
STMicroelectronics - ST7FMC2S4T3 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity LINbusSCI, SPI

Peripherals LVD, Motor Control PWM, POR, PWM, WDT

Number of I/O 26

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st7fmc2s4t3

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st7fmc2s4t3-4411603
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST7MC1xx/ST7MC2xx

8/309

PIN DESCRIPTION (Cont’d)

Figure 4. 32-Pin SDIP Package Pinouts

ICCSEL / VPP

MCO0

MCO1

MCO2

MCO3

MCO4

MCO5

MCES

OSC1

OSC2

AIN0 / PWM0 / PA3

AIN1 / ARTIC1 / PA5

MCVREF / PB0

MCIA / PB1

MCIB / PB2

MCIC / PB3

PD7 (HS) / TDO

PD6 (HS) / RDI

PD5 / AIN15 / ICCDATA

PD4 / EXTCLK_A / AIN14 / ICCCLK

PD3 / ICAP1_A / AIN13

PD2 / ICAP2_A / MCZEM / AIN12

PD1 (HS) / OCMP1_A / MCPWMV / MCDEM

PD0 / OCMP2_A / MCPWMW / AIN11

RESET

VDD_0

VSS_0

VAREF

PC4 / MCCREF *

OAZ / MCCFI1 / AIN6

PC3 / OAN

PC2 / OAP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

ei1

ei2

ei0

(HS) 20mA high sink capability

eix associated external interrupt vector

* Once the MTC peripheral is ON, the pin PC4 is configured to an alternate function. PC4 is no longer usable as a digital I/O

1

ST7MC1xx/ST7MC2xx

11/309

PIN DESCRIPTION (Cont’d)

Figure 7. 32-Pin LQFP 7x7 Package Pinout

M
C

IC
 /

P
B

3

O
A

P
 /

P
C

2

O
A

N
 /

P
C

3

A
IN

6
/ M

C
C

F
I1

 /
O

A
Z

*
M

C
C

R
E

F
 /

P
C

4

M
C

V
R

E
F

 /
P

B
0

M
C

IA
 /

P
B

1

M
C

IB
 /

P
B

2

32 31 30 29 28 27 26 25
24

23

22

21

20

19

18

17
9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8
ei1

ei0

OSC1

OSC2

AIN0 / PWM0 / PA3

AIN1 / ARTIC1 / PA5

(HS) MCO3

(HS) MCO4

(HS) MCO5

MCES

RESET

VDD_0

VAREF

VSS_0

PD3 / ICAP1_A / AIN13

PD2 / ICAP2_A / MCZEM / AIN12

PD1 (HS) / OCMP1_A / MCPWMV / MCDEM

PD0 / OCMP2_A / MCPWMW /AIN11

P
D

7
(H

S
) /

 T
D

O

P
D

6
(H

S
)

/ R
D

I

P
D

5
/ A

IN
15

 /
IC

C
D

A
T

A

P
D

4
/E

X
T

C
LK

_A
 /

A
IN

14
 /

IC
C

C
LK

M
C

O
2

(H
S

)

M
C

O
1

(H
S

)

M
C

O
0

(H
S

)

V
P

P
 /I

C
C

S
E

L

ei2

eix associated external interrupt vector
(HS) 20mA high sink capability

* Once the MTC peripheral is ON, the pin PC4 is configured to an alternate function. PC4 is no longer usable as a digital I/O

1

ST7MC1xx/ST7MC2xx

34/309

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

6.3.3 Clock Security System (CSS)
The Clock Security System (CSS) protects the
ST7 against main clock problems. To allow the in-
tegration of the security features in the applica-
tions, it is based on a PLL which can provide a
backup clock. The PLL can be enabled or disabled
by option byte or by software. It requires an 8-MHz
input clock and provides a 16-MHz output clock.

6.3.3.1 Safe Oscillator Control
The safe oscillator of the CSS block is made of a
PLL.

If the clock signal disappears (due to a broken or
disconnected resonator...) the PLL continues to
provide a lower frequency, which allows the ST7 to
perform some rescue operations.

Note: The clock signal must be present at start-up.
Otherwise, the ST7MC will not start and will be
maintained in RESET conditions.

6.3.3.2 Limitation detection
The automatic safe oscillator selection is notified
by hardware setting the CSSD bit of the SICSR
register. An interrupt can be generated if the CS-
SIE bit has been previously set.
These two bits are described in the SICSR register
description.

6.3.4 Low Power Modes

6.3.4.1 Interrupts
The CSS or AVD interrupt events generate an in-
terrupt if the corresponding Enable Control Bit
(CSSIE or AVDIE) is set and the interrupt mask in
the CC register is reset (RIM instruction).

Note 1: This interrupt allows to exit from Active-
halt mode.

Mode Description

Wait
No effect on SI. CSS and AVD interrupts
cause the device to exit from Wait mode.

Halt

The CRSR register is frozen.
The CSS (including the safe oscillator) is
disabled until Halt mode is exited. The pre-
vious CSS configuration resumes when the
MCU is woken up by an interrupt with “exit
from Halt mode” capability or from the coun-
ter reset value when the MCU is woken up
by a RESET. The AVD remains active, and
an AVD interrupt can be used to exit from
Halt mode.

