



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                          |
| Core Size                  | 32-Bit Single-Core                                                       |
| Speed                      | 72MHz                                                                    |
| Connectivity               | I <sup>2</sup> C, Microwire, SPI, SSI, SSP, UART/USART, USB              |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                         |
| Number of I/O              | 51                                                                       |
| Program Memory Size        | 64KB (64K × 8)                                                           |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | 4K x 8                                                                   |
| RAM Size                   | 12K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                |
| Data Converters            | A/D 8x12b                                                                |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 64-LQFP                                                                  |
| Supplier Device Package    | 64-LQFP (10x10)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1347fbd64-551 |
|                            |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

## 4.1 Ordering options

| Table 2. | Ordering | options |
|----------|----------|---------|
|----------|----------|---------|

| Type number  | Flash<br>[kB] | SRAM [kB] |             |       | EEPROM<br>[kB] | USB<br>device | SSP | 12C/ FM+ | ADC<br>channels | GPIO<br>pins |
|--------------|---------------|-----------|-------------|-------|----------------|---------------|-----|----------|-----------------|--------------|
|              |               | SRAM0     | USB<br>SRAM | SRAM1 | -              |               |     |          |                 |              |
| LPC1345FHN33 | 32            | 8         | 2           | -     | 2              | yes           | 2   | 1        | 8               | 26           |
| LPC1345FBD48 | 32            | 8         | 2           | -     | 2              | yes           | 2   | 1        | 8               | 40           |
| LPC1346FHN33 | 48            | 8         | 2           | -     | 4              | yes           | 2   | 1        | 8               | 26           |
| LPC1346FBD48 | 48            | 8         | 2           | -     | 4              | yes           | 2   | 1        | 8               | 40           |
| LPC1347FHN33 | 64            | 8         | 2           | 2     | 4              | yes           | 2   | 1        | 8               | 26           |
| LPC1347FBD48 | 64            | 8         | 2           | 2     | 4              | yes           | 2   | 1        | 8               | 40           |
| LPC1347FBD64 | 64            | 8         | 2           | 2     | 4              | yes           | 2   | 1        | 8               | 51           |
| LPC1315FHN33 | 32            | 8         | -           | -     | 2              | no            | 2   | 1        | 8               | 28           |
| LPC1315FBD48 | 32            | 8         | -           | -     | 2              | no            | 2   | 1        | 8               | 40           |
| LPC1316FHN33 | 48            | 8         | -           | -     | 4              | no            | 2   | 1        | 8               | 28           |
| LPC1316FBD48 | 48            | 8         | -           | -     | 4              | no            | 2   | 1        | 8               | 40           |
| LPC1317FHN33 | 64            | 8         | -           | 2     | 4              | no            | 2   | 1        | 8               | 28           |
| LPC1317FBD48 | 64            | 8         | -           | 2     | 4              | no            | 2   | 1        | 8               | 40           |
| LPC1317FBD64 | 64            | 8         | -           | 2     | 4              | no            | 2   | 1        | 8               | 51           |

32-bit ARM Cortex-M3 microcontroller

## 5. Block diagram



### 32-bit ARM Cortex-M3 microcontroller



### 32-bit ARM Cortex-M3 microcontroller

|                  | <br>             |          |          | ,              |      |                                                                                                                                                                                                                                                       |
|------------------|------------------|----------|----------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | LQFP64           | LQFP48   | HVQFN33  | Reset state[1] | Type | Description                                                                                                                                                                                                                                           |
| VREFP            | 64               | -        | -        | -              | -    | ADC positive reference voltage: This should be nominally the same voltage as $V_{DDA}$ but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. This pin should be tied to 3.3 V if the ADC is not used. |
| V <sub>SSA</sub> | 55               | -        | -        | -              | -    | Analog ground: 0 V reference. This should nominally be the same voltage as $V_{\rm SS}$ Product data sheet but should be isolated to minimize noise and error.                                                                                        |
| V <sub>DD</sub>  | 10;<br>33;<br>58 | 8;<br>44 | 6;<br>29 | -              | -    | Supply voltage to the internal regulator and the external rail. On LQFP48 and HVQFN33 packages, this pin is also connected to the 3.3 V ADC supply and reference voltage.                                                                             |
| V <sub>SS</sub>  | 7;<br>54         | 5;<br>41 | 33       | -              | -    | Ground.                                                                                                                                                                                                                                               |

#### Table 3. Pin description (LPC1315/16/17 - no USB)

[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled; F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.

