E·XFL

NXP USA Inc. - P89V51RC2FN,112 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-DIP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89v51rc2fn-112

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-bit microcontrollers with 80C51 core

5.2 Pin description

Symbol	Pin			Туре	Description			
	DIP40 TQFP44 PLCC44			_				
P0.0 to P0.7				I/O	Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. Port 0 pins that have '1's written to them float, and in this state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external code and data memory. In this application, it uses strong internal pull-ups when transitioning to '1's. Port 0 also receives the code bytes during the external host mode programming, and outputs the code bytes during the external host mode verification. External pull-ups are required during program verification or as a general purpose I/O port.			
P0.0/AD0	39	37	43	I/O	P0.0 — Port 0 bit 0.			
				I/O	AD0 — Address/data bit 0.			
P0.1/AD1	38	36	42	I/O	P0.1 — Port 0 bit 1.			
				I/O	AD1 — Address/data bit 1.			
P0.2/AD2 37	37	35	41	I/O	P0.2 — Port 0 bit 2.			
				I/O	AD2 — Address/data bit 2.			
P0.3/AD3	36	34	40	I/O	P0.3 — Port 0 bit 3.			
				I/O	AD3 — Address/data bit 3.			
P0.4/AD4	35	33	39	I/O	P0.4 — Port 0 bit 4.			
				I/O	AD4 — Address/data bit 4.			
P0.5/AD5	34	32	38	I/O	P0.5 — Port 0 bit 5.			
				I/O	AD5 — Address/data bit 5.			
P0.6/AD6	33	31	37	I/O	P0.6 — Port 0 bit 6.			
				I/O	AD6 — Address/data bit 6.			
P0.7/AD7	32	30	36	I/O	P0.7 — Port 0 bit 7.			
				I/O	AD7 — Address/data bit 7.			
P1.0 to P1.7				I/O with internal pull-up	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 pins are pulled high by the internal pull-ups when '1's are written to them and can be used as inputs in this state. As inputs, Port 1 pins that are externally pulled LOW will source current (I_{IL}) because of the internal pull-ups. P1.5, P1.6, P1.7 have high current drive of 16 mA. Port 1 also receives the low-order address bytes during the external host mode programming and verification.			
P1.0/T2	1	40	2	I/O	P1.0 — Port 1 bit 0.			
				I/O	T2 — External count input to Timer/counter 2 or Clock-out from Timer/counter 2.			
P1.1/T2EX	2	41	3	I/O	P1.1 — Port 1 bit 1.			
				I	T2EX : Timer/counter 2 capture/reload trigger and direction control.			

8-bit microcontrollers with 80C51 core

Symbol	Pin			Туре	Description
	DIP40	TQFP44	PLCC44		
RST	9	4	10	I	Reset : While the oscillator is running, a HIGH logic state on this pin for two machine cycles will reset the device. If the PSEN pin is driven by a HIGH-to-LOW input transition while the RST input pin is held HIGH, the device will enter the external host mode, otherwise the device will enter the normal operation mode.
ĒĀ	31	29	35	I	External Access Enable : \overline{EA} must be connected to V _{SS} in order to enable the device to fetch code from the external program memory. \overline{EA} must be strapped to V _{DD} for internal program execution. The \overline{EA} pin can tolerate a high voltage of 12 V.
ALE/PROG	30	27	33	I/O	Address Latch Enable: ALE is the output signal for latching the low byte of the address during an access to external memory. This pin is also the programming pulse input (PROG) for flash programming. Normally the ALE ^[1] is emitted at a constant rate of ¹ / ₆ the crystal frequency ^[2] and can be used for external timing and clocking. One ALE pulse is skipped during each access to external data memory. However, if AO is set to '1', ALE is disabled.
n.c.	-	6, 17, 28, 39	1, 12, 23, 34	I/O	not connected
XTAL1	19	15	21	I	Crystal 1 : Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	14	20	0	Crystal 2: Output from the inverting oscillator amplifier.
V _{DD}	40	38	44	I	Power supply
V _{SS}	20	16	22	I	Ground

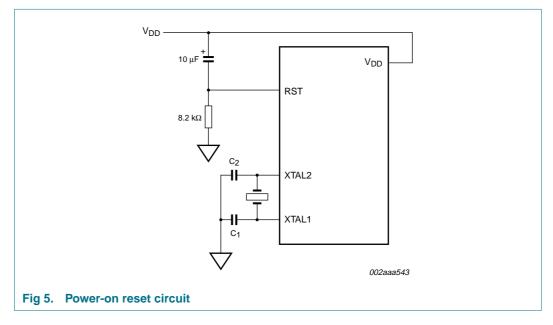
Table 3. P89V51RB2/RC2/RD2 pin description ...continued

 ALE loading issue: When ALE pin experiences higher loading (>30 pF) during the reset, the microcontroller may accidentally enter into modes other than normal working mode. The solution is to add a pull-up resistor of 3 kΩ to 50 kΩ to V_{DD}, e.g., for ALE pin.