Interrupt Event
Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

CSS event detection
(safe oscillator acti-
vated as main clock)

CSSD CSSIE Yes No 1)

AVD event AVDF AVDIE Yes Yes

1

ST7MC1xx/ST7MC2xx

36/309

SYSTEM INTEGRITY MANAGEMENT (Cont’d)

SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR, page 1)
Reset Value: 00000000 (00h)

Bit 7 = PAGE SICSR Register Page Selection
This bit selects the SICSR register page. It is set
and cleared by software
0: Access to SICSR register mapped in page 0.
1: Access to SICSR register mapped in page 1.

Bit 6 = Reserved, must be kept cleared.

Bit 5 = VCOEN VCO Enable
This bit is set and cleared by software.
0: VCO (Voltage Controlled Oscillator) connected

to the output of the PLL charge pump (default
mode), to obtain a 16-MHz output frequency
(with an 8-MHz input frequency).

1: VCO tied to ground in order to obtain a 10-MHz
frequency (fvco)

Notes:
1. During ICC session, this bit is set to 1 in order to
have an internal frequency which does not depend
on the input clock. Then, it can be reset in order to
run faster with an external oscillator.

Bit 4 = LOCK PLL Locked
This bit is read only. It is set by hardware. It is set
automatically when the PLL reaches its operating
frequency.
0: PLL not locked
1: PLL locked

Bit 3 = PLLEN PLL Enable
This bit enables the PLL and the clock detector. It
is set and cleared by software.
0: PLL and Clock Detector (CKD) disabled
1: PLL and Clock Detector (CKD) enabled

Notes:
1. During ICC session, this bit is set to 1.
2. PLL cannot be disabled if PLL clock source is
selected (CKSEL= 1).

Bit 2 = Reserved, must be kept cleared.

Bit 1 = CKSEL Clock Source Selection
This bit selects the clock source: oscillator clock or
clock from the PLL. It is set and cleared by soft-
ware. It can also be set by option byte (PLL opt)
0: Oscillator clock selected
1: PLL clock selected

Notes:
1. During ICC session, this bit is set to 1. Then,
CKSEL can be reset in order to run with fOSC.
2. Clock from the PLL cannot be selected if the
PLL is disabled (PLLEN =0)
3. If the clock source is selected by PLL option bit,
CKSEL bit selection has no effect.

Bit 0 = Reserved, must be kept cleared.

7 0

PA
GE

0
VCO

EN

LO

CK

PLL

EN
0

CK-
SEL

0

1

ST7MC1xx/ST7MC2xx

46/309

INTERRUPTS (Cont’d)

Figure 24. External Interrupt Control bits

IS20 IS21

EICR

SENSITIVITY

CONTROL

PAOR.7
PADDR.7

PA7 ei1 INTERRUPT SOURCE

PORT A3, PORT A[7:5] INTERRUPTS

PA7

PA6
PA5
PA3

IS10 IS11

EICR

SENSITIVITY

CONTROL

PCOR.0
PCDDR.0

PC0 ei2 INTERRUPT SOURCE

PORT C0, PORT B[7:6] INTERRUPTS

PC0

PB7
PB6

IS30 IS31

EICR

SENSITIVITY

CONTROL

PDOR.6
PDDDR.6

IPA BIT

PD6 ei0 INTERRUPT SOURCE

PORT D [6:4] INTERRUPTS

PD6

PD5

PD4

IS30 IS31

EICR

SENSITIVITY

CONTROL

PDOR.3
PDDDR.3

PD3 ei0 INTERRUPT SOURCE

PORT D [3:1] INTERRUPTS

PD3

PD2
PD1

IS10 IS11

EICR

SENSITIVITY

CONTROL

PCOR.3
PCDDR.3

IPB BIT

PC3 ei2 INTERRUPT SOURCE

PORT C [3:1] INTERRUPTS

PC3

PC2

PC1

1

ST7MC1xx/ST7MC2xx

47/309

INTERRUPTS (Cont’d)

7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR)

Read/Write

Reset Value: 0000 0000 (00h)

Bit 7:6 = IS1[1:0] ei2 sensitivity
The interrupt sensitivity, defined using the IS1[1:0]
bits, is applied to the following external interrupts:
- ei2 (port C3..1)

- ei2 (port C0, B7..6)

These 2 bits can be written only when I1 and I0 of
the CC register are both set to 1 (level 3).

Bit 5 = IPB Interrupt polarity for port C

This bit is used to invert the sensitivity of the port
C[3:1] external interrupts. It can be set and cleared
by software only when I1 and I0 of the CC register
are both set to 1 (level 3).
0: No sensitivity inversion
1: Sensitivity inversion

Bit 4:3= IS2[1:0] ei1sensitivity
The interrupt sensitivity, defined using the IS2[1:0]
bits, is applied to the following external interrupts:
- ei1 (port A3, A5...A7)

Bit 2:1= IS3[1:0] ei0sensitivity
The interrupt sensitivity, defined using the IS2[1:0]
bits, is applied to the following external interrupts:

7 0

IS11 IS10 IPB IS21 IS20 IS31 IS30 IPA

IS11 IS10
External Interrupt Sensitivity

IPB bit =0 IPB bit =1

0 0
Falling edge &

low level
Rising edge
& high level

0 1 Rising edge only Falling edge only

1 0 Falling edge only Rising edge only

1 1 Rising and falling edge

IS11 IS10 External Interrupt Sensitivity

0 0 Falling edge & low level

0 1 Rising edge only

1 0 Falling edge only

1 1 Rising and falling edge

IS21 IS20 External Interrupt Sensitivity

0 0 Falling edge & low level

0 1 Rising edge only

1 0 Falling edge only

1 1 Rising and falling edge

1

ST7MC1xx/ST7MC2xx

51/309

POWER SAVING MODES (Cont’d)

8.3 WAIT MODE

Wait mode places the MCU in a low power con-
sumption mode by stopping the CPU.
This power saving mode is selected by calling the
‘WFI’ instruction.
All peripherals remain active. During Wait mode,
the I[1:0] bits of the CC register are forced to ‘10’,
to enable all interrupts. All other registers and
memory remain unchanged. The MCU remains in
Wait mode until an interrupt or RESET occurs,
whereupon the Program Counter branches to the
starting address of the interrupt or Reset service
routine.
The MCU will remain in Wait mode until a Reset or
an Interrupt occurs, causing it to wake up.

