

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0058gc-8bt-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Remarks 1. fxx: Main system clock frequency (fx or fx/2)

- 2. fx: Main system clock oscillation frequency
- **3.** fxT: Subsystem clock oscillation frequency
- 4. TI00: 16-bit timer/event counter input pin
- 5. TMO: 16-bit timer register
- 6. MCS: Bit 0 of oscillation mode select register (OSMS)
- 7. Values in parentheses apply to operation with fx = 5.0 MHz or fxT = 32.768 kHz.

(2) 16-bit timer mode control register (TMC0)

This register sets the 16-bit timer operating mode, the 16-bit timer register clear mode and output timing, and detects an overflow.

TMC0 is set with a 1-bit or 8-bit memory manipulation instruction.

RESET input clears TMC0 to 00H.

Caution The 16-bit timer register starts operation at the moment TMC01 to TMC03 are set to values other than 0, 0, 0 (operation stop mode). Set TMC01 to TMC03 to 0, 0, 0 to stop the operation.

Figure 8-32. Square-Wave Output Operation Timing

 Table 8-8.
 16-Bit Timer/Event Counter Square-Wave Output Ranges

Minimum F	Pulse Time	Maximum	Pulse Time	Resolution		
MCS = 1	MCS = 0	MCS = 1	MCS = 0	MCS = 1	MCS = 0	
$2 \times TI00$ input cycle)	$2^{16} \times TI00$ input cyc	cle	TI00 input edge cycle		
_	2 × 1/fx (400 ns)	_	2 ¹⁶ × 1/fx (13.1 ms)	_	1/fx (200 ns)	
2 × 1/fx (400 ns)	2 ² × 1/fx (800 ns)	2 ¹⁶ × 1/fx (13.1 ms)	2 ¹⁷ × 1/fx (26.2 ms)	1/fx (200 ns)	2 × 1/fx (400 ns)	
2 ² × 1/fx (800 ns)	2 ³ × 1/fx (1.6 μs)	2 ¹⁷ × 1/fx (26.2 ms)	2 ¹⁸ × 1/fx (52.4 ms)	2 × 1/fx (400 ns)	2 ² × 1/fx (800 ns)	
2 ³ × 1/fx (1.6 μs)	2 ⁴ × 1/fx (3.2 μs)	2 ¹⁸ × 1/fx (52.4 ms)	2 ¹⁹ × 1/fx (104.9 ms)	2 ² × 1/fx (800 ns)	2 ³ × 1/fx (1.6 μs)	
$2 \times$ watch timer out	put cycle	$2^{16} \times$ watch timer o	utput cycle	Watch timer output edge cycle		

Remarks 1. fx: Main system clock oscillation frequency

- 2. MCS: Bit 0 of oscillation mode select register (OSMS)
- **3.** Values in parentheses apply to operation with fx = 5.0 MHz

(10) Timing at which A/D conversion result is undefined

The A/D conversion value may be undefined if the timing of completion of A/D conversion and the timing of stopping the A/D conversion conflict with each other. Therefore, read the A/D conversion result during the A/D conversion operation. To read the conversion result after stopping the A/D conversion operation, be sure to stop the A/D conversion before the next conversion ends.

Figures 14-14 and 14-15 show the timing of reading the conversion result.

Figure 14-15. Timing of Reading Conversion Result (When Conversion Result is Normal)

* (11) Notes on board design

Locate analog circuits as far away from digital circuits as possible on the board because the analog circuits may be affected by the noise of the digital circuits. In particular, do not cross an analog signal line with a digital signal line, or wire an analog signal line in the vicinity of a digital signal line. Otherwise, the A/D conversion characteristics may be affected by the noise of the digital line.

Connect AVss and Vsso at one location on the board where the voltages are stable.

(b) Serial bus interface control register (SBIC) SBIC is set with a 1-bit or 8-bit memory manipulation instruction. RESET input clears SBIC to 00H.