[2] For 6-clock mode, ALE is emitted at $\frac{1}{3}$ of crystal frequency.

8-bit microcontrollers with 80C51 core

Table 4.Special function registers* indicates SFRs that are bit addressable


, I	Name	Description	SFR	Bit functions and addresses								
			address	MSB							LSB	
1			Bit address	E7	E 6	E5	E4	E3	E2	E1	E0	
	ACC*	Accumulator	E0H									
	AUXR	Auxiliary function register	8EH	-	-	-	-	-	-	EXTRAM	AO	
	AUXR1	Auxiliary function register 1	A2H	-	-	-		GF2	0	-	DPS	
			Bit address	F7	F6	F5	F4	F3	F2	F1	F0	
I	B*	B register	F0H									
(CCAP0H	Module 0 Capture HIGH	FAH									
	CCAP1H	Module 1 Capture HIGH	FBH									
	CCAP2H	Module 2 Capture HIGH	FCH									
	ССАРЗН	Module 3 Capture HIGH	FDH									
(CCAP4H	Module 4 Capture HIGH	FEH									
(CCAP0L	Module 0 Capture LOW	EAH									
	CCAP1L	Module 1 Capture LOW	EBH									
	CCAP2L	Module 2 Capture LOW	ECH									
	CCAP3L	Module 3 Capture LOW	EDH									
	CCAP4L	Module 4 Capture LOW	EEH									
	CCAPM0	Module 0 Mode	DAH	-	ECOM_0	CAPP_0	CAPN_0	MAT_0	TOG_0	PWM_0	ECCF_	
	CCAPM1	Module 1 Mode	DBH	-	ECOM_1	CAPP_1	CAPN_1	MAT_1	TOG_1	PWM_1	ECCF_	
(CCAPM2	Module 2 Mode	DCH	-	ECOM_2	CAPP_2	CAPN_2	MAT_2	TOG_2	PWM_2	ECCF_2	
(ССАРМЗ	Module 3 Mode	DDH	-	ECOM_3	CAPP_3	CAPN_3	MAT_3	TOG_3	PWM_3	ECCF_	
(CCAPM4	Module 4 Mode	DEH	-	ECOM_4	CAPP_4	CAPN_4	MAT_4	TOG_4	PWM_4	ECCF_4	
			Bit address	DF	DE	DD	DC	DB	DA	D9	D8	
(CCON*	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	СН	PCA Counter HIGH	F9H									
	CL	PCA Counter LOW	E9H									
	CMOD	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	
	DPTR	Data Pointer (2 B)										
	DPH	Data Pointer HIGH	83H									

11 of 80

8-bit microcontrollers with 80C51 core

to work during initial power up, before the voltage reaches the brownout detection level. The POF flag in the PCON register is set to indicate an initial power up condition. The POF flag will remain active until cleared by software.

Following a power-on or external reset the P89V51RB2/RC2/RD2 will force the SWR and BSEL bits (FCF[1:0]) = 00. This causes the boot block to be mapped into the lower 8 kB of code memory and the device will execute the ISP code in the boot block and attempt to autobaud to the host. If the autobaud is successful the device will remain in ISP mode. If, after approximately 400 ms, the autobaud is unsuccessful the boot block code will check to see if the SoftICE flag is set (from a previous programming operation). If the SoftICE flag is set the device will enter SoftICE mode. If the SoftICE flag is cleared, the boot code will execute a software reset causing the device to execute the user code from block 0 starting at address 0000H. Note that an external reset applied to the RST pin has the same effect as a power-on reset.

6.2.3 Software reset

A software reset is executed by changing the SWR bit (FCF.1) from '0' to '1'. A software reset will reset the program counter to address 0000H and force both the SWR and BSEL bits (FCF[1:0]) = 10. This will result in the lower 8 kB of the user code memory being mapped into the user code memory space. Thus the user's code will be executed starting at address 0000H. A software reset will not change WDTC.2 or RAM data. Other SFRs will be set to their reset values.

6.2.4 Brownout detect reset

The device includes a brownout detection circuit to protect the system from severe supply voltage fluctuations. The P89V51RB2/RC2/RD2's brownout detection threshold is 2.35 V. When V_{DD} drops below this voltage threshold, the brownout detect triggers the circuit to generate a brownout interrupt but the CPU still runs until the supplied voltage returns to the brownout detection voltage V_{BOD} . The default operation for a brownout detection is to cause a processor reset.

8-bit microcontrollers with 80C51 core

A chip-erase operation can be performed using a commercially available parallel programer. This operation will erase the contents of this boot block and it will be necessary for the user to reprogram this boot block (block 1) with the NXP-provided ISP/IAP code in order to use the ISP or IAP capabilities of this device. Go to http://www.nxp.com/support for questions or to obtain the hex file for this device.