[2] See Figure 33 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode.

[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32).

- [4] I<sup>2</sup>C-bus pins compliant with the I<sup>2</sup>C-bus specification for I<sup>2</sup>C standard mode, I<sup>2</sup>C Fast-mode, and I<sup>2</sup>C Fast-mode Plus.
- [5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see <u>Figure 32</u>); includes high-current output driver.
- [6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 32</u>); includes programmable digital input glitch filter.
- [7] WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 32</u>); includes digital input glitch filter.
- [8] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.

### 32-bit ARM Cortex-M3 microcontroller

### 7.8.1 Features

- GPIO pins can be configured as input or output by software.
- All GPIO pins default to inputs with interrupt disabled at reset.
- Pin registers allow pins to be sensed and set individually.
- Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or level-sensitive GPIO interrupt request.
- Port interrupts can be triggered by any pin or pins in each port.

## 7.9 USB interface

Remark: The USB interface is available on parts LPC1345/46/47 only.

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot-plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

The LPC1345/46/47 USB interface consists of a full-speed device controller with on-chip PHY (PHYsical layer) for device functions.

**Remark:** Configure the LPC1345/46/47 in default power mode with the power profiles before using the USB (see <u>Section 7.18.5.1</u>). Do not use the USB with the part in performance, efficiency, or low-power mode.

### 7.9.1 Full-speed USB device controller

The device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register interface, serial interface engine, and endpoint buffer memory. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled.

### 7.9.1.1 Features

- Dedicated USB PLL available.
- Fully compliant with USB 2.0 specification (full speed).
- Supports 10 physical (5 logical) endpoints including one control endpoint.
- Single and double buffering supported.
- Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.
- Supports wake-up from Deep-sleep mode and Power-down mode on USB activity and remote wake-up.
- Supports SoftConnect.
- Supports Link Power Management (LPM).

## 7.10 USART

The LPC1315/16/17/45/46/47 contains one USART.

### 32-bit ARM Cortex-M3 microcontroller

Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC1315/16/17/45/46/47 use the IRC as the clock source. Software may later switch to one of the other available clock sources.

### 7.18.1.2 System oscillator

The system oscillator can be used as the clock source for the CPU, with or without using the PLL. On the LPC1315/16/17/45/46/47, the system oscillator must be used to provide the clock source to USB.

The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted to a higher frequency, up to the maximum CPU operating frequency, by the system PLL.

### 7.18.1.3 Watchdog oscillator

The watchdog oscillator can be used as a clock source that directly drives the CPU, the watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is programmable between 9.4 kHz and 2.3 MHz. The frequency spread over processing and temperature is  $\pm 40$  % (see also Table 13).

### 7.18.2 System PLL and USB PLL

The LPC1315/16/17/45/46/47 contain a system PLL and a dedicated PLL for generating the 48 MHz USB clock. The system and USB PLLs are identical.

The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100  $\mu$ s.

### 7.18.3 Clock output

The LPC1315/16/17/45/46/47 features a clock output function that routes the IRC oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin.

### 7.18.4 Wake-up process

The LPC1315/16/17/45/46/47 begin operation at power-up and when awakened from Deep power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the main oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source.

### 7.18.5 Power control

The LPC1315/16/17/45/46/47 support a variety of power control features. There are four special modes of processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode. The CPU clock rate may also be

### 32-bit ARM Cortex-M3 microcontroller

The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC1315/16/17/45/46/47 is in reset.

**Remark:** Boundary scan operations should not be started until 250  $\mu$ s after POR, and the test TAP should be reset after the boundary scan. Boundary scan is not affected by Code Read Protection.

