

Welcome to E-XFL.COM

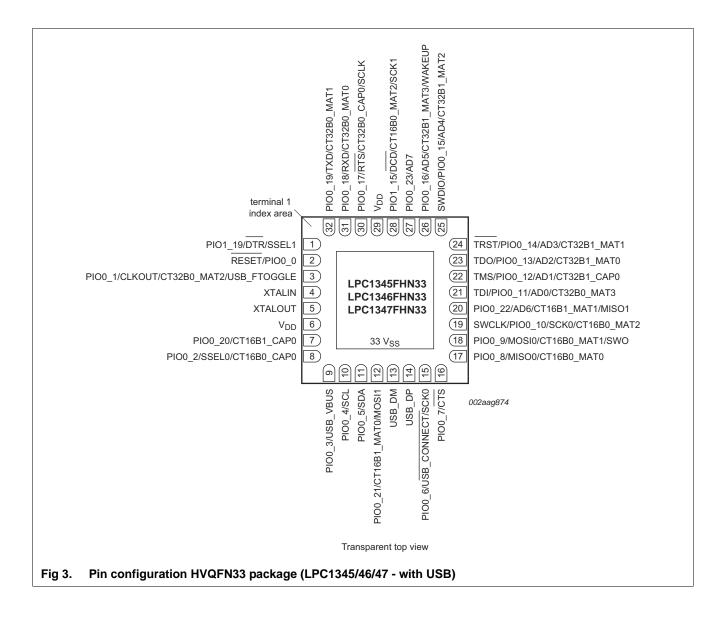
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	40
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1346fbd48-151


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NXP Semiconductors

LPC1315/16/17/45/46/47

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

6.2 Pin description

Symbol					<u>e[1]</u>		Description
	LQFP64	LQFP48	HVQFN33		Reset state ^[1]	Type	
RESET/PIO0_0	4	3	2	[2]	I; PU	I	RESET — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. This pin also serves as the debug select input. LOW level selects the JTAG boundary scan. HIGH level selects the ARM SWD debug mode.
					-	I/O	PIO0_0 — General purpose digital input/output pin.
PIO0_1/CLKOUT/ CT32B0_MAT2	5	4	3	<u>[3]</u>	I; PU	I/O	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler.
					-	0	CLKOUT — Clockout pin.
					-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
PIO0_2/SSEL0/	13	10	8	[3]	I; PU	I/O	PIO0_2 — General purpose digital input/output pin.
CT16B0_CAP0						I/O	SSEL0 — Slave select for SSP0.
						I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
PIO0_3	19	14	9	[3]	I; PU	I/O	PIO0_3 — General purpose digital input/output pin.
PIO0_4/SCL	20	15	10	[4]	IA	I/O	PIO0_4 — General purpose digital input/output pin (open-drain).
					-	I/O	SCL — I ² C-bus clock input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_5/SDA	21	16	11	[4]	IA	I/O	PIO0_5 — General purpose digital input/output pin (open-drain).
					-	I/O	SDA — I ² C-bus data input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_6/R/	29	22	15	[3]	I; PU	I/O	PIO0_6 — General purpose digital input/output pin.
SCK0					-	-	R — Reserved.
					-	I/O	SCK0 — Serial clock for SSP0.
PIO0_7/CTS	30	23	16	[5]	I; PU	I/O	PIO0_7 — General purpose digital input/output pin (high-current output driver).
					-	I	CTS — Clear To Send input for USART.
PIO0_8/MISO0/	36	27	17	[3]	I; PU	I/O	PIO0_8 — General purpose digital input/output pin.
CT16B0_MAT0					-	I/O	MISO0 — Master In Slave Out for SSP0.
					-	0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
PIO0_9/MOSI0/	37	28	18	[3]	I; PU	I/O	PIO0_9 — General purpose digital input/output pin.
CT16B0_MAT1/					-	I/O	MOSI0 — Master Out Slave In for SSP0.
SWO					-	0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
					-	0	SWO — Serial wire trace output.