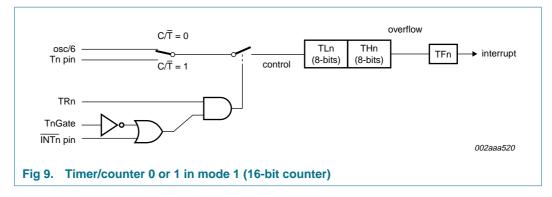
6.3.3 ISP

ISP is performed without removing the microcontroller from the system. The ISP facility consists of a series of internal hardware resources coupled with internal firmware to facilitate remote programming of the P89V51RB2/RC2/RD2 through the serial port. This firmware is provided by NXP and embedded within each P89V51RB2/RC2/RD2 device. The NXP ISP facility has made in-circuit programming in an embedded application possible with a minimum of additional expense in components and circuit board area. The ISP function uses five pins (V_{DD} , V_{SS} , TXD, RXD, and RST). Only a small connector needs to be available to interface your application to an external circuit in order to use this feature.

6.3.4 Using ISP

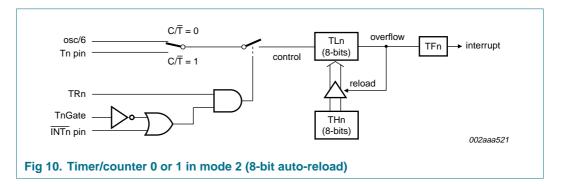
The ISP feature allows for a wide range of baud rates to be used in your application, independent of the oscillator frequency. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase U) be sent to the P89V51RB2/RC2/RD2 to establish the baud rate. The ISP firmware provides auto-echo of received characters. Once baud rate initialization has been performed, the ISP firmware will only accept Intel Hex-type records. Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below:

:NNAAAARRDD..DDCC<crlf>


In the Intel Hex record, the 'NN' represents the number of data bytes in the record. The P89V51RB2/RC2/RD2 will accept up to 32 data bytes. The 'AAAA' string represents the address of the first byte in the record. If there are zero bytes in the record, this field is often set to 0000. The 'RR' string indicates the record type. A record type of '00' is a data record. A record type of '01' indicates the end-of-file mark. In this application, additional record types will be added to indicate either commands or data for the ISP facility.

The maximum number of data bytes in a record is limited to 32 (decimal). ISP commands are summarized in <u>Table 12</u>. As a record is received by the P89V51RB2/RC2/RD2, the information in the record is stored internally and a checksum calculation is performed. The operation indicated by the record type is not performed until the entire record has been received. Should an error occur in the checksum, the P89V51RB2/RC2/RD2 will send an 'X' out the serial port indicating a checksum error. If the checksum calculation is found to match the checksum in the record will be indicated by transmitting a '.' character out the serial port.

8-bit microcontrollers with 80C51 core


	Phex record formatscontinued						
Record type	Command/data function						
03	Miscellaneous Write Functions						
	:nnxxxx03ffssddcc						
	Where:						
	nn = number of bytes in the record						
	xxxx = required field but value is a 'don't care'						
	ff = subfunction code						
	ss = selection code						
	dd = data (if needed)						
	cc = checksum						
	Subfunction code = 01 (Erase block 0)						
	ff = 01						
	Subfunction code = 05 (Program security bit, Double Clock)						
	ff = 05						
	ss = 01 program security bit						
	ss = 05 program double clock bit						
	Subfunction code = 08 (Erase sector, 128 B)						
	ff = 08						
	ss = high byte of sector address (A15:8)						
	dd = low byte of sector address (A7, A6:0 = 0)						
	Example:						
	:030000308E000F2 (erase sector at E000H)						
04	Display Device Data or Blank Check						
	:05xxxx04sssseeeeffcc						
	Where						
	05 = number of bytes in the record						
	xxxx = required field but value is a 'don't care'						
	04 = function code for display or blank check						
	ssss = starting address, MSB first						
	eeee = ending address, MSB first						
	ff = subfunction						
	00 = display data						
	01 = blank check						
	cc = checksum						
	Subfunction codes:						
	Example:						

8-bit microcontrollers with 80C51 core

6.4.3 Mode 2

Mode 2 configures the Timer register as an 8-bit Counter (TLn) with automatic reload, as shown in <u>Figure 10</u>. Overflow from TLn not only sets TFn, but also reloads TLn with the contents of THn, which must be preset by software. The reload leaves THn unchanged. Mode 2 operation is the same for Timer 0 and Timer 1.

6.4.4 Mode 3

When timer 1 is in mode 3 it is stopped (holds its count). The effect is the same as setting TR1 = 0.