**Remark:** The JTAG interface cannot be used for debug purposes.

32-bit ARM Cortex-M3 microcontroller

| $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$ , unless otherwise specified. |                                         |                                                                                                                                                              |                  |              |        |             |      |  |  |
|------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------|-------------|------|--|--|
| Symbol                                                                       | Parameter                               | Conditions                                                                                                                                                   |                  | Min          | Typ[1] | Мах         | Unit |  |  |
| I <sub>OH</sub>                                                              | HIGH-level output<br>current            | $2.5 V \le V_{DD} \le 3.6 V;$<br>$V_{OH} = V_{DD} - 0.4 V$                                                                                                   |                  | -4           | -      | -           | mA   |  |  |
|                                                                              |                                         | $\begin{array}{l} 2.0 \ \text{V} \leq \text{V}_{\text{DD}} < 2.5 \ \text{V}; \\ \text{V}_{\text{OH}} = \text{V}_{\text{DD}} - 0.4 \ \text{V} \end{array}$    |                  | -3           | -      | -           | mA   |  |  |
| I <sub>OL</sub>                                                              | LOW-level output                        | $2.5~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V};~\text{V}_{OL}$ = 0.4 V                                                                                   |                  | 4            | -      | -           | mA   |  |  |
|                                                                              | current                                 | $2.0~\text{V} \leq \text{V}_{DD}~<2.5$ V; $\text{V}_{OL}$ = 0.4 V                                                                                            |                  | 3            | -      | -           | mA   |  |  |
| I <sub>OHS</sub>                                                             | HIGH-level short-circuit output current | V <sub>OH</sub> = 0 V                                                                                                                                        | [15]             | -            | -      | -45         | mA   |  |  |
| I <sub>OLS</sub>                                                             | LOW-level short-circuit output current  | $V_{OL} = V_{DD}$                                                                                                                                            | [15]             | -            | -      | 50          | mA   |  |  |
| I <sub>pd</sub>                                                              | pull-down current                       | V <sub>I</sub> = 5 V                                                                                                                                         |                  | 10           | 50     | 150         | μA   |  |  |
| I <sub>pu</sub>                                                              | pull-up current                         | $V_{I} = 0 V;$                                                                                                                                               |                  | -15          | -50    | -85         | μA   |  |  |
|                                                                              |                                         | $2.0~V < V_{DD} \leq 3.6~V$                                                                                                                                  |                  |              |        |             |      |  |  |
|                                                                              |                                         | V <sub>DD</sub> = 2.0 V                                                                                                                                      |                  | -10          | -50    | -85         | μA   |  |  |
|                                                                              |                                         | $V_{DD} < V_I < 5 V$                                                                                                                                         |                  | 0            | 0      | 0           | μΑ   |  |  |
| High-driv                                                                    | ve output pin (PIO0_7)                  |                                                                                                                                                              |                  |              |        |             |      |  |  |
| IIL                                                                          | LOW-level input current                 | V <sub>I</sub> = 0 V; on-chip pull-up resistor disabled                                                                                                      |                  | -            | 0.5    | 10          | nA   |  |  |
| I <sub>IH</sub>                                                              | HIGH-level input<br>current             | $V_I = V_{DD}$ ; on-chip pull-down resistor disabled                                                                                                         |                  | -            | 0.5    | 10          | nA   |  |  |