LPC1315_16_17_45_46_47

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

Table 4.	Fill description (LFV	51343/	40/47 - W		"	
Symbol	LQFP64	LQFP48	HVQFN33	Reset state ^[1]	Type	Description
VREFP	64	-	-	-	-	ADC positive reference voltage: This should be nominally the same voltage as V_{DDA} but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. This pin should be tied to 3.3 V if the ADC is not used.
V _{SSA}	55	-	-	-	-	analog ground: 0 V reference. This should nominally be the same voltage as V_{SS} , but should be isolated to minimize noise and error.
V _{DD}	10 33 58	44	6; 29	-	-	Supply voltage to the internal regulator and the external rail. On LQFP48 and HVQFN33 packages, this pin is also connected to the 3.3 V ADC supply and reference voltage.
V_{SS}	7; 54	5; 41	33	-	-	Ground.

Table 4. Pin description (LPC1345/46/47 - with USB)

[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled; F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.

[2] See Figure 33 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode.

[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32).

- [4] I²C-bus pins compliant with the I²C-bus specification for I²C standard mode, I²C Fast-mode, and I²C Fast-mode Plus.
- [5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see <u>Figure 32</u>); includes high-current output driver.
- [6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 32</u>); includes programmable digital input glitch filter.
- [7] WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 32</u>); includes digital input glitch filter.
- [8] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant.
- [9] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.15

32-bit ARM Cortex-M3 microcontroller

• Software interrupt generation.

7.6.2 Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

7.7 IOCON block

The IOCON block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals.

Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.

7.7.1 Features

- Programmable pull-up, pull-down, or repeater mode.
- All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (V_{DD} = 3.3 V) if their pull-up resistor is enabled.
- Programmable pseudo open-drain mode.
- Programmable 10-ns glitch filter on pins PIO0_22, PIO0_23, and PIO0_11 to PIO0_16. The glitch filter is turned off by default.
- Programmable hysteresis.
- Programmable input inverter.

7.8 General Purpose Input/Output GPIO

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation.

LPC1315/16/17/45/46/47 use accelerated GPIO functions:

- GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing can be achieved.
- Entire port value can be written in one instruction.

Any GPIO pin providing a digital function can be programmed to generate an interrupt on a level, a rising or falling edge, or both.

The GPIO block consists of three parts:

- 1. The GPIO ports.
- 2. The GPIO pin interrupt block to control eight GPIO pins selected as pin interrupts.
- 3. Two GPIO group interrupt blocks to control two combined interrupts from all GPIO pins.

32-bit ARM Cortex-M3 microcontroller

receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C is a multi-master bus and can be controlled by more than one bus master connected to it.

7.12.1 Features

- The I²C-interface is an I²C-bus compliant interface with open-drain pins. The I²C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- The I²C-bus controller supports multiple address recognition and a bus monitor mode.

7.13 12-bit ADC

The LPC1315/16/17/45/46/47 contains one ADC. It is a single 12-bit successive approximation ADC with eight channels.

7.13.1 Features

- 12-bit successive approximation ADC.
- Input multiplexing among 8 pins and three internal sources.
- Low-power mode.
- 10-bit double-conversion rate mode (conversion rate of up to 1 Msample/s).
- Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage level).
- 12-bit conversion rate of up to 500 kHz.
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition of input pin or timer match signal.
- On the LQFP64 package, power and reference pins (V_{DDA}, V_{SSA}, VREFP, VREFN) are brought out on separate pins for superior noise immunity.

7.14 General purpose external event counter/timers

The LPC1315/16/17/45/46/47 includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

32-bit ARM Cortex-M3 microcontroller

7.14.1 Features

- A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.
- Counter or timer operation.
- One capture channel per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event may also generate an interrupt.
- Four match registers per timer that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Up to four external outputs corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- The timer and prescaler may be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.

7.15 Repetitive Interrupt (RI) timer

The repetitive interrupt timer provides a free-running 48-bit counter which is compared to a selectable value, generating an interrupt when a match occurs. Any bits of the timer/compare can be masked such that they do not contribute to the match detection. The repetitive interrupt timer can be used to create an interrupt that repeats at predetermined intervals.

7.15.1 Features

- 48-bit counter running from the main clock. Counter can be free-running or can be reset when an RIT interrupt is generated.
- 48-bit compare value.
- 48-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This allows for combinations not possible with a simple compare.
- Support for ETM timestamp generator.

7.16 System tick timer

The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).