Timer 0 in mode 3 establishes TL0 and TH0 as two separate 8-bit counters. The logic for mode 3 and Timer 0 is shown in Figure 11. TL0 uses the Timer 0 control bits: $T0C/\overline{T}$, T0GATE, TR0, INT0, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from Timer 1. Thus, TH0 now controls the 'Timer 1' interrupt.

Mode 3 is provided for applications that require an extra 8-bit timer. With Timer 0 in mode 3, the P89V51RB2/RC2/RD2 can look like it has an additional Timer.

Note: When Timer 0 is in mode 3, Timer 1 can be turned on and off by switching it into and out of its own mode 3. It can still be used by the serial port as a baud rate generator, or in any application not requiring an interrupt.

8-bit microcontrollers with 80C51 core

Table 21.	T2CON - Time	er/counter 2 control register (address C8H) bit descriptioncontinued
Bit	Symbol	Description
4	TCLK	Transmit clock flag. When set, causes the UART to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
3	EXEN2	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
2	TR2	Start/stop control for Timer 2. A logic '1' enables the timer to run.
1	C/T2	Timer or counter select. (Timer 2) $0 = \text{internal timer } (f_{osc} / 6)$ $1 = \text{external event counter } (falling edge triggered; external clock's maximum rate = f_{osc} / 12$
0	CP/RL2	Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Table 22. T2MOD - Timer 2 mode control register (address C9H) bit allocation Not bit addressable; Reset value: XX00 0000B

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	T2OE	DCEN

Table 23. T2MOD - Timer 2 mode control register (address C9H) bit description

Bit	Symbol	Description
7 to 2	-	Reserved for future use. Should be set to '0' by user programs.
1	T2OE	Timer 2 Output Enable bit. Used in programmable clock-out mode only.
0	DCEN	Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.

6.5.1 Capture mode

In the Capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 = 0 Timer 2 is a 16-bit timer or counter (as selected by $C/\overline{T}2$ in T2CON) which upon overflowing sets bit TF2, the Timer 2 overflow bit.

The capture mode is illustrated in Figure 12.

6.6.2 Mode 1

10 bits are transmitted (through TXD) or received (through RXD): a start bit (logical 0), 8 data bits (LSB first), and a stop bit (logical 1). When data is received, the stop bit is stored in RB8 in Special Function Register SCON. The baud rate is variable and is determined by the Timer $\frac{1}{2}$ overflow rate.

6.6.3 Mode 2

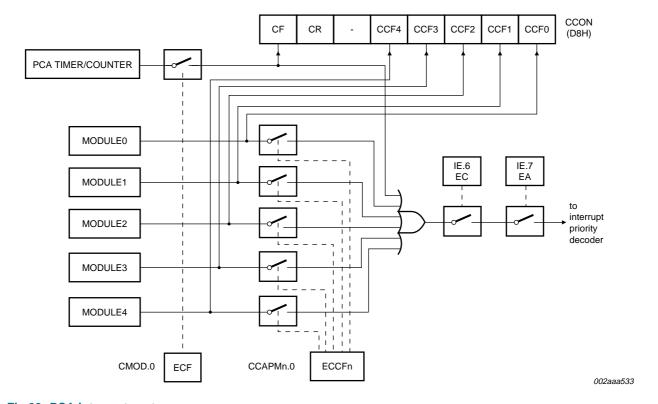
11 bits are transmitted (through TXD) or received (through RXD): start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical 1). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or (e.g. the parity bit (P, in the PSW) could be moved into TB8). When data is received, the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored. The baud rate is programmable to either $\frac{1}{16}$ or $\frac{1}{32}$ of the CPU clock frequency, as determined by the SMOD1 bit in PCON.

6.6.4 Mode 3

11 bits are transmitted (through TXD) or received (through RXD): a start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical 1). In fact, mode 3 is the same as mode 2 in all respects except baud rate. The baud rate in mode 3 is variable and is determined by the Timer $\frac{1}{2}$ overflow rate.

Table 25. SCON - Serial port control register (address 98H) bit allocation Bit addressable; Reset value: 00H

Bit	7	6	5	4	3	2	1	0
Symbol	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI


Table 26. SCON - Serial port control register (address 98H) bit description

Bit	Symbol	Description
7	SM0/FE	The usage of this bit is determined by SMOD0 in the PCON register. If $SMOD0 = 0$, this bit is SM0, which with SM1, defines the serial port mode. If $SMOD0 = 1$, this bit is FE (Framing Error). FE is set by the receiver when an invalid stop bit is detected. Once set, this bit cannot be cleared by valid frames but can only be cleared by software. (Note: It is recommended to set up UART mode bits SM0 and SM1 before setting SMOD0 to '1'.)
6	SM1	With SM0, defines the serial port mode (see Table 27 below).
5	SM2	Enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if SM2 is set to '1', then RI will not be activated if the received 9th data bit (RB8) is '0'. In mode 1, if SM2 = 1 then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be '0'.
4	REN	Enables serial reception. Set by software to enable reception. Clear by software to disable reception.
3	TB8	The 9th data bit that will be transmitted in modes 2 and 3. Set or clear by software as desired.