Refer to Figure 27.

Figure 27. Wait Mode Flow-chart

Note:
1. Before servicing an interrupt, the CC register is
pushed on the stack. The I[1:0] bits of the CC reg-
ister are set to the current software priority level of
the interrupt routine and recovered when the CC
register is popped.

WFI INSTRUCTION

RESET

INTERRUPT
Y

N

N

Y

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
ON

10
OFF

FETCH RESET VECTOR
OR SERVICE INTERRUPT

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
OFF

10
ON

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
ON

XX 1)
ON

256 OR 4096 CPU CLOCK
CYCLE DELAY

1

ST7MC1xx/ST7MC2xx

53/309

POWER SAVING MODES (Cont’d)

8.4.2 HALT MODE
The Halt mode is the lowest power consumption
mode of the MCU. It is entered by executing the
‘HALT’ instruction when the OIE bit of the Main
Clock Controller Status register (MCCSR) is
cleared (see section 6.4 on page 37 for more de-
tails on the MCCSR register).

The MCU can exit Halt mode on reception of either
a specific interrupt (see Table 8, “Interrupt Map-
ping,” on page 44) or a RESET. When exiting Halt
mode by means of a RESET or an interrupt, the
oscillator is immediately turned on and the 256 or
4096 CPU cycle delay is used to stabilize the os-
cillator. After the start up delay, the CPU resumes
operation by servicing the interrupt or by fetching
the reset vector which woke it up (see Figure 31).
When entering Halt mode, the I[1:0] bits in the CC
register are forced to ‘10b’to enable interrupts.
Therefore, if an interrupt is pending, the MCU
wakes up immediately.

In Halt mode, the main oscillator is turned off caus-
ing all internal processing to be stopped, including
the operation of the on-chip peripherals. All periph-
erals are not clocked except the ones which get
their clock supply from another clock generator
(such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with Halt
mode is configured by the “WDGHALT” option bit
of the option byte. The HALT instruction when ex-
ecuted while the Watchdog system is enabled, can
generate a Watchdog RESET (see section 14.1 on
page 290 for more details).

Figure 30. Halt Timing Overview

Figure 31. Halt Mode Flow-chart

Notes:
1. WDGHALT is an option bit. See option byte sec-
tion for more details.
2. Peripheral clocked with an external clock source
can still be active.
3. Only some specific interrupts can exit the MCU
from Halt mode (such as external interrupt). Refer
to Table 8, “Interrupt Mapping,” on page 44 for
more details.
4. Before servicing an interrupt, the CC register is
pushed on the stack. The I[1:0] bits of the CC reg-
ister are set to the current software priority level of
the interrupt routine and recovered when the CC
register is popped.

HALTRUN RUN
256 OR 4096 CPU

CYCLE DELAY

RESET
OR

INTERRUPTHALT
INSTRUCTION FETCH

VECTOR[MCCSR.OIE=0]

HALT INSTRUCTION

RESET

INTERRUPT 3)

Y

N

N

Y

CPU

OSCILLATOR
PERIPHERALS 2)

I[1:0] BITS

OFF
OFF

10
OFF

FETCH RESET VECTOR
OR SERVICE INTERRUPT

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
OFF

XX 4)
ON

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
ON

XX 4)
ON

256 OR 4096 CPU CLOCK
DELAY

WATCHDOGENABLE

DISABLEWDGHALT 1) 0

WATCHDOG
RESET

1

(MCCSR.OIE=0)

CYCLE

1

ST7MC1xx/ST7MC2xx

63/309

WINDOW WATCHDOG (Cont’d)

Figure 36. Exact Timeout Duration (tmin and tmax)
WHERE:
tmin0 = (LSB + 128) x 64 x tOSC2
tmax0 = 16384 x tOSC2
tOSC2 = 125ns if fOSC2 = 8 MHz

CNT = Value of T[5:0] bits in the WDGCR register (6 bits)
MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits
in the MCCSR register

To calculate the minimum Watchdog Timeout (tmin):

IF THEN

ELSE

To calculate the maximum Watchdog Timeout (tmax):

IF THEN

ELSE

Note: In the above formulae, division results must be rounded down to the next integer value.

Example:
With 2ms timeout selected in MCCSR register

TB1 Bit

(MCCSR Reg.)

TB0 Bit

(MCCSR Reg.)
Selected MCCSR

Timebase
MSB LSB

0 0 2ms 4 59
0 1 4ms 8 53
1 0 10ms 20 35
1 1 25ms 49 54

Value of T[5:0] Bits in
WDGCR Register (Hex.)