7.17 Windowed WatchDog Timer (WWDT)

The purpose of the watchdog is to reset the controller if software fails to periodically service it within a programmable time window.

32-bit ARM Cortex-M3 microcontroller

controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, a register is provided for shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider which provides even better power control.

7.18.5.1 Power profiles

The power consumption in Active and Sleep modes can be optimized for the application through simple calls to the power profile. The power configuration routine configures the LPC1315/16/17/45/46/47 for one of the following power modes:

- Default mode corresponding to power configuration after reset.
- · CPU performance mode corresponding to optimized processing capability.
- Efficiency mode corresponding to optimized balance of current consumption and CPU performance.
- Low-current mode corresponding to lowest power consumption.

In addition, the power profile includes routines to select the optimal PLL settings for a given system clock and PLL input clock.

Remark: When using the USB, configure the LPC1345/46/47 in Default mode.

7.18.5.2 Sleep mode

When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the ARM core.

In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

7.18.5.3 Deep-sleep mode

In Deep-sleep mode, the LPC1315/16/17/45/46/47 is in Sleep-mode and all peripheral clocks and all clock sources are off with the exception of the IRC. The IRC output is disabled unless the IRC is selected as input to the watchdog timer. In addition all analog blocks are shut down and the flash is in stand-by mode. In Deep-sleep mode, the user has the option to keep the watchdog oscillator and the BOD circuit running for self-timed wake-up and BOD protection.

The LPC1315/16/17/45/46/47 can wake up from Deep-sleep mode via reset, selected GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity.

Deep-sleep mode saves power and allows for short wake-up times.

LPC1315_16_17_45_46_47

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
I _{ОН}	HIGH-level output current	$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V};$ $\text{V}_{\text{OH}} = \text{V}_{\text{DD}} - 0.4 \text{ V}$		-4	-	-	mA
		$\begin{array}{l} 2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.5 \text{ V}; \\ \text{V}_{\text{OH}} = \text{V}_{\text{DD}} - 0.4 \text{ V} \end{array}$		-3	-	-	mA
l _{OL}	LOW-level output	$2.5~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V};~\text{V}_{OL}$ = 0.4 V		4	-	-	mA
	current	$2.0~\text{V} \leq \text{V}_{DD}~<2.5$ V; V_{OL} = 0.4 V		3	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V	[15]	-	-	-45	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD}$	[15]	-	-	50	mA
I _{pd}	pull-down current	V _I = 5 V		10	50	150	μA
I _{pu}	pull-up current	V _I = 0 V;		-15	-50	-85	μΑ
		$2.0~V < V_{DD} \leq 3.6~V$					
		$V_{DD} = 2.0 V$		-10	-50	-85	μA
		$V_{DD} < V_I < 5 V$		0	0	0	μΑ
High-dri	ve output pin (PIO0_7)						
I _{IL}	LOW-level input current	V _I = 0 V; on-chip pull-up resistor disabled		-	0.5	10	nA
I _{IH}	HIGH-level input current	$V_I = V_{DD}$; on-chip pull-down resistor disabled		-	0.5	10	nA
l _{oz}	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD}$; on-chip pull-up/down resistors disabled		-	0.5	10	nA
VI	input voltage	pin configured to provide a digital function	[12][13] [14]	0	-	5.0	V
Vo	output voltage	output active		0	-	V _{DD}	V
V _{IH}	HIGH-level input voltage			$0.7V_{DD}$	-	-	V
VIL	LOW-level input voltage			-	-	0.3V _{DD}	V
V _{hys}	hysteresis voltage			0.4	-	-	V
V _{OH}	HIGH-level output	$2.5~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V};~\text{I}_{OH}$ = -20 mA		$V_{DD}-0.4$	-	-	V
	voltage	$2.0~\text{V} \leq \text{V}_{\text{DD}}$ < 2.5 V; I_{OH} = -12 mA		$V_{DD}-0.4$	-	-	V
V _{OL}	LOW-level output	$2.5~\text{V} \leq \text{V}_{\text{DD}} \leq 3.6~\text{V};~\text{I}_{\text{OL}}$ = 4 mA		-	-	0.4	V
	voltage	$2.0 \text{ V} \leq \text{V}_{\text{DD}}$ < 2.5 V ; I_{OL} = 3 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$\begin{array}{l} 2.5 \; \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \; \text{V}; \\ \text{V}_{\text{OH}} = \text{V}_{\text{DD}} - 0.4 \; \text{V} \end{array}$		20	-	-	mA
		$\begin{array}{l} 2.0 \; \text{V} \leq \text{V}_{\text{DD}} < 2.5 \; \text{V}; \\ \text{V}_{\text{OH}} = \text{V}_{\text{DD}} - 0.4 \; \text{V}; \end{array}$		12	-	-	mA
l _{OL}	LOW-level output	$2.5~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V};~\text{V}_{OL}$ = 0.4 V		4	-	-	mA
	current	$2.0~\text{V} \leq \text{V}_{\text{DD}}$ < 2.5 V; V_{OL} = 0.4 V		3	-	-	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD}$	[15]	-	-	50	mA
I _{pd}	pull-down current	V ₁ = 5 V		10	50	150	μA

