E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Size32-Bit Single-CoreSpeed48MHzConnectivityi²C, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, LVD, POR, PWM, WDTNumber of I/O84Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6V	2000	
Core Size32-Bit Single-CoreSpeed48MHzConnectivityPC, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I2S, LCD, LVD, POR, PWM, WDTNumber of I/O84Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Product Status	Active
Speed48MHzConnectivityI°C, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I°S, LCD, LVD, POR, PWM, WDTNumber of I/O84Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Core Processor	ARM® Cortex®-M0+
Connectivityi°C, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, I°S, LCD, LVD, POR, PWM, WDTNumber of I/O84Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Core Size	32-Bit Single-Core
PeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, LVD, POR, PWM, WDTNumber of I/O84Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Speed	48MHz
Number of I/O84Program Memory Size128KB (128K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Connectivity	I ² C, LINbus, SPI, UART/USART
Program Memory Size128KB (128K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, LVD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size16K × 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Number of I/O	84
EEPROM Size-RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Program Memory Size	128KB (128K x 8)
RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	EEPROM Size	-
Data ConvertersA/D - 16bit; D/A - 12bitOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	RAM Size	16K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Data Converters	A/D - 16bit; D/A - 12bit
Mounting Type Surface Mount Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Oscillator Type	Internal
Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 100-LQFP (14x14)	Mounting Type	Surface Mount
	Package / Case	100-LQFP
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl36z128vll4r	Supplier Device Package	100-LQFP (14x14)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl36z128vll4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V_{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	V	
V_{LVW4H}	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range		±60	_	mV	-
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	 Level 1 falling (LVWV = 00) 	1.74	1.80	1.86	v	
V_{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40		mV	-
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	_
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	-

 Table 6.
 V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET_b) • 2.7 V ≤ V _{DD} ≤ 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	1, 2
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -2.5 \text{ mA}$	V _{DD} – 0.5	—	V	
V _{OH}	Output high voltage — High drive pad (except RESET_b) • 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -20 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -10 mA	$V_{DD} - 0.5$ $V_{DD} - 0.5$		V V	1, 2
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — Normal drive pad • 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA		0.5 0.5	V V	1

Symbol	Description		Тур.	Max	Unit	Note
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V		2.9	3.5	mA	3
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled		2.2	2.8	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus, at 3.0 V	_	1.6	2.1	mA	3
I _{DD_VLPRCO_CM}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash, at 3.0 V		798		μΑ	5
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V	_	167	336	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	192	354	μA	6
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	257	431	μA	4, 6
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	112	286	μΑ	6
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	306	328	μA	_
		at 50 °C	322	349	μA]
		at 70 °C	348	382	μA]
		at 85 °C	384	433	μA	
		at 105 °C	481	578	μA	
I _{DD_VLPS}	Very-low-power stop mode current at	at 25 °C	2.71	5.03	μA	
	3.0 V	at 50 °C	7.05	11.94	μA	
		at 70 °C	15.80	26.87	μA	
		at 85 °C	29.60	47.30	μA	
		at 105 °C	69.13	106.04	μA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description		Тур.	Max	Unit	Note
I _{DD_LLS}	Low leakage stop mode current at 3.0	at 25 °C	2.00	2.7	μA	_
	V	at 50 °C	3.96	5.14	μA	1
		at 70 °C	7.77	10.71	μA	1
		at 85 °C	14.15	18.79	μA	1
		at 105 °C	33.20	43.67	μA	1
I _{DD_VLLS3}	Very low-leakage stop mode 3 current	at 25 °C	1.5	2.2	μA	_
	at 3.0 V	at 50 °C	2.83	3.55	μA	
		at 70 °C	5.53	7.26	μA	
		at 85 °C	9.92	12.71	μA	
		at 105 °C	22.90	29.23	μA	-
I _{DD_VLLS1}	at 3.0V	at 25 °C	0.71	1.2	μA	_
		at 50 °C	1.27	1.9	μA	
		at 70 °C	2.48	3.51	μA	-
		at 85 °C	4.65	6.29	μA	
		at 105 °C	11.55	14.34	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.41	0.9	μA	_
	(SMC_STOPCTRL[PORPO] = 0) at 3.0	at 50 °C	0.96	1.56	μA	
	v	at 70 °C	2.17	3.1	μA	
		at 85 °C	4.35	5.32	μA	-
		at 105 °C	11.24	14.00	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.23	0.69	μA	7
		at 50 °C	0.77	1.35	μA	1
		at 70 °C	1.98	2.52	μA	1
		at 85 °C	4.16	5.14	μA	1
		at 105 °C	11.05	13.80	μA	1