| I <sub>OZ</sub>                                                              | OFF-state output<br>current             | $V_O = 0 V$ ; $V_O = V_{DD}$ ; on-chip pull-up/down resistors disabled                                                                                       |                  | -            | 0.5    | 10          | nA   |  |  |
| VI                                                                           | input voltage                           | pin configured to provide a digital function                                                                                                                 | [12][13]<br>[14] | 0            | -      | 5.0         | V    |  |  |
| Vo                                                                           | output voltage                          | output active                                                                                                                                                |                  | 0            | -      | $V_{DD}$    | V    |  |  |
| V <sub>IH</sub>                                                              | HIGH-level input voltage                |                                                                                                                                                              |                  | $0.7V_{DD}$  | -      | -           | V    |  |  |
| V <sub>IL</sub>                                                              | LOW-level input voltage                 |                                                                                                                                                              |                  | -            | -      | $0.3V_{DD}$ | V    |  |  |
| V <sub>hys</sub>                                                             | hysteresis voltage                      |                                                                                                                                                              |                  | 0.4          | -      | -           | V    |  |  |
| V <sub>OH</sub>                                                              | HIGH-level output                       | $2.5~V \leq V_{DD} \leq 3.6~V;~I_{OH}$ = $-20~mA$                                                                                                            |                  | $V_{DD}-0.4$ | -      | -           | V    |  |  |
|                                                                              | voltage                                 | $2.0~V \leq V_{DD}$ < 2.5 V; $I_{OH}$ = -12 mA                                                                                                               |                  | $V_{DD}-0.4$ | -      | -           | V    |  |  |
| V <sub>OL</sub>                                                              | LOW-level output                        | $2.5~V \leq V_{DD} \leq 3.6~V;~I_{OL} = 4~mA$                                                                                                                |                  | -            | -      | 0.4         | V    |  |  |
|                                                                              | voltage                                 | $2.0~V \leq V_{DD}$ < 2.5 V; $I_{OL}$ = 3 mA                                                                                                                 |                  | -            | -      | 0.4         | V    |  |  |
| I <sub>OH</sub>                                                              | HIGH-level output<br>current            | $\begin{array}{l} 2.5 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}; \\ \text{V}_{\text{OH}} = \text{V}_{\text{DD}} - 0.4 \ \text{V} \end{array}$ |                  | 20           | -      | -           | mA   |  |  |
|                                                                              |                                         | $\begin{array}{l} 2.0 \ V \leq V_{DD} < 2.5 \ V; \\ V_{OH} = V_{DD} - 0.4 \ V; \end{array}$                                                                  |                  | 12           | -      | -           | mA   |  |  |
| I <sub>OL</sub>                                                              | LOW-level output                        | $2.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}; \text{ V}_{\text{OL}} = 0.4 \text{ V}$                                                          |                  | 4            | -      | -           | mA   |  |  |
|                                                                              | current                                 | $2.0~\text{V} \leq \text{V}_{\text{DD}}$ < 2.5 V; $\text{V}_{\text{OL}}$ = 0.4 V                                                                             |                  | 3            | -      | -           | mA   |  |  |
| I <sub>OLS</sub>                                                             | LOW-level short-circuit output current  | $V_{OL} = V_{DD}$                                                                                                                                            | [15]             | -            | -      | 50          | mA   |  |  |
| I <sub>pd</sub>                                                              | pull-down current                       | V <sub>I</sub> = 5 V                                                                                                                                         |                  | 10           | 50     | 150         | μA   |  |  |