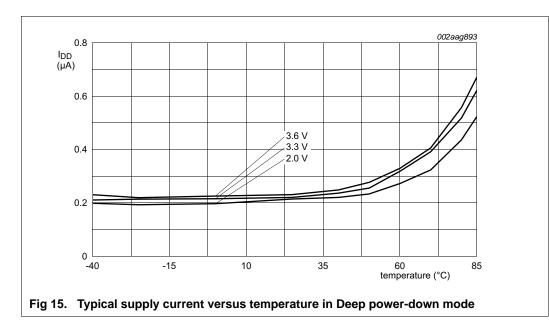
Table 6. Static characteristics ... continued

LPC1315_16_17_45_46_47 Product data sheet

32-bit ARM Cortex-M3 microcontroller

- System oscillator enabled; PLL and IRC disabled. [3]
- IRC enabled; system oscillator disabled; system PLL disabled. [4]
- I_{DD} measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled. [5]
- [6] BOD disabled.
- [7] All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to USART, SSP0/1 disabled in the syscon block.
- [8] USB_DP and USB_DM pulled LOW externally.
- [9] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.
- [10] IRC disabled; system oscillator enabled; system PLL enabled.
- [11] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode.
- [12] Including voltage on outputs in 3-state mode.
- [13] V_{DD} supply voltage must be present.
- [14] 3-state outputs go into 3-state mode in Deep power-down mode.
- [15] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
- [16] To V_{SS}.
- [17] Includes external resistors of 33 $\Omega \pm 1$ % on USB_DP and USB_DM.

9.1 BOD static characteristics

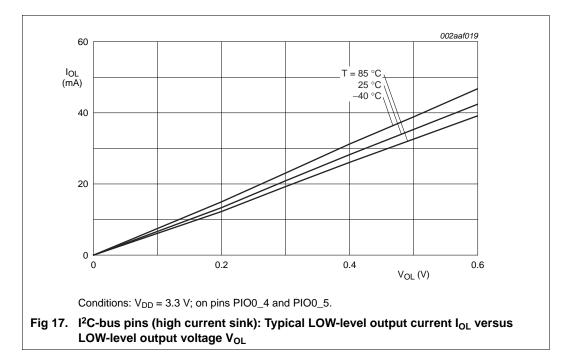

BOD static characteristics^[1] Table 7.

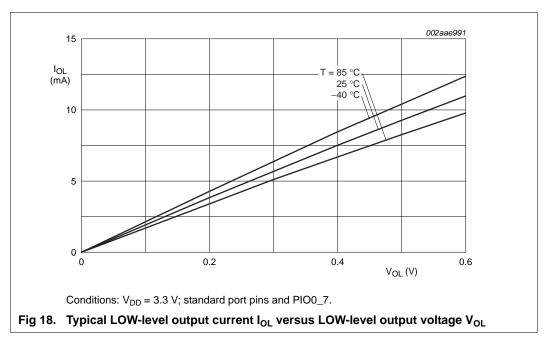
 $T_{amb} = 25 \ ^{\circ}C.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{th}	threshold voltage	interrupt level 1				
		assertion	-	2.22	-	V
		de-assertion	-	2.35	-	V
		interrupt level 2				
		assertion	-	2.52	-	V
		de-assertion	-	2.66	-	V
		interrupt level 3				
		assertion	-	2.80	-	V
		de-assertion	-	2.90	-	V
		reset level 0				
		assertion	-	1.46	-	V
		de-assertion	-	1.63	-	V
		reset level 1				
		assertion	-	2.06	-	V
		de-assertion	-	2.15	-	V
		reset level 2				
		assertion	-	2.35	-	V
		de-assertion	-	2.43	-	V
		reset level 3				
		assertion	-	2.63	-	V
		de-assertion	-	2.71	-	V

[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC1315/16/17/45/46/47 user manual.