Min. Watchdog
Timeout (ms)

tmin

Max. Watchdog
Timeout (ms)

tmax
00 1.496 2.048
3F 128 128.552

CNT
MSB

4
-------------< tmin tmin0 16384 CNT tosc2××+=

tmin tmin0 16384 CNT
4CNT
MSB
-----------------–⎝ ⎠

⎛ ⎞× 192 LSB+() 64
4CNT
MSB
-----------------××+ tosc2×+=

CNT
MSB

4
-------------≤ tmax tmax0 16384 CNT tosc2××+=

tmax tmax0 16384 CNT
4CNT
MSB
-----------------–⎝ ⎠

⎛ ⎞× 192 LSB+() 64
4CNT
MSB
-----------------××+ tosc2×+=

1

ST7MC1xx/ST7MC2xx

103/309

SERIAL PERIPHERAL INTERFACE (cont’d)

10.4.6 Low Power Modes

10.4.6.1 Using the SPI to wake up the device
from Halt mode
In slave configuration, the SPI is able to wake up
the device from Halt mode through a SPIF inter-
rupt. The data received is subsequently read from
the SPIDR register when the software is running
(interrupt vector fetch). If multiple data transfers
have been performed before software clears the
SPIF bit, then the OVR bit is set by hardware.

Note: When waking up from Halt mode, if the SPI
remains in Slave mode, it is recommended to per-

form an extra communications cycle to bring the
SPI from Halt mode state to normal state. If the
SPI exits from Slave mode, it returns to normal
state immediately.

Caution: The SPI can wake up the device from
Halt mode only if the Slave Select signal (external
SS pin or the SSI bit in the SPICSR register) is low
when the device enters Halt mode. So, if Slave se-
lection is configured as external (see Section
10.4.3.2), make sure the master drives a low level
on the SS pin when the slave enters Halt mode.

10.4.7 Interrupts

Note: The SPI interrupt events are connected to
the same interrupt vector (see Interrupts chapter).
They generate an interrupt if the corresponding
Enable Control Bit is set and the interrupt mask in
the CC register is reset (RIM instruction).

Mode Description

Wait
No effect on SPI.
SPI interrupt events cause the device to exit
from Wait mode.

Halt

SPI registers are frozen.
In Halt mode, the SPI is inactive. SPI opera-
tion resumes when the device is woken up by
an interrupt with “exit from Halt mode” capa-
bility. The data received is subsequently read
from the SPIDR register when the software is
running (interrupt vector fetching). If several
data are received before the wake-up event,
then an overrun error is generated. This error
can be detected after the fetch of the inter-
rupt routine that woke up the Device.

Interrupt Event
Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

SPI End of
Transfer Event

SPIF

SPIE Yes

Yes

Master Mode
Fault Event

MODF
No

Overrun Error OVR

1

ST7MC1xx/ST7MC2xx

112/309

LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

10.5.5.3 Receiver
The SCI can receive data words of either 8 or 9
bits. When the M bit is set, word length is 9 bits
and the MSB is stored in the R8 bit in the SCICR1
register.

Character reception
During a SCI reception, data shifts in least signifi-
cant bit first through the RDI pin. In this mode, the
SCIDR register consists or a buffer (RDR) be-
tween the internal bus and the received shift regis-
ter (see Figure 62).

Procedure
– Select the M bit to define the word length.

– Select the desired baud rate using the SCIBRR
and the SCIERPR registers.

– Set the RE bit, this enables the receiver which
begins searching for a start bit.

When a character is received:

– The RDRF bit is set. It indicates that the content
of the shift register is transferred to the RDR.

– An interrupt is generated if the RIE bit is set and
the I[1:0] bits are cleared in the CCR register.

– The error flags can be set if a frame error, noise
or an overrun error has been detected during re-
ception.

Clearing the RDRF bit is performed by the following
software sequence done by:

1. An access to the SCISR register

2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the
reception of the next character to avoid an overrun
error.

Idle Line
When an idle line is detected, there is the same
procedure as a data received character plus an in-
terrupt if the ILIE bit is set and the I[|1:0] bits are
cleared in the CCR register.

Overrun Error
An overrun error occurs when a character is re-
ceived when RDRF has not been reset. Data can
not be transferred from the shift register to the
TDR register as long as the RDRF bit is not
cleared.

When an overrun error occurs:

– The OR bit is set.

– The RDR content will not be lost.

– The shift register will be overwritten.

– An interrupt is generated if the RIE bit is set and
the I[|1:0] bits are cleared in the CCR register.

The OR bit is reset by an access to the SCISR reg-
ister followed by a SCIDR register read operation.

Noise Error
Oversampling techniques are used for data recov-
ery by discriminating between valid incoming data
and noise.

When noise is detected in a character:

– The NF bit is set at the rising edge of the RDRF
bit.

– Data is transferred from the Shift register to the
SCIDR register.

– No interrupt is generated. However this bit rises
at the same time as the RDRF bit which itself
generates an interrupt.

The NF bit is reset by a SCISR register read oper-
ation followed by a SCIDR register read operation.

Framing Error
A framing error is detected when:

– The stop bit is not recognized on reception at the
expected time, following either a desynchroniza-
tion or excessive noise.

– A break is received.

When the framing error is detected:

– the FE bit is set by hardware

– Data is transferred from the Shift register to the
SCIDR register.

– No interrupt is generated. However this bit rises
at the same time as the RDRF bit which itself
generates an interrupt.

The FE bit is reset by a SCISR register read oper-
ation followed by a SCIDR register read operation.

Break Character
– When a break character is received, the SCI

handles it as a framing error. To differentiate a
break character from a framing error, it is neces-
sary to read the SCIDR. If the received value is
00h, it is a break character. Otherwise it is a
framing error.