NXP Semiconductors

P89V51RB2/RC2/RD2

8-bit microcontrollers with 80C51 core

Fig 22. PCA interrupt system

Table 35. CMOD - PCA counter mode register (address D9H) bit allocation Not bit addressable; Reset value: 00H

Bit	7	6	5	4	3	2	1	0
Symbol	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF

Table 36. CMOD - PCA counter mode register (address D9H) bit description

Bit	Symbol	Description
7	CIDL	Counter Idle Control: CIDL = 0 programs the PCA Counter to continue functioning during Idle mode. CIDL = 1 programs it to be gated off during idle.
6	WDTE	Watchdog Timer Enable: WDTE = 0 disables watchdog timer function on module 4. WDTE = 1 enables it.
5 to 3	-	Reserved for future use. Should be set to '0' by user programs.
2 to 1	CPS1, CPS0	PCA Count Pulse Select (see Table 37 below).
0	ECF	PCA Enable Counter Overflow Interrupt: ECF = 1 enables CF bit in CCON to generate an interrupt. ECF = 0 disables that function.

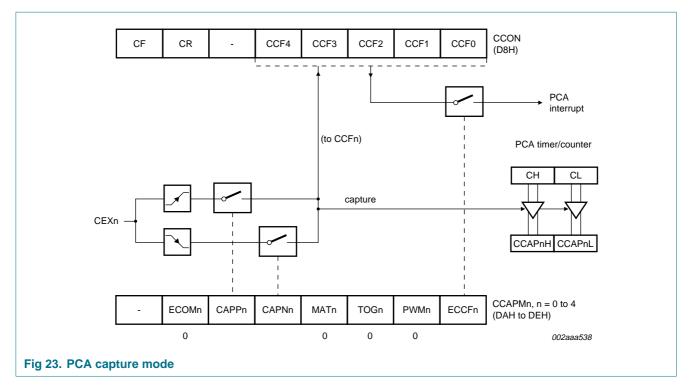
8-bit microcontrollers with 80C51 core

 Table 41.
 CCAPMn - PCA modules compare/capture register (address CCAPM0 0DAH, CCAPM1 0DBH, CCAPM2 0DCH, CCAPM3 0DDH, CCAPM4 0DEH) bit description

Bit	Symbol	Description
2	TOGn	Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.
1	PWMn	Pulse Width Modulation mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
0	ECCFn	Enable CCF Interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.

Table 42. PCA module modes (CCAPMn register)

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	Module function
0	0	0	0	0	0	0	no operation
x	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
x	0	1	0	0	0	х	16-bit capture by a negative-edge trigger on CEXn
х	1	1	0	0	0	х	16-bit capture by any transition on CEXn
1	0	0	1	0	0	х	16-bit software timer
1	0	0	1	1	0	х	16-bit high-speed output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	х	0	х	Watchdog timer


6.9.1 PCA capture mode

To use one of the PCA modules in the capture mode (Figure 23) either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH).

NXP Semiconductors

P89V51RB2/RC2/RD2

8-bit microcontrollers with 80C51 core

If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated.

6.9.2 16-bit software timer mode

The PCA modules can be used as software timers (Figure 24) by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

8-bit microcontrollers with 80C51 core

value in the module's CCAPnL SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPnL is reloaded with the value in CCAPnH. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

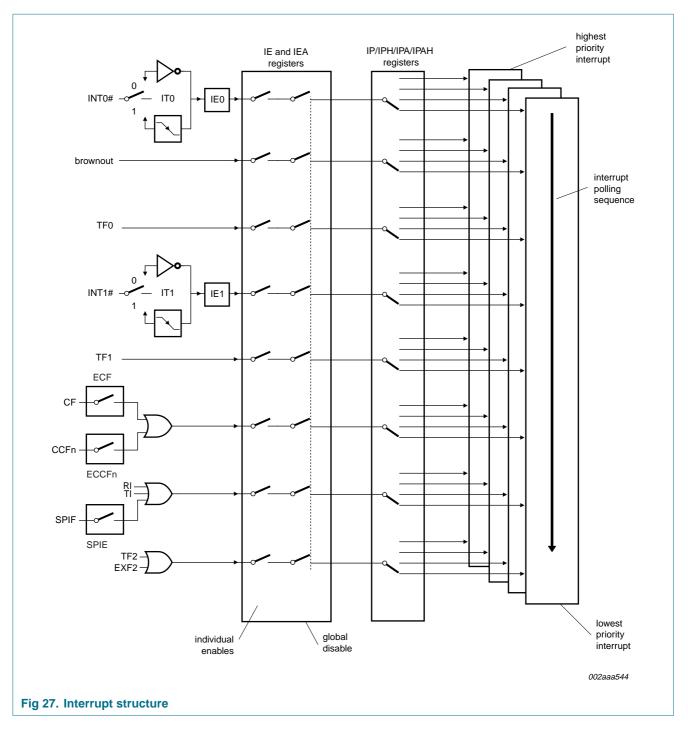
6.9.5 PCA watchdog timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a Watchdog. However, this module can still be used for other modes if the Watchdog is not needed. Figure 26 shows a diagram of how the Watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