#### Table 6. Static characteristics ... continued

LPC1315\_16\_17\_45\_46\_47 Product data sheet

32-bit ARM Cortex-M3 microcontroller

| $T_{amb} = -4$        | 40 $^{\circ}$ C to +85 $^{\circ}$ C, unless of                              | herwise specified.                                                                         |                |             |              |             |      |
|-----------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|-------------|--------------|-------------|------|
| Symbol                | Parameter                                                                   | Conditions                                                                                 |                | Min         | Typ[1]       | Max         | Unit |
| I <sub>pu</sub>       | pull-up current                                                             | $V_{I} = 0 V$                                                                              |                | -15         | -50          | -85         | μΑ   |
|                       |                                                                             | $2.0~\textrm{V} < \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$                              |                |             |              |             |      |
|                       |                                                                             | V <sub>DD</sub> = 2.0 V                                                                    |                | -10         | -50          | -85         | μA   |
|                       |                                                                             | $V_{DD} < V_{I} < 5 V$                                                                     |                | 0           | 0            | 0           | μA   |
| I <sup>2</sup> C-bus  | pins (PIO0_4 and PIO0_                                                      | 5)                                                                                         |                |             |              |             |      |
| V <sub>IH</sub>       | HIGH-level input voltage                                                    |                                                                                            |                | $0.7V_{DD}$ | -            | -           | V    |
| V <sub>IL</sub>       | LOW-level input voltage                                                     |                                                                                            |                | -           | -            | $0.3V_{DD}$ | V    |
| V <sub>hys</sub>      | hysteresis voltage                                                          |                                                                                            |                | -           | $0.05V_{DD}$ | -           | V    |
| I <sub>OL</sub>       | LOW-level output current                                                    | $V_{OL} = 0.4 \text{ V}; \text{ I}^2\text{C-bus pins configured}$<br>as standard mode pins |                | 3.5         | -            | -           | mA   |
|                       |                                                                             | $2.0 V \le V_{DD} \le 2.5 V$                                                               |                | 3.0         |              |             | mΔ   |
|                       | LOW-level output                                                            | $V_{OL} = 0.4 \text{ V}$ : $I^2C$ -bus pins configured                                     |                | 20          | -            |             | mΔ   |
| OL                    | current                                                                     | as Fast-mode Plus pins                                                                     |                | 20          | -            | -           | ШA   |
|                       |                                                                             | $2.5~V \leq V_{DD} \leq 3.6~V$                                                             |                |             |              |             |      |
|                       |                                                                             | $2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.5~\text{V}$                                    |                | 16          | -            | -           |      |
| I <sub>LI</sub>       | input leakage current                                                       | $V_{I} = V_{DD}$                                                                           | [16]           | -           | 2            | 4           | μA   |
|                       |                                                                             | $V_{I} = 5 V$                                                                              |                | -           | 10           | 22          | μA   |
| Oscillato             | or pins                                                                     |                                                                                            |                |             |              |             |      |
| V <sub>i(xtal)</sub>  | crystal input voltage                                                       |                                                                                            |                | -0.5        | 1.8          | 1.95        | V    |
| V <sub>o(xtal)</sub>  | crystal output voltage                                                      |                                                                                            |                | -0.5        | 1.8          | 1.95        | V    |
| USB pin               | S                                                                           |                                                                                            |                |             |              |             |      |
| I <sub>OZ</sub>       | OFF-state output<br>current                                                 | 0 V < V <sub>I</sub> < 3.3 V                                                               | [2]            | -           | -            | ±10         | μΑ   |
| V <sub>BUS</sub>      | bus supply voltage                                                          |                                                                                            | [2]            | -           | -            | 5.25        | V    |
| V <sub>DI</sub>       | differential input sensitivity voltage                                      | (D+) – (D–)                                                                                | <u>[2]</u>     | 0.2         | -            | -           | V    |
| V <sub>CM</sub>       | differential common mode voltage range                                      | includes V <sub>DI</sub> range                                                             | [2]            | 0.8         | -            | 2.5         | V    |
| V <sub>th(rs)se</sub> | single-ended receiver<br>switching threshold<br>voltage                     |                                                                                            | [2]            | 0.8         | -            | 2.0         | V    |
| V <sub>OL</sub>       | LOW-level output voltage                                                    | for low-/full-speed; $R_L$ of 1.5 k $\Omega$ to 3.6 V                                      | [2]            | -           | -            | 0.18        | V    |
| V <sub>OH</sub>       | HIGH-level output voltage                                                   | driven; for low-/full-speed; $R_L$ of 15 $k\Omega$ to GND                                  | [2]            | 2.8         | -            | 3.5         | V    |
| C <sub>trans</sub>    | transceiver capacitance                                                     | pin to GND                                                                                 | [2]            | -           | -            | 20          | pF   |
| Z <sub>DRV</sub>      | driver output<br>impedance for driver<br>which is not high-speed<br>capable | with 33 $\Omega$ series resistor; steady state drive                                       | <u>[17][2]</u> | 36          | -            | 44.1        | Ω    |

#### Table 6 Static characteristics continued

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

[2] For USB operation 3.0 V  $\leq$  V\_{DD}  $\leq$  3.6 V. Guaranteed by design.

LPC1315\_16\_17\_45\_46\_47 Product data sheet

### 32-bit ARM Cortex-M3 microcontroller





32-bit ARM Cortex-M3 microcontroller

## 10. Dynamic characteristics

## 10.1 Flash/EEPROM memory

#### Table 9. Flash characteristics

 $T_{amb} = -40$  °C to +85 °C, unless otherwise specified.

| Symbol            | Parameter        | Conditions                             |     | Min   | Тур    | Max  | Unit   |
|-------------------|------------------|----------------------------------------|-----|-------|--------|------|--------|
| N <sub>endu</sub> | endurance        |                                        | [1] | 10000 | 100000 | -    | cycles |
| t <sub>ret</sub>  | retention time   | powered                                |     | 10    | -      | -    | years  |
|                   |                  | unpowered                              |     | 20    | -      | -    | years  |
| t <sub>er</sub>   | erase time       | sector or multiple consecutive sectors |     | 95    | 100    | 105  | ms     |
| t <sub>prog</sub> | programming time |                                        | [2] | 0.95  | 1      | 1.05 | ms     |

[1] Number of program/erase cycles.