1

ST7MC1xx/ST7MC2xx

114/309

LINSCI™ SERIAL COMMUNICATION INTERFACE (SCI Mode) (cont’d)

Figure 64. SCI Baud Rate and Extended Prescaler Block Diagram

TRANSMITTER

RECEIVER

SCIETPR

SCIERPR

EXTENDED PRESCALER RECEIVER RATE CONTROL

EXTENDED PRESCALER TRANSMITTER RATE CONTROL

EXTENDED PRESCALER

 CLOCK

CLOCK

RECEIVER RATE

TRANSMITTER RATE

SCIBRR

SCP1

fCPU

 CONTROL

CONTROL

SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0

/PR/16

CONVENTIONAL BAUD RATE GENERATOR

EXTENDED RECEIVER PRESCALER REGISTER

EXTENDED TRANSMITTER PRESCALER REGISTER

1

ST7MC1xx/ST7MC2xx

153/309

MOTOR CONTROLLER (Cont’d)

10.6.6.5 Demagnetization (D) Event
At the end of the demagnetization phase, current
no longer goes through the free-wheeling diodes.
The voltage on the non-excited winding terminal
goes from one of the power rail voltages to the
common star connection voltage plus the BEMF
voltage. In some cases (if the BEMF voltage is
positive and the free-wheeling diodes are at
ground for example) this end of demagnetization
can be seen as a voltage edge on the selected
MCIx input and it is called a hardware demagneti-
zation event DH. See Table 30.

The D event filter can be used to select the
number of consecutive D events needed to gener-
ate the DH event.

If enabled by the HDM bit in the MCRB register,
the current value of the MTIM timer is captured in
register MDREG when this event occurs in order
to be able to simulate the demagnetization phase
for the next steps.

When enabled by the SDM bit in the MCRB regis-
ter, demagnetization can also be simulated by
comparing the MTIM timer with the MDREG regis-
ter. This kind of demagnetization is called simulat-
ed demagnetization DS.

If the HDM and SDM bits are both set, the first
event that occurs, triggers a demagnetization
event. For this to work correctly, a DS event must

not precede a DH event because the latter could
be detected as a Z event.

Simulated demagnetization can also be always
used if the HDM bit is reset and the SDM bit is set.
This mode works as a programmable masking
time between the CH and Z events. To drive the
motor securely, the masking time must be always
greater than the real demagnetization time in order
to avoid a spurious Z event.

When an event occurs, (either DH or DS) the DI bit
in the MISR register is set and an interrupt request
is generated if the DIM bit of register MIMR is set.
Caution 1: Due to the alternate automatic capture
and compare of the MTIM timer with MDREG reg-
ister by DH and DS events, the MDREG register
should be manipulated with special care.
Caution 2: Due to the event generation protection
in the MZREG, MCOMP and MDREG registers for
Soft Event generation (See “Built-in Checks and
Controls for simulated events” on page 175.), the
value written in the MDREG register in soft demag-
netisation mode (SDM=1) is checked by hardware
after the C event. If this value is less than or equal
to the MTIM counter value at this moment, the
Software demagnetisation event is generated im-
mediately and the MTIM current value overwrites
the value in the MDREG register to be able to re-
use the right demagnetisation time for another
simulated event generation.

Figure 81. D Event Generation Mechanism

MTIM [8-bit Up Counter] §

DS

MDREG [Dn]§

Compare

8
DH

DS

HDM bit

D = DH & HDM bit + DS & SDM bit DH

SDM bit

F(x)

D

§ Register updated on R event

SDM* bit
HDMn bit*

or
1

2

CPBn bit*

C
DS,H

Sample

To Z event detection

 * = Preload register, changes taken into account at next C event

To interrupt generator

MCRB Register

MCRB Register

SPLG bit
MCRC
Register

SR bit

MCRA Register

DH
MDFR Register

DEF[3:0]
DWF[3:0]

MDFR Register

DWF[3:0]

1

ST7MC1xx/ST7MC2xx

162/309

MOTOR CONTROLLER (Cont’d)

10.6.6.10 Commutation Noise Filter
For D event detection and for Z event detection
(when SPLG bit is set while DS[3:0] bits are reset),
sampling is done at fSCF during the PWM ON or
OFF time (“Sampling block” on page 159). To
avoid any erroneous detection due to PWM com-
mutation noise, an hardware filter of 1µs (for fPER-
IPH = 4Mhz) when PWM is put ON and when PWM
is put OFF has been implemented. This means

that, with sampling at 1MHz (1µs), due to this filter,
1 sample are ignored directly after the commuta-
tion.

This filter is active all the time for the D event and
it is active for the Z event when the SPLG bit is set
and DS[3:0] bits are cleared (meaning that the Z
event is sampled at high frequency during the
PWM ON or OFF time).

Table 34. Sensor/sensorless mode and D & Z event selection

Note: For fSCF selection, see Table 82

SR
bit

SPLG
bit

DS[3:0]

bits
Mode

OS[2:0]
bits use

Event detection
sampling clock

Sampling
behaviour for

Z event
detection

Window and
Event Filters

Behaviour of the
output PWM

0 0 000
Sensors
not used

Enabled

D: fSCF
Z: SA&OT config.