32-bit ARM Cortex-M3 microcontroller




Table 8. Power consumption for individual analog and digital blocks

The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCTRL or PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at T_{amb} = 25 °C. Unless noted otherwise, the system oscillator and PLL are running in both measurements.

		supply cur or different cies			Notes
	n/a	12 MHz	48 MHz	72 MHz	
IRC	0.23	-	-	-	System oscillator running; PLL off; independent of main clock frequency.
System oscillator at 12 MHz	0.23	-	-	-	IRC running; PLL off; independent of main clock frequency.
Watchdog oscillator at 500 kHz/2	0.002	-	-	-	System oscillator running; PLL off; independent of main clock frequency.
BOD	0.045	-	-	-	Independent of main clock frequency.
Main PLL or USB PLL	-	0.26	0.34	0.48	
ADC	-	0.07	0.25	0.37	
CLKOUT	-	0.14	0.56	0.82	Main clock divided by 4 in the CLKOUTDIV register.
CT16B0	-	0.01	0.05	0.08	
CT16B1	-	0.01	0.04	0.06	
CT32B0	-	0.01	0.05	0.07	
CT32B1	-	0.01	0.04	0.06	
GPIO	-	0.21	0.80	1.17	GPIO pins configured as outputs and set to LOW. Direction and pin state are maintained if the GPIO is disabled in the SYSAHBCLKCFG register.
IOCON	-	0.00	0.02	0.02	
12C	-	0.03	0.12	0.17	
LPC1315_16_17_45_46_47			All information	provided in this do	cument is subject to legal disclaimers. © NXP B.V. 2012. All rights reserve

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

10.3 Internal oscillators

Table 12. Dynamic characteristics: IRC

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.7 \text{ V} \le V_{DD} \le 3.6 \text{ V}_{11}.$

Symbol	Parameter	Conditions	Min	Typ <u>[2]</u>	Max	Unit
f _{osc(RC)}	internal RC oscillator frequency	-	11.88	12	12.12	MHz

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

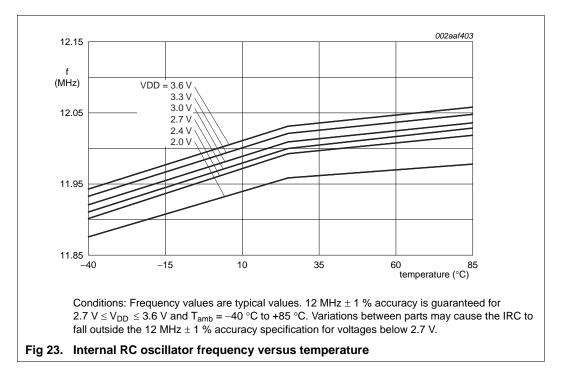


Table 13. Dynamic characteristics: Watchdog oscillator

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
f _{osc(int)}	internal oscillator frequency	DIVSEL = 0x1F, FREQSEL = 0x1 in the WDTOSCCTRL register;	[2][3]	-	9.4	-	kHz
		DIVSEL = 0x00, FREQSEL = 0xF in the WDTOSCCTRL register	[2][3]	-	2300	-	kHz

[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.

[2] The typical frequency spread over processing and temperature ($T_{amb} = -40 \text{ °C to } +85 \text{ °C}$) is ±40 %.

[3] See the LPC1315/16/17/45/46/47 user manual.