[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.

#### Table 10. EEPROM characteristics

 $T_{amb} = -40 \ ^{\circ}C$  to +85  $\ ^{\circ}C$ ;  $V_{DD} = 2.7 \ V$  to 3.6 V.

| anno              | . 55                |            |        |         |     |        |
|-------------------|---------------------|------------|--------|---------|-----|--------|
| Symbol            | Parameter           | Conditions | Min    | Тур     | Мах | Unit   |
| f <sub>clk</sub>  | clock frequency     |            | 200    | 375     | 400 | kHz    |
| N <sub>endu</sub> | endurance           |            | 100000 | 1000000 | -   | cycles |
| t <sub>ret</sub>  | retention time      | powered    | 100    | 200     | -   | years  |
|                   |                     | unpowered  | 150    | 300     | -   | years  |
| t <sub>er</sub>   | erase time          | 64 bytes   | -      | 1.8     | -   | ms     |
| t <sub>prog</sub> | programming<br>time | 64 bytes   | -      | 1.1     | -   | ms     |

## 10.2 External clock

### Table 11. Dynamic characteristic: external clock

 $T_{amb} = -40 \ ^{\circ}C$  to +85  $\ ^{\circ}C$ ;  $V_{DD}$  over specified ranges.<sup>[1]</sup>

| Symbol               | Parameter            | Conditions | Min                             | Typ <u>[2]</u> | Max  | Unit |
|----------------------|----------------------|------------|---------------------------------|----------------|------|------|
| f <sub>osc</sub>     | oscillator frequency |            | 1                               | -              | 25   | MHz  |
| T <sub>cy(clk)</sub> | clock cycle time     |            | 40                              | -              | 1000 | ns   |
| t <sub>CHCX</sub>    | clock HIGH time      |            | $T_{\text{cy(clk)}} \times 0.4$ | -              | -    | ns   |
| t <sub>CLCX</sub>    | clock LOW time       |            | $T_{\text{cy(clk)}} \times 0.4$ | -              | -    | ns   |
| t <sub>CLCH</sub>    | clock rise time      |            | -                               | -              | 5    | ns   |
| t <sub>CHCL</sub>    | clock fall time      |            | -                               | -              | 5    | ns   |

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

32-bit ARM Cortex-M3 microcontroller



32-bit ARM Cortex-M3 microcontroller

## 12. Application information



## 12.1 Suggested USB interface solutions



## 12.2 XTAL input

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with  $C_i = 100 \text{ pF}$ . To limit the input voltage to the specified range, choose an additional capacitor to ground  $C_g$  which attenuates the input voltage by a factor  $C_i/(C_i + C_g)$ . In slave mode, a minimum of 200 mV(RMS) is needed.

© NXP B.V. 2012. All rights reserved.

### 32-bit ARM Cortex-M3 microcontroller

| components parameters) for nequency mode              |                                            |                                                     |                                                               |  |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| Fundamental oscillation<br>frequency F <sub>OSC</sub> | Crystal load<br>capacitance C <sub>L</sub> | Maximum crystal<br>series resistance R <sub>S</sub> | External load<br>capacitors C <sub>X1</sub> , C <sub>X2</sub> |  |  |  |  |  |
| 5 MHz - 10 MHz                                        | 10 pF                                      | < <b>300</b> Ω                                      | 18 pF, 18 pF                                                  |  |  |  |  |  |
|                                                       | 20 pF                                      | < 200 Ω                                             | 39 pF, 39 pF                                                  |  |  |  |  |  |
|                                                       | 30 pF                                      | < 100 Ω                                             | 57 pF, 57 pF                                                  |  |  |  |  |  |
| 10 MHz - 15 MHz                                       | 10 pF                                      | < 160 Ω                                             | 18 pF, 18 pF                                                  |  |  |  |  |  |
|                                                       | 20 pF                                      | < 60 Ω                                              | 39 pF, 39 pF                                                  |  |  |  |  |  |
| 15 MHz - 20 MHz                                       | 10 pF                                      | < 80 Ω                                              | 18 pF, 18 pF                                                  |  |  |  |  |  |

| Table 18. | Recommended values for C <sub>X1</sub> /C <sub>X2</sub> in oscillation mode (crystal and external |
|-----------|---------------------------------------------------------------------------------------------------|
|           | components parameters) low frequency mode                                                         |