PWM frequency

At the end of
the off time of
the PWM sig-

nal

D
 W

in
do

w
 F

ilt
er

 D
W

F
[3

:0
] a

fte
r

C
 e

ve
nt

D
 E

ve
nt

 F
ilt

er
 D

E
F

[3
:0

] a
fte

r
D

W
F

Z
 W

in
do

w
 F

ilt
er

 Z
W

F
[3

:0
] a

fte
r

D
 e

ve
nt

Z
 E

ve
nt

 F
ilt

er
 Z

E
F

[3
:0

] a
fte

r
Z

W
F

S
ee

 T
ab

le
30

 o
n

pa
ge

15
2

“Before D” behaviour,
“between D and Z” be-
haviour and “after Z”

behaviour

0 1 000
Sensors
not used

Enabled
D: fSCF
Z: fSCF

During off time
or ON time of
the PWM sig-

nal

“Before D” behaviour,
“between D and Z” be-
haviour and “after Z”

behaviour

0 0
Not

equal to
000

Sensors
not used

Enabled

D: fSCF
Z: SA&OT config.

PWM frequency

During ON
time of the

PWM signal

“Before D” behaviour,
“between D and Z” be-
haviour and “after Z”

behaviour

0 1
Not

equal to
000

Sensors
not used

Enabled
D: fSCF
Z: fSCF

During ON
time of the

PWM signal

“Before D” behaviour,
“between D and Z” be-
haviour and “after Z”

behaviour

1 x xxx
Position
Sensors

used

OS1 dis-
abled

Z: fSCF

During OFF
time or ON
time of the

PWM signal

No Z Window Filter
Only Z Event Filter

is active in
Sensor mode

“Before Z” behaviour
and “after Z” behaviour

1

ST7MC1xx/ST7MC2xx

176/309

MOTOR CONTROLLER (Cont’d)

When using hardware commutation CH, the se-
quence of events needed is CH then D and finally
Z events and the value written in the registers are
checked at different times.

If SDM bit is set, meaning simulated demagnetisa-
tion, a value must be written in the MDREG regis-
ter to generate the simulated demagnetisation.
This value must be written after the C (either Cs or
CH) event preceding the simulated demagnetisa-
tion.

If SZ bit is set, meaning simulated zero-crossing
event, a value must be written in the MZREG reg-
ister to generate the simulated zero-crossing. This
value must be written after the D event (DH or DS)
preceding the simulated zero-crossing.

When using simulated commutation (CS), the re-
sult of the 8*8 hardware multiplication of the delay
manager is not taken in account and must be over-
written if the SC bit has been set in a Z event inter-
rupt and the sequence of events is broken mean-
ing that several consecutive simulated commuta-
tions can be implemented.

As soon as the SC bit is set in the MCRC register,
the system won’t necessarily expect a D event af-
ter a C event. This can be used for an application
in sensor mode with only one Hall Effect sensor for
example.

Be careful that the D and Z events are not ignored
by the peripheral, this means that for example if a

Z event occurs, the MTIM timer is reset. In Simu-
lated Commutation mode, the sequence D -> Z is
expected, and this order must be repected.

As the sequence of events may not be the same
when using simulated commutation, as soon as
the SC bit is set, the capture/compare feature and
protection on MCOMP register is reestablished
only after a write to the MCOMP register. This
means that as soon as the SC bit is set, if no write
access is done to the MCOMP register, no com-
mutation event will be generated, whatever the
value of MCOMP compared to MTIM at the time
SC is set. This does not depend on the running
mode: switched or autoswitched mode (SWA bit).
If software commutation event is used with a nor-
mal sequence of events C-->D-->Z, it is recom-
mended to write the MCOMP register during the Z
interrupt routine to avoid any spurious comparison
as several consecutive Cs events can be generat-
ed.

Note that two different simulated events can be
used in the same step (like DS followed by ZS).

Note also that for more precision, it is recommend-
ed to use the value captured from the preceding
hardware event to compute the value used to gen-
erate simulated events.

Figure 95, Figure 96 and Figure 97 shows details
of simulated event generation.

1

ST7MC1xx/ST7MC2xx

245/309

INSTRUCTION SET OVERVIEW (Cont’d)

Mnemo Description Function/Example Dst Src I1 H I0 N Z C

ADC Add with Carry A = A + M + C A M H N Z C

ADD Addition A = A + M A M H N Z C

AND Logical And A = A . M A M N Z

BCP Bit compare A, Memory tst (A . M) A M N Z

BRES Bit Reset bres Byte, #3 M

BSET Bit Set bset Byte, #3 M

BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C

BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C

CALL Call subroutine

CALLR Call subroutine relative

CLR Clear reg, M 0 1

CP Arithmetic Compare tst(Reg - M) reg M N Z C

CPL One Complement A = FFH-A reg, M N Z 1

DEC Decrement dec Y reg, M N Z

HALT Halt 1 0

IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C

INC Increment inc X reg, M N Z

JP Absolute Jump jp [TBL.w]

JRA Jump relative always

JRT Jump relative

JRF Never jump jrf *

JRIH Jump if ext. INT pin = 1 (ext. INT pin high)

JRIL Jump if ext. INT pin = 0 (ext. INT pin low)

JRH Jump if H = 1 H = 1 ?

JRNH Jump if H = 0 H = 0 ?

JRM Jump if I1:0 = 11 I1:0 = 11 ?

JRNM Jump if I1:0 <> 11 I1:0 <> 11 ?

JRMI Jump if N = 1 (minus) N = 1 ?

JRPL Jump if N = 0 (plus) N = 0 ?

JREQ Jump if Z = 1 (equal) Z = 1 ?