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>	Address	After reset	R/W
SBIC	BSYE	ACKD	ACKE	ACKT	CMDD	RELD	CMDT	RELT	FF61H	00H	R/W
R/W	RELT When RELT = 1, the SO0 latch is set to 1. After the SO0 latch is set, RELT is automatically cleared to 0. It is also cleared to 0 when CSIE0 = 0.										
R/W	W CMDT When CMDT = 1, the SO0 latch is cleared to 0. After the SO0 latch is cleared, CMDT is automatically cleared to 0. It is also cleared to 0 when CSIE0 = 0.										

CSIE0: Bit 7 of serial operating mode register 0 (CSIM0)

(e) Acknowledge signal (ACK)

The acknowledge signal is used to check serial data reception between the transmitter and receiver.

Figure 16-18. Acknowledge Signal

Remark The broken lines indicate the READY status.

The acknowledge signal is one-shot pulse generated at the falling edge of $\overline{SCK0}$ after 8-bit data transfer. It can be positioned anywhere and can be synchronized with any $\overline{SCK0}$ clock.

After 8-bit data transmission, the transmitter checks whether the receiver has returned the acknowledge signal. If the acknowledge signal is not returned for the preset period of time after data transmission, it can be judged that data reception has not been carried out correctly.

Signal Name	Output Device	Definition	Timing Chart	Output Conditions	Effects on Flag	Meaning of Signal
Bus release signal (REL)	Master	SB0 (SB1) rising edge when SCK0 = 1	SCK0 "H" SB0 (SB1)	RELT set	RELD setCMDD clear	CMD signal is output to indicate that transmit data is an address.
Command signal (CMD)	Master	SB0 (SB1) falling edge when SCK0 = 1	SCK0 "H" SB0 (SB1)	CMDT set	CMDD set	 i) Transmit data is an address after REL signal output. ii) REL signal is not output and trans- mit data is an command.
Acknowledge signal (ACK)	Master/ slave	Low-level signal output to SB0 (SB1) during one- clock period of SCK0 after completion of serial reception	[Synchronous BUSY output]	①ACKE = 1 ②ACKT set	ACKD set	Completion of reception
Busy signal (BUSY)	Slave	[Synchronous BUSY signal] Low-level signal output to SB0 (SB1) following acknowledge signal	SB0 (SB1) D0	• BSYE = 1	_	Serial receive disabled because of processing
Ready signal (READY)	Slave	High-level signal output to SB0 (SB1) before serial transfer start and after completion of serial transfer	SB0 (SB1) D0 READY	 ①BSYE = 0 ②Execution of instruction for data write to SIO0 (transfer start instruction) 	_	Serial receive enabled

CHAPTER 16 SERIAL INTERFACE CHANNEL 0 (µPD780058 SUBSERIES)

Table 16-3. Various Signals in SBI Mode (1/2)

(4) Interrupt timing specification register (SINT)

This register sets the bus release interrupt and address mask functions and displays the SCK0/SCL pin level status.

SINT is set with a 1-bit or 8-bit memory manipulation instruction. RESET input clears SINT to 00H.

Figure 17-6. Format of Interrupt Timing Specification Register (1/2)

R/W	WAT1	WAT0	Wait and interrupt control
	0	0	Generates interrupt servicing request at rising edge of 8th $\overline{\text{SCK0}}$ clock cycle (keeping clock output in high impedance).
	0	1	Setting prohibited
	1	0	Used in I ² C bus mode (8-clock wait). Generates interrupt servicing request at rising edge of 8th SCK0 clock cycle. (In the case of master device, makes SCL output low to enter wait state after 8 clock pulses are output. In the case of slave device, makes SCL output low to request wait state after 8 clock pulses are input.)
	1	1	Used in I ² C bus mode (9-clock wait). Generates interrupt servicing request at rising edge of 9th SCK0 clock cycle. (In the case of master device, makes SCL output low to enter wait state after 9 clock pulses are output. In the case of slave device, makes SCL output low to request wait state after 9 clock pulses are input.)