User's software then must periodically change (CCAP4H,CCAP4L) to keep a match from occurring with the PCA timer (CH,CL). This code is given in the WATCHDOG routine shown above.

In order to hold off the reset, the user has three options:

- 1. Periodically change the compare value so it will never match the PCA timer.
- 2. Periodically change the PCA timer value so it will never match the compare values.
- 3. Disable the Watchdog by clearing the WDTE bit before a match occurs and then re-enable it.


The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for **all** modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This routine should not be part of an interrupt service routine, because if the program counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced and the Watchdog will keep getting reset. Thus, the purpose of the Watchdog would be defeated. Instead, call this subroutine from the main program within 2¹⁶ count of the PCA timer.

NXP Semiconductors

P89V51RB2/RC2/RD2

8-bit microcontrollers with 80C51 core

Table 44. IEN0 - Interrupt enable register 0 (address A8H) bit allocation Bit addressable; Reset value: 00H

Bit	7	6	5	4	3	2	1	0
Symbol	EA	EC	ET2	ES	ET1	EX1	ET0	EX0

8-bit microcontrollers with 80C51 core

Table 51. IP0H - Interrupt priority 0 high register (address B7H) bit description

Bit	Symbol	Description
7	-	Reserved for future use. Should be set to '0' by user programs.
6	PPCH	PCA interrupt priority HIGH bit.
5	PT2H	Timer 2 interrupt priority HIGH bit.
4	PSH	Serial Port interrupt priority HIGH bit.
3	PT1H	Timer 1 interrupt priority HIGH bit.
2	PX1H	External interrupt 1 priority HIGH bit.
1	PT0H	Timer 0 interrupt priority HIGH bit.
0	PX0H	External interrupt 0 priority HIGH bit.

 Table 52.
 IP1 - Interrupt priority 1 register (address F8H) bit allocation

 Bit addressable; Reset value: 00H

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	PBO	-	-	-	-

Table 53. IP1 - Interrupt priority 1 register (address F8H) bit description

Bit	Symbol	Description
7 to 5	-	Reserved for future use. Should be set to '0' by user programs.
4	PBO	Brownout interrupt priority bit.
3 to 0	-	Reserved for future use. Should be set to '0' by user programs.

 Table 54.
 IP1H - Interrupt priority 1 high register (address F7H) bit allocation

 Not bit addressable; Reset value: 00H

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	PBOH	-	-	-	-

Table 55. IP1H - Interrupt priority 1 high register (address F7H) bit description

Bit	Symbol	Description
7 to 5	-	Reserved for future use. Should be set to '0' by user programs.
4	PBOH	Brownout interrupt priority bit.
3 to 0	-	Reserved for future use. Should be set to '0' by user programs.

6.12 Power-saving modes

The device provides two power saving modes of operation for applications where power consumption is critical. The two modes are Idle and Power-down, see <u>Table 56</u>.

6.12.1 Idle mode

Idle mode is entered setting the IDL bit in the PCON register. In Idle mode, the program counter (PC) is stopped. The system clock continues to run and all interrupts and peripherals remain active. The on-chip RAM and the special function registers hold their data during this mode.

7. Limiting values

Table 61. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

Symbol	Parameter	Conditions	Min	Max	Unit
T _{amb(bias)}	bias ambient temperature		-55	+125	°C
T _{stg}	storage temperature		-65	+150	°C
VI	input voltage	on \overline{EA} pin to V_{SS}	-0.5	+14	V
V _n	voltage on any other pin	except V_{SS} ; with respect to V_{DD}	-0.5	V _{DD} + 0.5	V
I _{OL(I/O)}	LOW-level output current per	pins P1.5, P1.6, P1.7	-	20	mA
	input/output pin	all other pins	-	15	mA
P _{tot(pack)}	total power dissipation (per package)	based on package heat transfer, not device power consumption	-	1.5	W

