field description

Value ⁽¹⁾	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

4.3.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. *Table 9* shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 9. OSCILLATOR_MARGIN field description

Value ⁽¹⁾	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

4.3.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. *Table 9* shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 10. WATCHDOG_EN field description

Value ⁽¹⁾	Description
0	Disable after reset
1	Enable after reset

1. Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

4.4 Absolute maximum ratings

Table II. Absolute maximum rating	Table 11.	Absolute	maximum	ratings
-----------------------------------	-----------	----------	---------	---------

Symbol		Demonster	O and distance	Va	Linit	
Symbo)	Parameter	Parameter Conditions		Max	Unit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD}	SR	Voltage on VDD_HV pins with respect to ground (V _{SS})	_	-0.3	6.0	v
V _{SS_LV}	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	_	V _{SS} -0.1	V _{SS} + 0.1	v
V	сD	Voltage on VDD_BV (regulator supply)	—	-0.3	6.0	v
VDD_BV	эп	pin with respect to ground (V_{SS})	Relative to V _{DD}	$V_{DD} - 0.3$	V _{DD} + 0.3	v
V_{SS_ADC}	SR	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	_	V _{SS} – 0.1	V _{SS} + 0.1	v
	0.0	Voltage on VDD_HV_ADC (ADC	_	-0.3	6.0	
V _{DD_ADC}	SR	(V _{SS})	Relative to V _{DD}	V _{DD} – 0.3	V _{DD} + 0.3	V
V	QD	Voltage on any GPIO pin with respect to	_	-0.3	6.0	v
♥ IN	ground (V _{SS})		Relative to V _{DD}	V _{DD} – 0.3	V _{DD} + 0.3	v
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	—	-50	50	mA
	Sum of all the static I/O current within a		V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	70	
IAVGSEG	SR	supply segment ⁽¹⁾	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	64	mA
ICORELV	SR	Low voltage static current sink through VDD_BV	_	_	150	mA
T _{STORAGE}	SR	Storage temperature	—	-55	150	°C

1. Supply segments are described in Section 4.7.5, I/O pad current specification.

Note: Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$), the voltage on pins with respect to ground (V_{SS}) must not exceed the recommended values.

4.6 Thermal characteristics

4.6.1 Package thermal characteristics

Table 14.	LQFP	thermal	characteristics ⁽
Table 14.	LQFP	thermal	characteristics'

Sym	Symbol C		Parameter	Conditions ⁽²⁾		Value	Unit					
				Single lover board to	LQFP64	72.1						
Б	~~	П	Thermal resistance, junction-to-ambient natural	Single-layer board -15	LQFP100	65.2	°C/M					
ΠθͿΑ	00	U	convection ⁽³⁾	Four lover board 2c2p	LQFP64	57.3	0/10					
				Foul-layer board — 282p	LQFP100	51.8						
Б	~~	П	Thermal resistance junction-to-board ⁽⁴⁾ Four-layer board — 2s2n		LQFP64	44.1	°C/M					
ΠθͿΒ	00	U		Four-layer board — 252p	LQFP100	41.3	°C/w					
		. р.т				Single lover beard to	LQFP64	26.5				
$R_{\theta JC}$ CC D	D Thermal resistance, junction-to-case ⁽⁵⁾		D Thermal resistance junction to case ⁽⁵⁾	Single-layer board — TS	LQFP100	23.9	°C/M					
		Four lover board 2020	LQFP64	26.2	0,00							
		roui-layer board — 252p	LQFP100	23.7								
				Single lover board 10	LQFP64	41						
M/	~~				_			Junction-to-board thermal characterization	Single-layer board — TS	LQFP100	41.6	
тJВ	00	U	parameter, natural convection	Four lover board 200p	LQFP64	43	- 0/00					
				rour-layer board — 252p	LQFP100	43.4						
				Single lover board 1s	LQFP64	11.5	°C AM					
M	~~	Р	Junction-to-case thermal characterization	Single-layer board — 15	LQFP100	10.4						
TC		^D parameter, natural convection	Four lover board 2020	LQFP64	11.1	0/00						
			rouriayei boaru — 252p	LQFP100	10.2							

1. Thermal characteristics are targets based on simulation that are subject to change per device characterization.

2. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C

Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA}.

 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{thJB}.

 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

4.6.2 Power considerations

The average chip-junction temperature, T_J , in degrees Celsius, may be calculated using *Equation 1*:

Equation 1 $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O}$ ($P_D = P_{INT} + P_{I/O}$).

 $\mathsf{P}_{\mathsf{INT}}$ is the product of I_{DD} and V_{DD} , expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

Equation 2 $P_D = K / (T_J + 273 °C)$

Therefore, solving equations 1 and 2:

Equation 3 K = $P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$

Where:

K is a constant for the particular part, which may be determined from *Equation 3* by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations *1* and *2* iteratively for any value of T_A .

4.7 I/O pad electrical characteristics

4.7.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage.

Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance.

4.7.2 I/O input DC characteristics

Table 15 provides input DC electrical characteristics as described in Figure 4.