R/W WREL

WREL	Wait sate release control
0	Wait state has been released.
1	Release wait state. Automatically cleared to 0 when the state is released (Used to cancel wait state by means of WAT0 and WAT1.)

R/W	CLC	Clock level control ^{Note 2}
	0	Used in I ² C bus mode. Make output level of SCL pin low unless serial transfer is being performed.
	1	Used in I ² C bus mode. Make SCL pin enter high-impedance state unless serial transfer is being performed (except for clock line which is kept high). Used to enable master device to generate start condition and stop condition signals.

Notes 1. Bit 6 (CLD) is a read-only bit.

2. When not using the I²C mode, clear CLC to 0.

18.3 Control Registers of Serial Interface Channel 1

The following four registers are used to control serial interface channel 1.

- Timer clock select register 3 (TCL3)
- Serial operating mode register 1 (CSIM1)
- Automatic data transmit/receive control register (ADTC)
- Automatic data transmit/receive interval specification register (ADTI)
- (1) Timer clock select register 3 (TCL3)

This register sets the serial clock of serial interface channel 1. TCL3 is set with an 8-bit memory manipulation instruction. RESET input sets TCL3 to 88H.

Remark Besides setting the serial clock of serial interface channel 1, TCL3 sets the serial clock of serial interface channel 0.

When the internal clock is used as the serial clock in the 3-wire serial I/O mode, set BRGC as described below. BRGC setting is not required if an external serial clock is used.

(i) When the baud rate generator is not used:

Select the serial clock frequency using TPS0 to TPS3. Be sure then to set MDL0 to MDL3 to 1,1,1,1. The serial clock frequency becomes the same as the source clock frequency for the 5-bit counter.

(ii) When the baud rate generator is used:

Select the serial clock frequency using TPS0 to TPS3. Be sure then to set MDL0 to MDL3 to 1,1,1,1.

The serial clock frequency is calculated by the following formula:

Serial clock frequency = $\frac{fxx}{2^n \times (k + 16)}$ [Hz]

- Remarks 1. fx: Main system clock oscillation frequency
 - 2. fxx: Main system clock frequency (fx or fx/2)
 - **3.** n: Value set in TPS0 to TPS3 $(1 \le n \le 11)$
 - **4.** k: Value set in MDL0 to MDL3 ($0 \le k \le 14$)

(5) Sampling clock select register (SCS)

This register is used to set the clock for sampling the valid edge input to INTP0. When remote controlled data reception is carried out using INTP0, digital noise is eliminated using the sampling clock. SCS is set with an 8-bit memory manipulation instruction. RESET input clears SCS to 00H.

Figure 21-7. Format of Sampling Clock Select Register

Caution fxx/2^N is the clock supplied to the CPU and fxx/2⁵, fxx/2⁶, and fxx/2⁷ are clocks supplied to the peripheral hardware. fxx/2^N stops in the HALT mode.

Remarks 1. N: Value (N = 0 to 4) of bits 0 to 2 (PCC0 to PCC2) of processor clock control register (PCC)

- 2. fxx: Main system clock frequency (fx or fx/2)
- **3.** fx: Main system clock oscillation frequency
- 4. MCS: Bit 0 of the oscillation mode select register (OSMS)
- 5. Values in parentheses apply to operation with fx = 5.0 MHz.

21.5 Test Function

When the watch timer overflows and the port 4 falling edge is detected, the internal test input flag is set to 1, and the standby release signal is generated.

Unlike the interrupt function, vectored processing is not performed.

There are two test input sources as shown in Table 21-5. The basic configuration is shown in Figure 21-18.

Table 21-5. Test Input Sources

	Test Input Sources						
Name	Name Trigger						
INTWT	Watch timer overflow	Internal					
INTPT4	Falling edge detection at port 4	External					

Remark IF: Test input flag MK: Test mask flag

21.5.1 Registers controlling test function

The test function is controlled by the following three registers.