Table 19. Recommended values for  $C_{X1}/C_{X2}$  in oscillation mode (crystal and external components parameters) high frequency mode

| Fundamental oscillation frequency F <sub>OSC</sub> | Crystal load<br>capacitance C <sub>L</sub> | Maximum crystal<br>series resistance R <sub>S</sub> | External load capacitors C <sub>X1</sub> , C <sub>X2</sub> |
|----------------------------------------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| 15 MHz - 20 MHz                                    | 10 pF                                      | < 180 Ω                                             | 18 pF, 18 pF                                               |
|                                                    | 20 pF                                      | < 100 Ω                                             | 39 pF, 39 pF                                               |
| 20 MHz - 25 MHz                                    | 10 pF                                      | < 160 Ω                                             | 18 pF, 18 pF                                               |
|                                                    | 20 pF                                      | < 80 Ω                                              | 39 pF, 39 pF                                               |

## 12.3 XTAL Printed-Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors  $C_{x1}$ ,  $C_{x2}$ , and  $C_{x3}$  in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of  $C_{x1}$  and  $C_{x2}$  should be chosen smaller accordingly to the increase in parasitics of the PCB layout.

32-bit ARM Cortex-M3 microcontroller



#### Fig 36. Package outline LQFP64 (SOT314-2)

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

## 14. Soldering



LPC1315\_16\_17\_45\_46\_47 Product data sheet

32-bit ARM Cortex-M3 microcontroller



### 32-bit ARM Cortex-M3 microcontroller

## 16. Revision history

| Table 21. Revision history |                                                                                                                                                                                             |                                                                   |                       |                                  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|----------------------------------|--|
| Document ID                | Release date                                                                                                                                                                                | Data sheet status                                                 | Change<br>notice      | Supersedes                       |  |
| LPC1315_16_17_45_46_47 v.3 | 20120920                                                                                                                                                                                    | Product data sheet                                                | -                     | LPC1315_16_17_45_46_47 v.2       |  |
|                            | <ul> <li>Reflow soldering drawing corrected for the HVQFN33 package. See Figure 37.</li> </ul>                                                                                              |                                                                   |                       |                                  |  |
|                            | <ul> <li>BOD interrupt trigger level 0 removed. See <u>Table 7</u>.</li> </ul>                                                                                                              |                                                                   |                       |                                  |  |
|                            | <ul> <li>Pin configuration</li> <li>marking correct</li> </ul>                                                                                                                              | tion diagrams updated:<br>ected in <u>Figure 4</u> to <u>Figu</u> | Orientation<br>ure 7. | of index sector relative to part |  |
| LPC1315_16_17_45_46_47 v.2 | 20120718                                                                                                                                                                                    | Product data sheet                                                | -                     | LPC1315_16_17_45_46_47 v.1       |  |
| Modifications:             | <ul> <li>Data sheet status changed to Product data sheet.</li> </ul>                                                                                                                        |                                                                   |                       |                                  |  |
|                            | • Parameters V <sub>OL</sub> , V <sub>OH</sub> , I <sub>OL</sub> , I <sub>OH</sub> updated for voltage range 2.0 V $\leq$ V <sub>DD</sub> < 2.5 V in <u>Table 6</u> .                       |                                                                   |                       |                                  |  |
|                            | <ul> <li>Condition "The peak current is limited to 25 times the corresponding maximum<br/>current." removed from parameters I<sub>DD</sub> and I<sub>SS</sub> in <u>Table 5</u>.</li> </ul> |                                                                   |                       |                                  |  |
|                            | <ul> <li>Typical operating frequencies of the watchdog oscillator corrected in <u>Table 13</u> and<br/><u>Section 7.18.1.3</u>.</li> </ul>                                                  |                                                                   |                       |                                  |  |
| LPC1315_16_17_45_46_47 v.1 | 20120229                                                                                                                                                                                    | Preliminary data sheet                                            | -                     | -                                |  |

32-bit ARM Cortex-M3 microcontroller

## 17. Legal information

## 17.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

## 17.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

## 17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

### 32-bit ARM Cortex-M3 microcontroller

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

## 18. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

## 17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I<sup>2</sup>C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com