 The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

4.9.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the $V_{DD_{LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

Figure 8. Low voltage detector vs reset

5/

Table 26.	Power consum	ption on VDD	_BV and VDD	_HV (continued)
-----------	--------------	--------------	-------------	-----------------

Symbol		<u>د</u>	Paramatar	Conditions ⁽¹⁾	Value			Unit	
		C	Farameter	Conditions		Min	Тур	Max	Unit
I _{DDSTDBY} Ci		Ρ	STANDBY mode current ⁽⁹⁾ S	Slow internal RC oscillator : (128 kHz) running	T _A = 25 °C	—	30	100	
		D			T _A = 55 °C	_	75	_	
	сс	D			T _A = 85 °C		180	700	μA
		D			T _A = 105 °C		315	1000]
		Ρ			T _A = 125 °C	_	560	1700	

1. V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- 3. Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current on *Table 24*.
- 4. RUN current measured with typical application with accesses on both flash memory and SRAM.
- Only for the "P" classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled.
- Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
- 7. Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- 8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- 9. Only for the "P" classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off.

4.11 Flash memory electrical characteristics

The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled.

4.11.1 Program/Erase characteristics

Table 27 shows the program and erase characteristics.

Table 27. Program and erase specifications (code flash)

					Va	lue		
Symbol		С	Parameter	Min	Typ ⁽¹⁾	Initial max ⁽²⁾	Max ⁽³⁾	Unit
t _{dwprogram}	СС	С	Double word (64 bits) program time ⁽⁴⁾	—	22	50	500	μs
t _{16Kpperase}	СС	С	16 KB block preprogram and erase time	_	300	500	5000	ms

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance (ESR) Ω	Crystal motional capacitance (C _m) fF	Crystal motional inductance (L _m) mH	Load on xtalin/xtalout C ₁ = C ₂ (pF) ⁽¹⁾	Shunt capacitance between xtalout and xtalin C0 ⁽²⁾ (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8		300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12	NX5032GA	120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

Table 36.Crystal description

1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Figure 10. Fast external crystal oscillator (4 to 16 MHz) timing diagram

Table 37.	Fast external cry	stal oscillator (4 to 16 MHz) electrical	characteristics
	I ust externul of	Star OSOMator	+ to 10 miliz	, cicoti ioui	onunuotoristios

Symbol		<u>د</u>	Paramotor	Conditions ⁽¹⁾	Value			Unit
		C	Falametei	Conditions	Min	Тур	Max	Unit
f _{FXOSC}	SR		Fast external crystal oscillator frequency	_	4.0	_	16.0	MHz

Figure 12. Input equivalent circuit (precise channels)

Figure 13. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in *Figure 13*): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 14. Transient behavior during sampling phase

No	No Symbol		~	Parameter		DSPIC)/DSPI1		Unit	
NO.	Symbo	DI	C	Parameter	r	Min	Тур	Max	Unit	
_	∆t _{CSC}	сс	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode	Master mode	_	_	130 ⁽²⁾	ns	
_	∆t _{ASC}	сс	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 1	Master mode	_	_	130 ⁽²⁾	ns	
2	t _{CSCext} ⁽³⁾	SR	D	CS to SCK delay	Slave mode	32		_	ns	
3	t _{ASCext} ⁽⁴⁾	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5		—	ns	
4	t	СС	D	SCK duty avala	Master mode	—	t _{SCK} /2	—	ns	
4	4 t _{SDC} SR	SR D	SR D	SR SR		Slave mode	t _{SCK} /2	_	—	115
5	t _A	SR	D	Slave access time	—	1/f _{DSPI} + 70		—	ns	
6	t _{DI}	SR	D	Slave SOUT disable time	—	7	_	—	ns	
7	t _{PCSC}	SR	D	PCSx to PCSS time	—	0	_	—	ns	
8	t _{PASC}	SR	D	PCSS to PCS <i>x</i> time	—	0	-	—	ns	
0	+	еD		Data actus timo for insuta	Master mode	43	_	—	20	
9	ISUI	эп			Slave mode	5	_	—	115	
10	+	еD		Data hold time for inputs	Master mode	0	_	—	20	
10	ЧН	эп			Slave mode	2 ⁽⁵⁾	_	—	115	
44	+ (6)	<u> </u>		Data valid ofter CCK adap	Master mode	—	_	32	20	
	ISUO	00		Data valid after SCK edge	Slave mode	—	_	52	ns	
10	+ (6)	<u> </u>		Data hald time for outputs	Master mode	0	—	—	20	
12 t _{HO} (0)	t _{HO}				Slave mode	8	_	_	115	

Table 44. DSPI characteristics⁽¹⁾ (continued)

1. Operating conditions: $C_{OUT} = 10$ to 50 pF, Slew_{IN} = 3.5 to 15 ns

2. Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad

 The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ∆t_{CSC} to ensure positive t_{CSCext}.

 The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext}.

5. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR.

6. SCK and SOUT configured as MEDIUM pad

Figure 16. DSPI classic SPI timing – master, CPHA = 0

Figure 28. Commercial product code structure

Date	Revision	Changes
04-Feb-2013	6	 Removed all instances of table footnote "All values need to be confirmed during device validation" Section 4.1, Introduction, removed Caution note. Table 11 (Recommended operating conditions (3.3 V)), added minimum value of T_{VDD} and footnote about it. Table 12 (Recommended operating conditions (5.0 V)), added minimum value of T_{VDD} and footnote about it. Updated Section 4.17.2, Input impedance and ADC accuracy In Table 24, changed V_{LVDHV3L}, V_{LVDHV3BL} from 2.7 V to 2.6 V. Revised the Table 28 (Flash module life) Updated Table 43, DSPI characteristics, to add specifications 7 and 8, t_{PCSC} and t_{PASC}. Inserted Figure 24, DSPI PCS strobe (PCSS) timing.
17-Sep-2013	7	Updated Disclaimer.

Table 51.	Document	revision	history	(continued))
-----------	----------	----------	---------	-------------	---