- Interrupt request flag register 1L (IF1L)
- Interrupt mask flag register 1L (MK1L)
- Key return mode register (KRM)

The names of the test input flags and test mask flags corresponding to the test input signals are listed in Table 21-6.

Table 21-6.	Flags	Corres	ponding	to	Test	Input	Signals
-------------	-------	--------	---------	----	------	-------	---------

Test Input Signal Name	Test Input Flag	Test Mask Flag
INTWT	WTIF	WTMK
INTPT4	KRIF	KRMK

Instruction				Clocks		Quanting		Flag	
Group	Mnemonic	Operands	Bytes	Note 1	Note 2	Operation	Z	AC	CY
16-bit	MOVW	rp, #word		6	-	$rp \leftarrow word$			
data		saddrp, #word	4	8	10	$(saddrp) \leftarrow word$			
liansiei		sfrp, #word	4	-	10	$sfrp \leftarrow word$			
		AX, saddrp	2	6	8	$AX \gets (saddrp)$			
		saddrp, AX	2	6	8	$(saddrp) \leftarrow AX$			
		AX, sfrp	2	-	8	$AX \leftarrow sfrp$			
		sfrp, AX	2	-	8	$sfrp \leftarrow AX$			
		AX, rp Note 3	1	4	-	$AX \gets rp$			
		rp, AX Note 3	1	4	-	$rp \leftarrow AX$			
		AX, !addr16	3	10	12 + 2n	$AX \leftarrow (addr16)$			
		!addr16, AX	3	10	12 + 2m	$(addr16) \leftarrow AX$			
	XCHW	AX, rp Note 3	1	4	-	$AX \leftrightarrow rp$			
8-bit	ADD	A, #byte	2	4	-	A, CY \leftarrow A + byte	×	×	×
operation		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte	×	×	×
		A, r Note 4	2	4	-	$A,CY\leftarrowA+r$	×	×	×
		r, A	2	4	-	$r,CY \gets r + A$	×	×	×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr)	×	×	×
		A, !addr16	3	8	9 + n	A, CY \leftarrow A + (addr16)	×	×	×
		A, [HL]	1	4	5 + n	A, CY \leftarrow A + (HL)	×	×	×
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A + (HL + byte)	×	×	×
		A, [HL + B]	2	8	9 + n	$A,CY\leftarrowA+(HL+B)$	×	×	×
		A, [HL + C]	2	8	9 + n	$A,CY\leftarrowA+(HL+C)$	×	×	×
	ADDC	A, #byte	2	4	-	A, CY \leftarrow A + byte + CY	×	×	×
		saddr, #byte	3	6	8	(saddr), CY \leftarrow (saddr) + byte + CY	×	×	×
		A, r Note 4	2	4	-	$A,CY\leftarrowA+r+CY$	×	×	×
		r, A	2	4	-	$r,CY \gets r + A + CY$	×	×	×
		A, saddr	2	4	5	A, CY \leftarrow A + (saddr) + CY	×	×	×
		A, !addr16	3	8	9 + n	A, CY \leftarrow A + (addr16) + CY	×	×	×
		A, [HL]	1	4	5 + n	$A,CY\leftarrowA+(HL)+CY$	×	×	×
		A, [HL + byte]	2	8	9 + n	A, CY \leftarrow A + (HL + byte) + CY	×	×	×
		A, [HL + B]	2	8	9 + n	$A,CY\leftarrowA+(HL+B)+CY$	×	×	×
		A, [HL + C]	2	8	9 + n	$A,CY \overleftarrow{\leftarrow} A + (HL + C) + CY$	×	×	×

Notes 1. When the internal high-speed RAM area is accessed or instruction that performs no data access is executed.

- 2. When an area except the internal high-speed RAM area is accessed
- **3.** Only when rp = BC, DE, or HL
- 4. Except "r = A"
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPU) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.
 - 3. n is the number of waits when external memory expansion area is read from.
 - 4. m is the number of waits when external memory expansion area is written to.