Table 9.	Power consum	ption operating	behaviors	(continued)
----------	--------------	-----------------	-----------	-------------

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.

3. MCG configured for FEI mode.

4. Incremental current consumption from peripheral activity is not included.

5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.

6. MCG configured for BLPI mode.

7. No brownout.

Symbol	Description		Temperature (°C)				Unit		
			-40	25	50	70	85	105	
I _{IREFSTEN4MHz}		4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.		56	56	56	56	56	μA
I _{IREFSTEN32KHz}		32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.		52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock a Measured by entering STOP o with the crystal enabled.		206	228	237	245	251	258	μA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock	VLLS1	440	490	540	560	570	580	nA
	adder by means of the OSC0_CR[EREFSTEN and	VLLS3	440	490	540	560	570	580	
	EREFSTEN] bits. Measured	LLS	490	490	540	560	570	680	
	by entering all modes with the crystal enabled.	VLPS	510	560	560	560	610	680	
		STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.		22	22	22	22	22	22	μA
I _{RTC}	the device in VLLS1 mode with kHz crystal enabled by means RTC_CR[OSCE] bit and the R	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz		357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	115200 baud rate. Includes selected clock source power consumption.	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	86	μA
	compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	OSCERCLK (4 MHz external crystal)	235	256	265	274	280	287	

Table 10. Low power mode peripheral adders — typical value

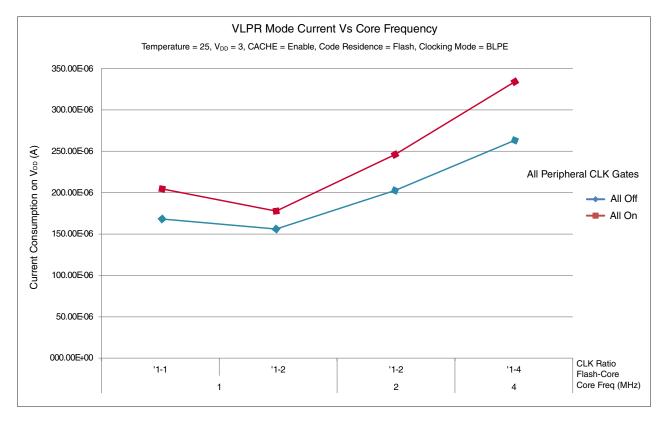


Figure 4. VLPR mode current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	12	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	8	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	7	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	4	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	М	_	2,3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 8 MHz (crystal), f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

3.1.1 SWD electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1		ns
JЗ	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10		ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	—	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 17. SWD full voltage range electricals