32-bit ARM Cortex-M3 microcontroller

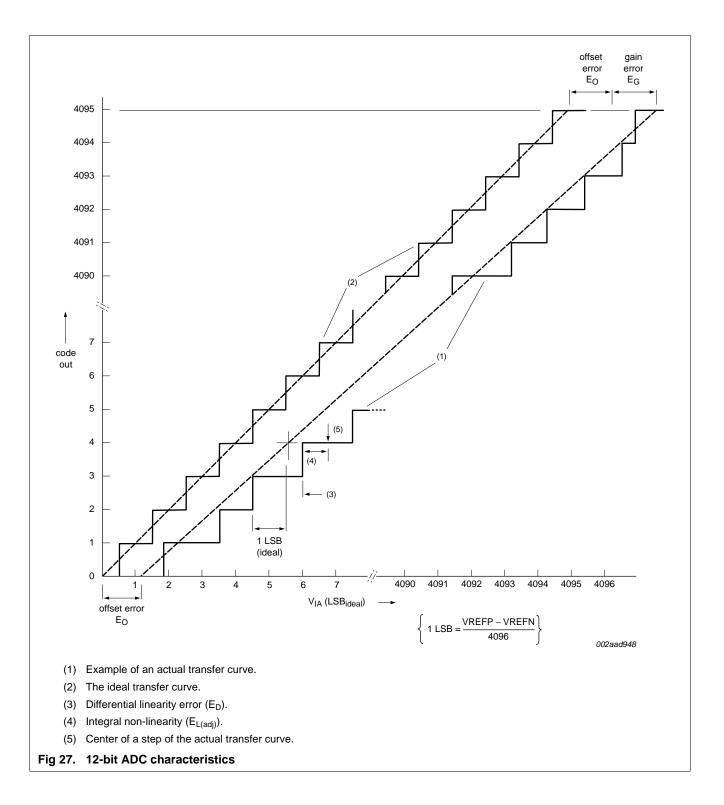
10.6 SSP interface

Table 16. Dynamic characteristics: SSP pins in SPI mode

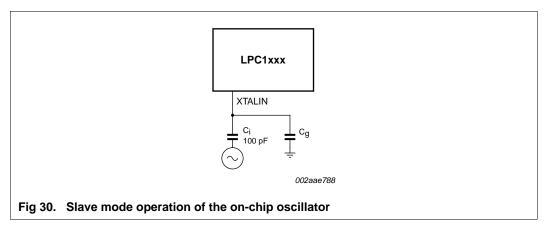
Symbol	Parameter	Conditions		Min	Max	Unit
SSP maste	er					
T _{cy(clk)}	clock cycle time	full-duplex mode	[1]	40	-	ns
		when only transmitting	<u>[1]</u>	27.8	-	ns
t _{DS}	data set-up time	in SPI mode;	[2]	15	-	ns
		$2.4~V \leq V_{DD} \leq 3.6~V$				
		$2.0~V \leq V_{DD} < 2.4~V$	[2]	20	-	ns
t _{DH}	data hold time	in SPI mode	[2]	0	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[2]	-	10	ns
t _{h(Q)}	data output hold time	in SPI mode	[2]	0	-	ns
SSP slave						
T _{cy(PCLK)}	PCLK cycle time			13.9	-	ns
t _{DS}	data set-up time	in SPI mode	[3][4]	0	-	ns
t _{DH}	data hold time	in SPI mode	[3][4]	$3 \times T_{cy(PCLK)}$ + 4	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[3][4]	-	$3 \times T_{cy(PCLK)}$ + 11	ns
t _{h(Q)}	data output hold time	in SPI mode	[3][4]	-	$2 \times T_{cy(PCLK)} + 5$	ns

[1] T_{cy(clk)} = (SSPCLKDIV × (1 + SCR) × CPSDVSR) / f_{main}. The clock cycle time derived from the SPI bit rate T_{cy(clk)} is a function of the main clock frequency f_{main}, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0 register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).

[2] $T_{amb} = -40 \ ^{\circ}C$ to 85 $^{\circ}C$.


 $[3] \quad T_{cy(clk)} = 12 \times T_{cy(PCLK)}.$

 $\label{eq:Tamb} \begin{array}{ll} \mbox{[4]} & \mbox{T}_{amb} = 25 \ ^{\circ}\mbox{C}; \ \mbox{V}_{DD} = 3.3 \ \mbox{V}. \end{array}$


NXP Semiconductors

LPC1315/16/17/45/46/47

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (<u>Figure 30</u>), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected.