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксү5	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5$.5 V	800			ns
		$2.0 V \leq V_{DD} < 4$.5 V	3,200			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2$.0 V	4,800			ns
SCK0 high-/low-level	tĸн₅, tĸ∟₅	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5$.5 V	tксү5/2 – 50			ns
width		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 4$.5 V	tксү₅/2 – 150			ns
SB0, SB1 setup time	tsik5	$4.5~V \le V_{\text{DD}} \le 5$.5 V	100			ns
(to SCK0↑)		$2.0 V \leq V_{DD} < 4$.5 V	300			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2$.0 V	400			ns
SB0, SB1 hold time	tksi5			tксү5/2			ns
(from SCK0↑)							
Delay time from $\overline{\text{SCK0}}\downarrow$	tkso5	R = 1 kΩ,	V _{DD} = 4.5 to 5.5 V	0		250	ns
to SB0, SB1 output		C = 100 pF ^{Note}	V _{DD} = 1.8 to 5.5 V	0		1,000	ns
SB0, SB1 \downarrow from SCK0 \uparrow	tкsв			tксү5			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксү5			ns
SB0, SB1 high-level width	tsвн			tксү5			ns
SB0, SB1 low-level width	tsвL			tксү5			ns

(v) SBI mode (SCK0 ... Internal clock output) (µPD78005x only)

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.

(vi) SBI mode (SCK0 External	clock input)	(µPD78005x only)
------------------------------	--------------	------------------

Parameter	Symbol	Сог	nditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	t ксү6	$4.5~V \le V_{\text{DD}} \le 5$.5 V	800			ns
		$2.0 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$		3,200			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2$.0 V	4,800			ns
SCK0 high-/low-level	tkh6, tkl6	$4.5~V \le V_{\text{DD}} \le 5$.5 V	400			ns
width		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4$.5 V	1,600			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2$.0 V	2,400			ns
SB0, SB1 setup time	tsik6	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5$.5 V	100			ns
(to SCK0↑)		$2.0 V \leq V_{DD} < 4$.5 V	300			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2$.0 V	400			ns
SB0, SB1 hold time	tksi6			tксү6/2			ns
(from SCK0↑)							
Delay time from $\overline{\text{SCK0}}\downarrow$	tkso6	R = 1 kΩ,	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	0		300	ns
to SB0, SB1 output		C = 100 pF ^{Note}	V _{DD} = 1.8 to 5.5 V	0		1,000	ns
SB0, SB1↓ from SCK0↑	tкsв			tксу6			ns
$\overline{\text{SCK0}}\downarrow$ from SB0, SB1 \downarrow	tsвк			tксү6			ns
SB0, SB1 high-level width	tsвн			tксү6			ns
SB0, SB1 low-level width	t SBL			tксу6			ns
SCK0 rise/fall time	tre, tre	When using external device				160	ns
		expansion func	expansion function				
		When not using external device expansion function				1,000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксү7	R = 1 KΩ,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	10			μs
		C = 100 pF ^{Note}	$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	20			μs
			$1.8~V \leq V_{\text{DD}} < 2.0~V$	30			μs
SCL high-level width	tкн7		V _{DD} = 2.7 to 5.5 V	tксү7 – 160			ns
			V _{DD} = 1.8 to 5.5 V	tксү7 – 190			ns
SCL low-level width	tĸ∟7		V _{DD} = 4.5 to 5.5 V	tксү7 – 50			ns
			VDD = 1.8 to 5.5 V	tксүл – 100			ns
SDA0, SDA1 setup time	tsıĸ7		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	200			ns
(to SCL↑)			$2.0~V \leq V_{\text{DD}} < 2.7~V$	300			ns
			$1.8~V \leq V_{\text{DD}} < 2.0~V$	400			ns
SDA0, SDA1 hold time (from SCL↓)	tksi7			0			ns
Delay time from SCL \downarrow	tkso7		$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		300	ns
to SDA0, SDA1 output			$2.0~\text{V} \leq \text{V}_\text{DD} < 4.5~\text{V}$	0		500	ns
			$1.8~V \leq V_{\text{DD}} < 2.0~V$	0		600	ns
SDA0, SDA1 \downarrow from SCL \uparrow or SDA0, SDA1 \uparrow from SCL \downarrow	tкsв			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsвк		V _{DD} = 2.0 to 5.5 V	400			ns
			V _{DD} = 1.8 to 5.5 V	500			ns
SDA0, SDA1 high-level width	tsвн			500			ns