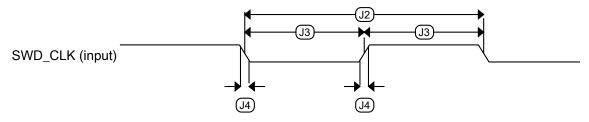


Figure 5. Serial wire clock input timing

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
Δf_{dco_t}		trimmed average DCO output Itage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}	Total deviation of t frequency over fixe range of 0–70 °C	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C		4	—	MHz	
∆f _{intf_ft}	(fast clock) over te	on of internal reference clock emperature and voltage — nominal V _{DD} and 25 °C	_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al V _{DD} and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	(3/5) x f _{ints_t}	_	—	kHz		
f _{loc_high}	Loss of external cl	(16/5) x f _{ints_t}	_	—	kHz		
		FI	L				
f _{fll_ref}	FLL reference frec	31.25		39.0625	kHz		
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) 1280 × f _{fll_ref}	40	41.94	48	MHz	
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS = 00) 732 × f _{fll_ref}		23.99	_	MHz	5, 6
		Mid range (DRS = 01) $1464 \times f_{fll_ref}$		47.97	—	MHz	
J _{cyc_fll}	FLL period jitter • f _{VCO} = 48 M	Hz		180	—	ps	7
t _{fll_acquire}	FLL target frequer	ncy acquisition time		_	1	ms	8
		PI	LL				
f _{vco}	VCO operating fre	quency	48.0	_	100	MHz	
I _{pll}		rent Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μΑ	9
I _{pll}	PLL operating current • PLL at 48 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 24)		_	600	_	μA	9
f _{pll_ref}	PLL reference free	quency range	2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					10
●cyc_pll	• f _{vco} = 48 MH	Iz	_	120	_	ps	
				1			1

Table 18.	MCG s	pecifications	(continued))
-----------	-------	---------------	-------------	---

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					10
	• f _{vco} = 48 MHz	—	1350	_	ps	
	• f _{vco} = 100 MHz	-	600	_	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_		150×10^{-6} + 1075(1/ f_{pll_ref})	S	11

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{ft}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	-	500	—	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
		_	1.2	_	mA	

Table 19. Oscillator DC electrical specifications

Peripheral operating requirements and behaviors

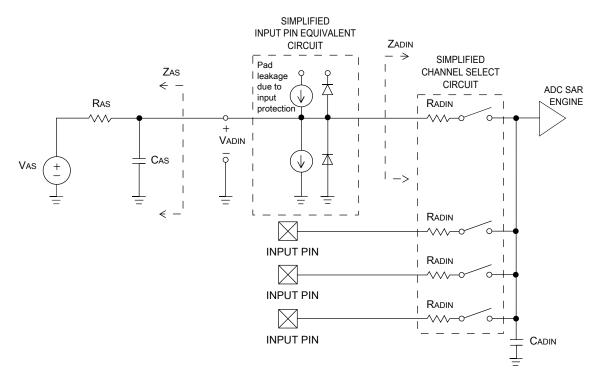


Figure 7. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC =	1.2	2.4	3.9	MHz	t _{ADACK} =
	asynchronous clock source	0	2.4	4.0	6.1	MHz	1/f _{ADACK}
	CIOCK SOULCE	• ADLPC = 1, ADHSC = 1	3.0	5.2	7.3	MHz	
f _{ADACK}		• ADLPC = 0, ADHSC = 0	4.4	6.2	9.5	MHz	
		• ADLPC = 0, ADHSC = 1					
	Sample Time	See Reference Manual chapte	r for sample	times	1	1	ł
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	—	±0.7	-1.1 to +1.9	LSB ⁴	5
		12-bit modes	_	±0.2	-0.3 to 0.5		

Table 26.	16-bit ADC	characteristics	(V _{REFH} =	V _{DDA} ,	$V_{REFL} = V_{SSA}$)	
-----------	------------	-----------------	----------------------	--------------------	------------------------	--

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—		20	μA
V _{AIN}	Analog input voltage	$V_{SS} - 0.3$		V _{DD}	V
V _{AIO}	Analog input offset voltage	—		20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	_	mV
	• CR0[HYSTCTR] = 01	—	10	_	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V
V _{CMPOI}	Output low	—		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

3.6.2 CMP and 6-bit DAC electrical specifications Table 27. Comparator and 6-bit DAC electrical specifications

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = V_{reference}/64

Peripheral operating requirements and behaviors

3.6.3.2 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		—	250	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	—	—	900	μA	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	—	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	—	μV/C	6
T_{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	—	—	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550		_		
	• Low power (SP _{LP})	40		_		