JRNE Jump if Z = 0 (not equal) Z = 0 ?

JRC Jump if C = 1 C = 1 ?

JRNC Jump if C = 0 C = 0 ?

JRULT Jump if C = 1 Unsigned <

JRUGE Jump if C = 0 Jmp if unsigned >=

JRUGT Jump if (C + Z = 0) Unsigned >

ST7MC1xx/ST7MC2xx

248/309

12.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as “absolute maxi-
mum ratings” may cause permanent damage to
the device. This is a stress rating only and func-
tional operation of the device under these condi-

tions is not implied. Exposure to maximum rating
conditions for extended periods may affect device
reliability.

12.2.1 Voltage Characteristics

12.2.2 Current Characteristics

Notes:
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional internal reset
is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter).
To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for
RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to VDD or VSS.
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be
respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD
while a negative injection is induced by VIN<VSS.
3. All power (VDD) and ground (VSS) lines must always be connected to the external supply.
4. Negative injection disturbs the analog performance of the device. See note in “ADC Accuracy with VDD=5.0V” on
page 284.
For best reliability, it is recommended to avoid negative injection of more than 1.6mA
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive
and negative injected currents (instantaneous values). These results are based on characterisation with ΣIINJ(PIN) maxi-
mum current injection on four I/O port pins of the device.

Symbol Ratings Maximum value Unit

VDD - VSS Supply voltage 6.5

VVPP - VSS Programming Voltage 13

VIN Input voltage on any pin 1) & 2) VSS-0.3 to VDD+0.3

|ΔVDDx| and |ΔVSSx| Variations between different digital power pins 50
mV

|VSSA - VSSx| Variations between digital and analog ground pins 50

VESD(HBM) Electro-static discharge voltage (Human Body Model)
see section 12.7.3 on page 263

VESD(CDM)
Electro-static discharge voltage
(Charged Device Model)

Symbol Ratings Maximum value Unit

IVDD
Total current into VDD power lines
(source) 3)

32-pin devices 75

mA

44-pin devices 125

56, 64, 80-pin
devices

175

IVSS
Total current out of VSS ground lines
(sink) 3)

32-pin devices 75

44-pin devices 125

56, 64, 80-pin
devices

175

IIO

Output current sunk by any standard I/O and control pin 25

Output current sunk by any high sink I/O pin 50

Output current source by any I/Os and control pin - 25

IINJ(PIN)
 2) & 4)

Injected current on VPP pin ± 5

Injected current on RESET pin ± 5

Injected current on OSC1 and OSC2 pins ± 5

Injected current on any other pin 5) ± 5

ΣIINJ(PIN)
 2) Total injected current (sum of all I/O and control pins) 5) ± 20

ST7MC1xx/ST7MC2xx

270/309

12.10 TIMER PERIPHERAL CHARACTERISTICS

Subject to general operating conditions for VDD,
fOSC, and TA unless otherwise specified.

Refer to I/O port characteristics for more details on
the input/output alternate function characteristics
(output compare, input capture, external clock,
PWM output...).

12.10.1 8-Bit PWM-ART Auto-Reload Timer

12.10.2 16-Bit Timer

Symbol Parameter Conditions Min Typ Max Unit

tres(PWM) PWM resolution time
1 tCPU

fCPU=8MHz 125 ns

fEXT ART external clock frequency 0 fCPU/2
MHz

fPWM PWM repetition rate 0 fCPU/2

ResPWM PWM resolution 8 bit

VOS PWM/DAC output step voltage VDD=5V, Res=8-bits 20 mV

Symbol Parameter Conditions Min Typ Max Unit

tw(ICAP)in Input capture pulse time 1 tCPU

tres(PWM) PWM resolution time
2 tCPU

fCPU=8MHz 250 ns

fEXT Timer external clock frequency 0 fCPU/4 MHz

fPWM PWM repetition rate 0 fCPU/4 MHz

ResPWM PWM resolution 16 bit

ST7MC1xx/ST7MC2xx

296/309

14.4 ST7 APPLICATION NOTES

Table 93. ST7 Application Notes

IDENTIFICATION DESCRIPTION
APPLICATION EXAMPLES
AN1658 SERIAL NUMBERING IMPLEMENTATION
AN1720 MANAGING THE READ-OUT PROTECTION IN FLASH MICROCONTROLLERS
AN1755 A HIGH RESOLUTION/PRECISION THERMOMETER USING ST7 AND NE555
AN1756 CHOOSING A DALI IMPLEMENTATION STRATEGY WITH ST7DALI

AN1812
A HIGH PRECISION, LOW COST, SINGLE SUPPLY ADC FOR POSITIVE AND NEGATIVE IN-
PUT VOLTAGES

EXAMPLE DRIVERS
AN 969 SCI COMMUNICATION BETWEEN ST7 AND PC
AN 970 SPI COMMUNICATION BETWEEN ST7 AND EEPROM
AN 971 I²C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM
AN 972 ST7 SOFTWARE SPI MASTER COMMUNICATION
AN 973 SCI SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT TIMER
AN 974 REAL TIME CLOCK WITH ST7 TIMER OUTPUT COMPARE
AN 976 DRIVING A BUZZER THROUGH ST7 TIMER PWM FUNCTION
AN 979 DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC
AN 980 ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE
AN1017 USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER
AN1041 USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOÏD)
AN1042 ST7 ROUTINE FOR I²C SLAVE MODE MANAGEMENT
AN1044 MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS
AN1045 ST7 S/W IMPLEMENTATION OF I²C BUS MASTER
AN1046 UART EMULATION SOFTWARE
AN1047 MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERALS
AN1048 ST7 SOFTWARE LCD DRIVER
AN1078 PWM DUTY CYCLE SWITCH IMPLEMENTING TRUE 0% & 100% DUTY CYCLE
AN1082 DESCRIPTION OF THE ST72141 MOTOR CONTROL PERIPHERALS REGISTERS
AN1083 ST72141 BLDC MOTOR CONTROL SOFTWARE AND FLOWCHART EXAMPLE
AN1105 ST7 PCAN PERIPHERAL DRIVER
AN1129 PWM MANAGEMENT FOR BLDC MOTOR DRIVES USING THE ST72141