(vii) I²C bus mode (SCL ... Internal clock output) (µPD78005xY only)

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.

(viii) I²C bus mode (SCL ... External clock input) (µPD78005xY only)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tксув			1,000			ns
SCL high-/low-level width	tкнв,	V _{DD} = 2.0 to 5.5	V	400			ns
	tĸ∟8	V _{DD} = 1.8 to 5.5	V	600			ns
SDA0, SDA1 setup time	tsiкa	V _{DD} = 2.0 to 5.5	V	200			ns
(to SCL↑)		V _{DD} = 1.8 to 5.5	V		300		ns
SDA0, SDA1 hold time (from SCL↓)	tksi8			0			ns
Delay time from SCL↓	tkso8	R = 1 kΩ,	$4.5~V \le V_{\text{DD}} \le 5.5~V$	0		300	ns
to SDA0, SDA1 output		C = 100 pF ^{Note}	$2.0~\text{V} \leq \text{V}_\text{DD} < 4.5~\text{V}$	0		500	ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.0 \text{ V}$	0		600	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsвк	V _{DD} = 2.0 to 5.5	V	400			ns
		V _{DD} = 1.8 to 5.5	V	500			ns
SDA0, SDA1 high-level width	tsвн	V _{DD} = 2.0 to 5.5	V _{DD} = 2.0 to 5.5 V				ns
		V _{DD} = 1.8 to 5.5 V		800			ns
SCL rise/fall time	tR8, tF8	When using external device expansion function				160	ns
		When not using external device expansion function				1	μs

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines.

Serial Transfer Timing

3-wire serial I/O mode:

n = 2, 10, 14

2-wire serial I/O mode:

TCY vs. VDD (@ $f_{XX} = f_X/2$ main system clock operation)

Tcy vs. VDD (@fxx = fx main system clock operation)

(iii) UART mode (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			78,125	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			39,063	bps

(iv) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tkCY15	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$	1,600			ns
ASCK high-/low-level width	t кн15, t кL15	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
		$2.7~V \leq V_{\text{DD}} < 4.5~V$	800			ns
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			39,063	bps
		$2.7~V \leq V_{\text{DD}} < 4.5~V$			19,531	bps
ASCK rise/fall time	tr15, tr15	$V_{DD} = 4.5$ to 5.5 V,			1,000	ns
		when not using external device				
		expansion function.				
		Other than above			160	ns

AC Timing Measurement Points (Excluding X1, XT1 Inputs)

Clock Timing

TI Timing

B.9 Drawing and Footprint for Conversion Socket (EV-9200GC-80)

Figure B-2. EV-9200GC-80 Drawing (For Reference Only)

		E1020000000				
ITEM	MILLIMETERS	INCHES				
А	18.0	0.709				
В	14.4	0.567				
С	14.4	0.567				
D	18.0	0.709				
Е	4-C 2.0	4-C 0.079				
F	0.8	0.031				
G	6.0	0.236				
Н	16.0	0.63				
Ι	18.7	0.736				
J	6.0	0.236				
К	16.0	0.63				
L	18.7	0.736				
Μ	8.2	0.323				
0	8.0	0.315				
Ν	2.5	0.098				
Ρ	2.0	0.079				
Q	0.35	0.014				
R	ø2.3	ø0.091				
S	¢1.5	Ø0.059				