1. Settling within ± 1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

34

Peripheral operating requirements and behaviors

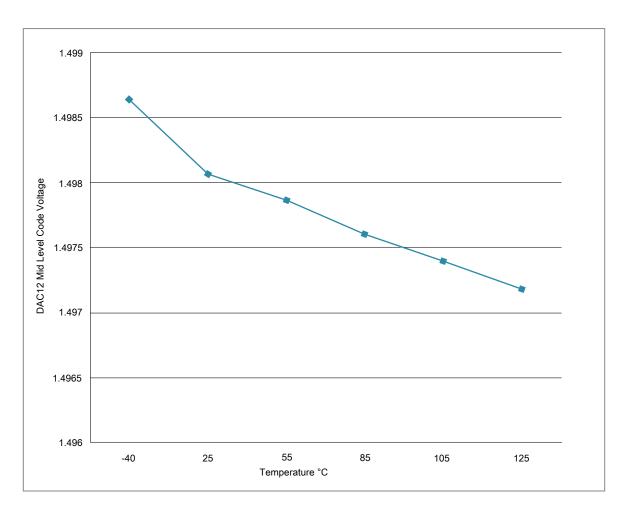


Figure 13. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	—
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	-
6	t _{SU}	Data setup time (inputs)	18	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	15	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	-
	t _{FO}	Fall time output				

Table 30. SPI master mode timing on slew rate disabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0		ns	_

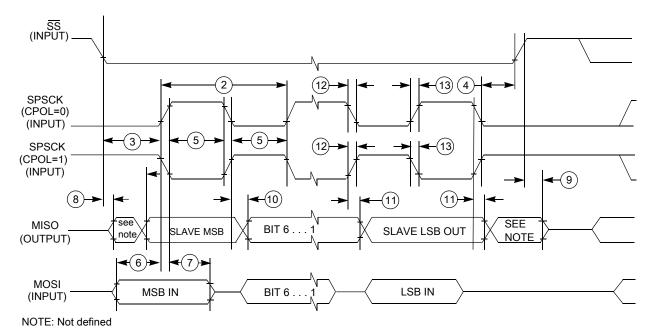

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

Table 33. SPI slave mode timing on slew rate enabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2.

- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state З.
- 4. Hold time to high-impedance state

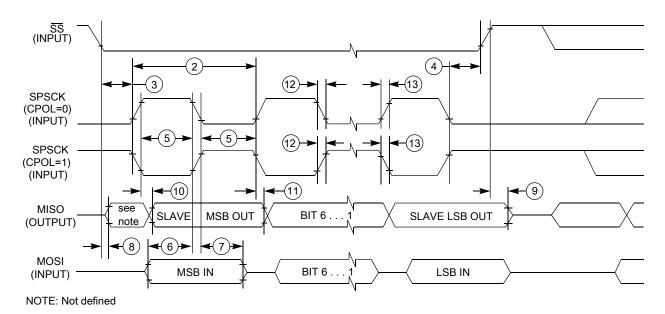
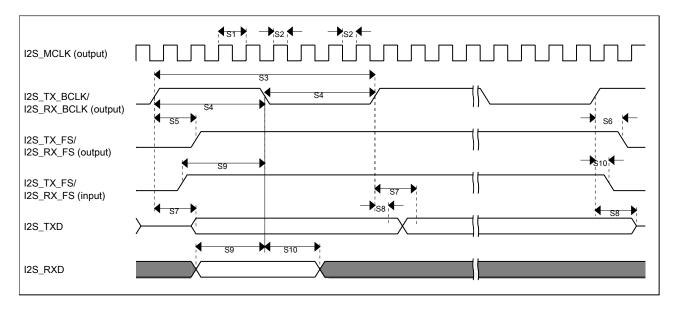


Figure 17. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 34. I2C timing


Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	—	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ³ , ⁶	—	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	-	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	75	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	-	ns

Table 37. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Figure 21. I2S/SAI timing — master modes

Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0		128	μA
TSI_EN	Power consumption in enable mode		100		μA
TSI_DIS	Power consumption in disable mode		1.2		μA
TSI_TEN	TSI analog enable time		66		μs
TSI_CREF	TSI reference capacitor		1.0		pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19		1.03	V