8. Static characteristics

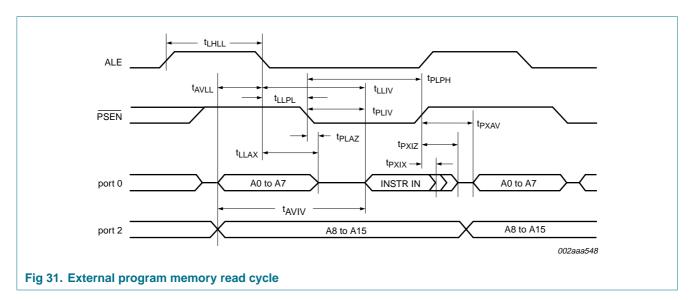
Table 62.Static characteristics

 $T_a = 0 \ ^\circ C \ to \ +70 \ ^\circ C \ or \ -40 \ ^\circ C \ to \ +85 \ ^\circ C; \ V_{DD} = 4.5 \ V \ to \ 5.5 \ V; \ V_{SS} = 0 \ V$

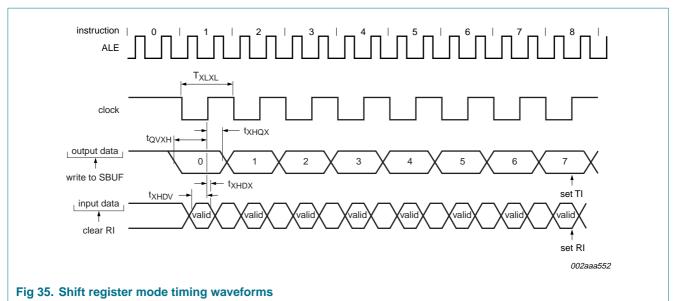
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
n _{endu(fl)}	endurance of flash memory	JEDEC Standard A117	<u>[1]</u>	10000	-	-	cycles
t _{ret(fl)}	flash memory retention time	JEDEC Standard A103	<u>[1]</u>	100	-	-	years
I _{latch}	I/O latch-up current	JEDEC Standard 78	<u>[1]</u>	100 + I _{DD}	-	-	mA
$V_{\text{th(HL)}}$	HIGH-LOW threshold voltage	$4.5 \text{ V} < \text{V}_{\text{DD}} < 5.5 \text{ V}$		-0.5	-	$0.2V_{DD} - 0.1$	V
V _{th(LH)}	LOW-HIGH threshold voltage	except XTAL1, RST		0.2V _{DD} + 0.9	-	V _{DD} + 0.5	V
V _{IH}	HIGH-level input voltage	4.5 V < V _{DD} < 5.5 V; XTAL1, RST		0.7V _{DD}	-	6.0	V
V _{OL}	LOW-level output voltage	V_{DD} = 4.5 V; ports 1, 2, 3, except PSEN, ALE	[2][3][4]				
		I _{OL} = 100 μA		-	-	0.3	V
		I _{OL} = 1.6 mA		-	-	0.45	V
		I _{OL} = 3.5 mA		-	-	1.0	V
		$V_{DD} = 4.5 V$; port 0, \overline{PSEN} , ALE					
		I _{OL} = 200 μA		-	-	0.3	V
		I _{OL} = 3.2 mA		-	-	0.45	V

8-bit microcontrollers with 80C51 core

9.1 Explanation of symbols


Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

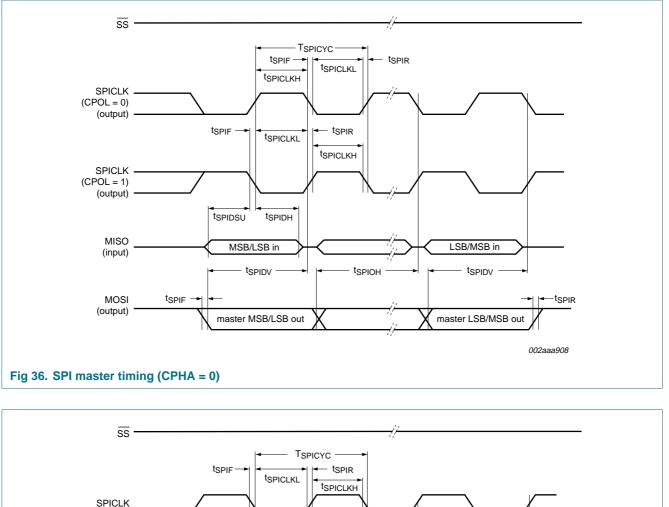
- A Address
- \mathbf{C} Clock
- **D** Input data
- H Logic level HIGH
- I Instruction (program memory contents)
- L Logic level LOW or ALE
- P PSEN
- Q Output data
- **R** RD signal
- T Time
- V Valid
- $W \overline{WR}$ signal
- X No longer a valid logic level
- Z High impedance (Float)