External components and models used in oscillation mode are shown in Figure 31 and in Table 18 and Table 19. Since the feedback resistance is integrated on chip, only a crystal and the capacitances C_{X1} and C_{X2} need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, C_L and R_S). Capacitance C_P in Figure 31 represents the parallel package capacitance and should not be larger than 7 pF. Parameters F_{OSC} , C_L , R_S and C_P are supplied by the crystal manufacturer.

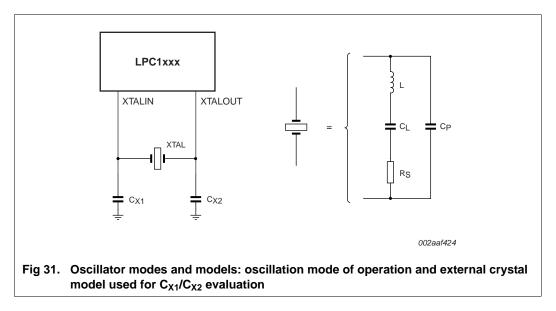
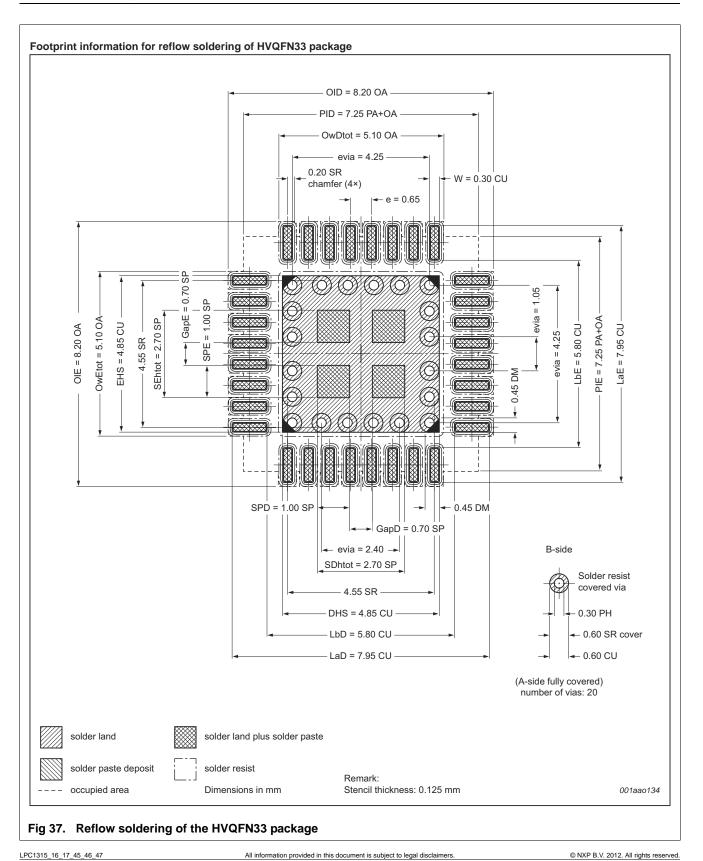
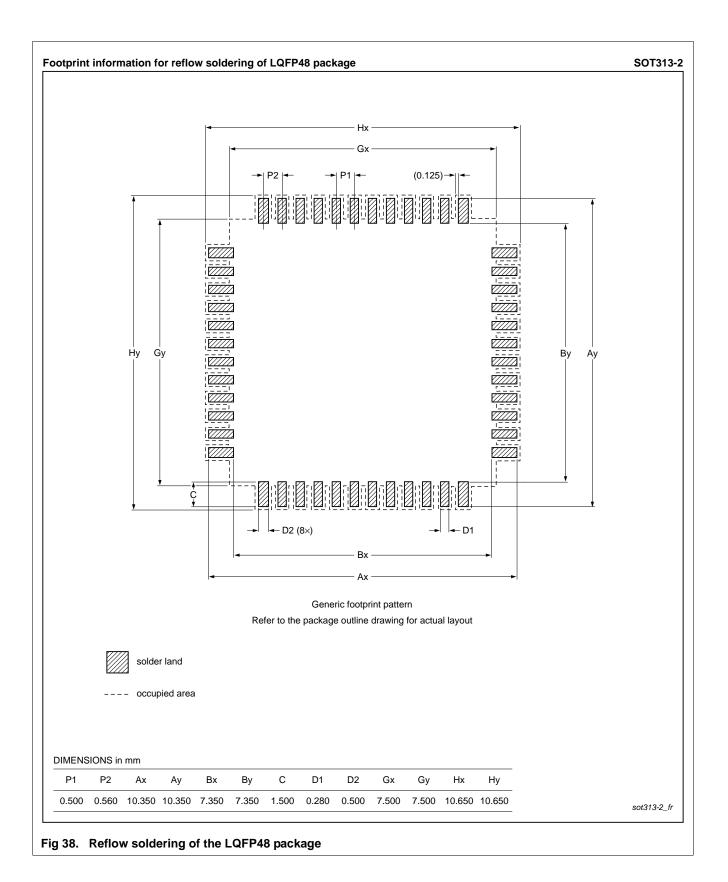
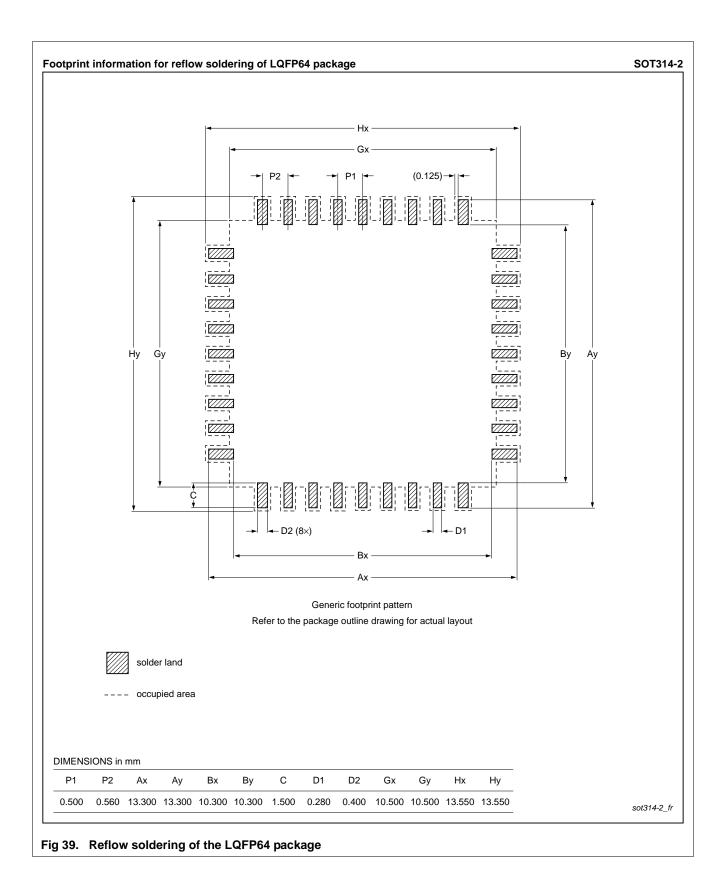



Table 18. Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external components parameters) low frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} , C _{X2}
1 MHz - 5 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 300 Ω	39 pF, 39 pF
	30 pF	< 300 Ω	57 pF, 57 pF
All information prov	egal disclaimers.	© NXP B.V. 2012. All rights reserved.	


32-bit ARM Cortex-M3 microcontroller

14. Soldering



LPC1315_16_17_45_46_47 Product data sheet

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

15. Abbreviations

Table 20.	Abbreviations
Acronym	Description
A/D	Analog-to-Digital
ADC	Analog-to-Digital Converter
AHB	Advanced High-performance Bus
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
CDC	Communication Device Class
ETM	Embedded Trace Macrocell
GPIO	General Purpose Input/Output
HID	Human Interface Device
JTAG	Joint Test Action Group
MSC	Mass Storage Class
PLL	Phase-Locked Loop
RC	Resistor-Capacitor
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
SSP	Synchronous Serial Port
TAP	Test Access Port
USART	Universal Synchronous Asynchronous Receiver/Transmitter

32-bit ARM Cortex-M3 microcontroller

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

18. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com