Table 39.	TSI electrical s	pecifications ((continued)
-----------	------------------	-----------------	-------------

3.9.2 LCD electrical characteristics Table 40. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency					
	• GCR[FFR]=0	23.3	—	73.1	Hz	
	• GCR[FFR]=1	46.6	_	146.2	Hz	
C_{LCD}	LCD charge pump capacitance — nominal value	_	100	_	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100	—	nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2
V _{IREG}	V _{IREG}				V	3
	• RVTRIM=0000	_	0.91	_		
	• RVTRIM=1000	_	0.92	_		
	• RVTRIM=0100	_	0.93	_		
	• RVTRIM=1100	_	0.94	_		
	• RVTRIM=0010	_	0.96	_		
	• RVTRIM=1010	_	0.97	_		
	• RVTRIM=0110	_	0.98	_		
	• RVTRIM=1110	_	0.99	_		
	• RVTRIM=0001	_	1.01	_		
	• RVTRIM=1001	_	1.02	_		
	• RVTRIM=0101	_	1.03	_		
	• RVTRIM=1101	_	1.05	_		
	• RVTRIM=0011	_	1.06	_		
	• RVTRIM=1011	_	1.07	_		

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
64-pin LQFP	98ASS23234W		
64-pin MAPBGA	98ASA00420D		
100-pin LQFP	98ASS23308W		
121-pin MAPBGA	98ASA00344D		

5 Pinout

5.1 KL36 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

121 BGA	100 LQFP	64 BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
E4	1	A1	1	PTE0	DISABLED	LCD_P48	PTE0	SPI1_MISO	UART1_TX	RTC_ CLKOUT	CMP0_OUT	I2C1_SDA	LCD_P48
E3	2	B1	2	PTE1	DISABLED	LCD_P49	PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	LCD_P49
E2	3	-	-	PTE2	DISABLED	LCD_P50	PTE2	SPI1_SCK					LCD_P50
F4	4	-	-	PTE3	DISABLED	LCD_P51	PTE3	SPI1_MISO			SPI1_MOSI		LCD_P51
H7	5	-	-	PTE4	DISABLED	LCD_P52	PTE4	SPI1_PCS0					LCD_P52
G4	6	-	-	PTE5	DISABLED	LCD_P53	PTE5						LCD_P53
F3	7	-	-	PTE6	DISABLED	LCD_P54	PTE6			I2S0_MCLK	audioUSB_ SOF_OUT		LCD_P54
E6	8	-	3	VDD	VDD	VDD							
G7	9	C4	4	VSS	VSS	VSS							
L6	-	-	-	VSS	VSS	VSS							
H1	14	E1	5	PTE16	ADC0_DP1/ ADC0_SE1	LCD_P55/ ADC0_DP1/ ADC0_SE1	PTE16	SPI0_PCS0	UART2_TX	TPM_ CLKIN0			LCD_P55
H2	15	D1	6	PTE17	ADC0_DM1/ ADC0_SE5a	LCD_P56/ ADC0_DM1/ ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	TPM_ CLKIN1		LPTMR0_ ALT3	LCD_P56
J1	16	E2	7	PTE18	ADC0_DP2/ ADC0_SE2	LCD_P57/ ADC0_DP2/ ADC0_SE2	PTE18	SPI0_MOSI		I2C0_SDA	SPI0_MISO		LCD_P57

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL36
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 64 = 64 KB 128 = 128 KB 256 = 256 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm)
СС	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	R = Tape and reel

Table 41. Part number fields descriptions

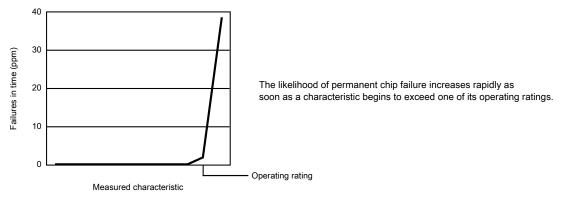
8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