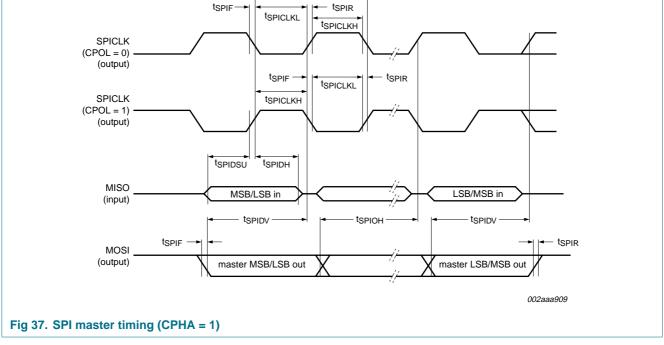

Example:

t_{AVLL} = Address valid to ALE LOW time

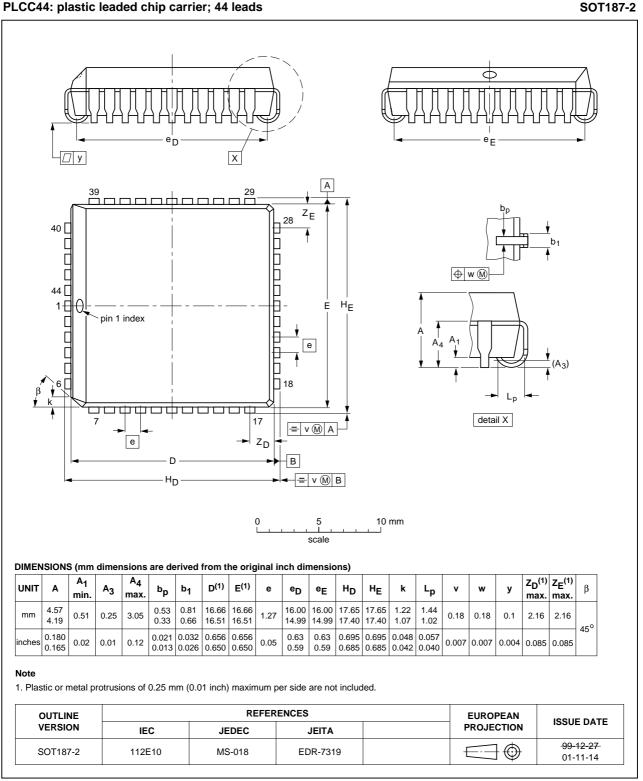
 $t_{LLPL} = ALE LOW to \overline{PSEN} LOW time$

8-bit microcontrollers with 80C51 core


Symbol	Parameter	Conditions	Varial	ble clock	f _{osc} = 1	8 MHz	Unit
			Min	Max	Min	Max	
f _{SPI}	SPI operating frequency		0	T _{cy(clk)} / 4	0	10	MHz
T _{SPICYC}	SPI cycle time	see Figure 36, 37, 38, 39	4T _{cy(clk)}	-	222	-	ns
t _{SPILEAD}	SPI enable lead time	see Figure 38, <u>39</u>	250	-	250	-	ns
t _{SPILAG}	SPI enable lag time	see Figure 38, <u>39</u>	250	-	250	-	ns
t _{SPICLKH}	SPICLK HIGH time	see Figure 36, <u>37</u> , <u>38</u> , <u>39</u>	2T _{cy(clk)}	-	111	-	ns
t _{SPICLKL}	SPICLK LOW time	see Figure 36, <u>37, 38, 39</u>	2T _{cy(clk)}	-	111	-	ns
t _{SPIDSU}	SPI data set-up time	master or slave; see <u>Figure 36, 37</u> , <u>38, 39</u>	100	-	100	-	ns
t _{SPIDH}	SPI data hold time	master or slave; see <u>Figure 36, 37, 38, 39</u>	100	-	100	-	ns
t _{SPIA}	SPI access time	see Figure 38, <u>39</u>	0	80	0	80	ns
t _{SPIDIS}	SPI disable time	see <u>Figure 38,</u> <u>39</u>	0	160	-	160	ns
t _{SPIDV}	SPI enable to output data valid time	see <u>Figure 36</u> , <u>37</u> , <u>38</u> , <u>39</u>	-	111	-	111	ns
t _{SPIOH}	SPI output data hold time	see <u>Figure 36</u> , <u>37</u> , <u>38</u> , <u>39</u>	0	-	0	-	ns
t _{SPIR}	SPI rise time	see Figure 36, <u>37</u> , <u>38</u> , <u>39</u>					
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns
t _{SPIF}	SPI fall time	see Figure 36, <u>37, 38, 39</u>					
	SPI outputs (SPICLK, MOSI, MISO)		-	100	-	100	ns
	SPI inputs (SPICLK, MOSI, MISO, SS)		-	2000	-	2000	ns


Table 66. SPI interface timing

NXP Semiconductors


P89V51RB2/RC2/RD2

8-bit microcontrollers with 80C51 core

8-bit microcontrollers with 80C51 core

PLCC44: plastic leaded chip carrier; 44 leads

Fig 46. SOT187-2 (PLCC44) package outline