AN1130
AN INTRODUCTION TO SENSORLESS BRUSHLESS DC MOTOR DRIVE APPLICATIONS
WITH THE ST72141

AN1148 USING THE ST7263 FOR DESIGNING A USB MOUSE
AN1149 HANDLING SUSPEND MODE ON A USB MOUSE
AN1180 USING THE ST7263 KIT TO IMPLEMENT A USB GAME PAD
AN1276 BLDC MOTOR START ROUTINE FOR THE ST72141 MICROCONTROLLER
AN1321 USING THE ST72141 MOTOR CONTROL MCU IN SENSOR MODE
AN1325 USING THE ST7 USB LOW-SPEED FIRMWARE V4.X
AN1445 EMULATED 16-BIT SLAVE SPI
AN1475 DEVELOPING AN ST7265X MASS STORAGE APPLICATION
AN1504 STARTING A PWM SIGNAL DIRECTLY AT HIGH LEVEL USING THE ST7 16-BIT TIMER
AN1602 16-BIT TIMING OPERATIONS USING ST7262 OR ST7263B ST7 USB MCUS
AN1633 DEVICE FIRMWARE UPGRADE (DFU) IMPLEMENTATION IN ST7 NON-USB APPLICATIONS
AN1712 GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
AN1713 SMBUS SLAVE DRIVER FOR ST7 I2C PERIPHERALS
AN1753 SOFTWARE UART USING 12-BIT ART

ST7MC1xx/ST7MC2xx

297/309

AN1947 ST7MC PMAC SINE WAVE MOTOR CONTROL SOFTWARE LIBRARY
GENERAL PURPOSE
AN1476 LOW COST POWER SUPPLY FOR HOME APPLIANCES
AN1526 ST7FLITE0 QUICK REFERENCE NOTE
AN1709 EMC DESIGN FOR ST MICROCONTROLLERS
AN1752 ST72324 QUICK REFERENCE NOTE
PRODUCT EVALUATION
AN 910 PERFORMANCE BENCHMARKING
AN 990 ST7 BENEFITS VS INDUSTRY STANDARD
AN1077 OVERVIEW OF ENHANCED CAN CONTROLLERS FOR ST7 AND ST9 MCUS
AN1086 U435 CAN-DO SOLUTIONS FOR CAR MULTIPLEXING
AN1103 IMPROVED B-EMF DETECTION FOR LOW SPEED, LOW VOLTAGE WITH ST72141
AN1150 BENCHMARK ST72 VS PC16
AN1151 PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876
AN1278 LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS
PRODUCT MIGRATION
AN1131 MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324
AN1322 MIGRATING AN APPLICATION FROM ST7263 REV.B TO ST7263B
AN1365 GUIDELINES FOR MIGRATING ST72C254 APPLICATIONS TO ST72F264
AN1604 HOW TO USE ST7MDT1-TRAIN WITH ST72F264
AN2200 GUIDELINES FOR MIGRATING ST7LITE1X APPLICATIONS TO ST7FLITE1XB
PRODUCT OPTIMIZATION
AN 982 USING ST7 WITH CERAMIC RESONATOR
AN1014 HOW TO MINIMIZE THE ST7 POWER CONSUMPTION
AN1015 SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE
AN1040 MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES
AN1070 ST7 CHECKSUM SELF-CHECKING CAPABILITY
AN1181 ELECTROSTATIC DISCHARGE SENSITIVE MEASUREMENT
AN1324 CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
AN1502 EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY
AN1529 EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY

AN1530
ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILLA-
TOR

AN1605 USING AN ACTIVE RC TO WAKEUP THE ST7LITE0 FROM POWER SAVING MODE
AN1636 UNDERSTANDING AND MINIMIZING ADC CONVERSION ERRORS
AN1828 PIR (PASSIVE INFRARED) DETECTOR USING THE ST7FLITE05/09/SUPERLITE
AN1946 SENSORLESS BLDC MOTOR CONTROL AND BEMF SAMPLING METHODS WITH ST7MC
AN1953 PFC FOR ST7MC STARTER KIT
AN1971 ST7LITE0 MICROCONTROLLED BALLAST
PROGRAMMING AND TOOLS
AN 978 ST7 VISUAL DEVELOP SOFTWARE KEY DEBUGGING FEATURES
AN 983 KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE
AN 985 EXECUTING CODE IN ST7 RAM
AN 986 USING THE INDIRECT ADDRESSING MODE WITH ST7
AN 987 ST7 SERIAL TEST CONTROLLER PROGRAMMING
AN 988 STARTING WITH ST7 ASSEMBLY TOOL CHAIN
AN1039 ST7 MATH UTILITY ROUTINES

Table 93. ST7 Application Notes

IDENTIFICATION DESCRIPTION

