



Welcome to **E-XFL.COM** 

Understanding <u>Embedded - Microcontroller, Microprocessor, FPGA Modules</u>

Embedded - Microcontroller, Microprocessor, and FPGA Modules are fundamental components in modern electronic systems, offering a wide range of functionalities and capabilities. Microcontrollers are compact integrated circuits designed to execute specific control tasks within an embedded system. They typically include a processor, memory, and input/output peripherals on a single chip. Microprocessors, on the other hand, are more powerful processing units used in complex computing tasks, often requiring external memory and peripherals. FPGAs (Field Programmable Gate Arrays) are highly flexible devices that can be configured by the user to perform specific logic functions, making them invaluable in applications requiring customization and adaptability.

#### Applications of **Embedded - Microcontroller**,

| Details               |                                                                      |
|-----------------------|----------------------------------------------------------------------|
| Product Status        | Active                                                               |
| Module/Board Type     | MPU Core                                                             |
| Core Processor        | ARM® Cortex®-A8, AM3358                                              |
| Co-Processor          | NEON™ SIMD                                                           |
| Speed                 | 1GHz                                                                 |
| Flash Size            | -                                                                    |
| RAM Size              | 512MB                                                                |
| Connector Type        | 256-BGA                                                              |
| Size / Dimension      | 0.83" x 0.83" (21mm x 21mm)                                          |
| Operating Temperature | 0°C ~ 85°C                                                           |
| Purchase URL          | https://www.e-xfl.com/product-detail/octavo-systems/osd3358-512m-bsm |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **Table of Contents**

|   |     |              |          |                                              | _   |
|---|-----|--------------|----------|----------------------------------------------|-----|
| 1 |     |              |          | story                                        |     |
| 2 |     |              |          | am                                           |     |
|   | 2.  | 1            | Passive  | s                                            | . 5 |
| 3 | ı   | Proc         | luct Nur | mber Information                             | . 7 |
| 4 | I   | Refe         | rence [  | Documents                                    | . 9 |
|   | 4.  | 1            | Data Sh  | neets                                        | . 9 |
|   | 4.2 | 2            | Other F  | Reference                                    | . 9 |
| 5 | ļ   | Ball         | Мар      |                                              | . 9 |
|   | 5.  | 1            | Ball De  | scription                                    | 15  |
|   | 5.2 | 2            | AM335x   | Relocated Signals                            | 18  |
|   | 5.3 | 3            | Not Co   | nnected Balls                                | 18  |
|   | 5.4 | 4            | Reserve  | ed Signals                                   | 19  |
| 6 | i   | AM3          | 35x Pro  | cessor                                       | 20  |
|   | 6.  | 1            | DDR3 N   | Nemory                                       | 20  |
| 7 |     | Pow          | er Mana  | agement                                      | 21  |
|   | 7.′ |              |          | ower                                         |     |
|   |     | 7.1.         | 1 VII    | N_AC                                         | 21  |
|   |     | 7.1.         |          | <br>N_USB                                    |     |
|   |     | 7.1.         |          | <br>N_BAT                                    |     |
|   | 7.2 | 2            |          | Power                                        |     |
|   |     | 7.2.         | -        | S_VOUT: Switched VIN_AC, VIN_USB, or VIN_BAT |     |
|   |     | 7.2.         |          |                                              |     |
|   |     | 7.2.         |          |                                              |     |
|   |     | 7.2.         |          | <br>S_RTC_1P8V                               |     |
|   |     | 7.2.         |          | S_VDD_1P8V                                   |     |
|   |     | 7.2.         |          | S_ADC_1P8V                                   |     |
|   | 7.3 |              |          | l Power                                      |     |
|   |     | ,<br>7.3.    |          | DSHV_3P3V                                    |     |
|   |     | 7.3.<br>7.3. |          | DS_DDR                                       |     |
|   |     |              | _ , ,    | ~~~~~:\                                      |     |

# nilv

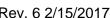


| 7.3. | .3 VDD_MPU                        | 22 |
|------|-----------------------------------|----|
| 7.3  | .4 VDD_CORE                       | 22 |
|      | .5 VDDS_PLL                       |    |
|      | Total Current Consideration       |    |
|      | Control and Status                |    |
|      | ctrical & Thermal Characteristics |    |
|      | kaging Information                |    |
|      | Mechanical Dimensions             |    |
|      | Reflow Instructions               |    |
|      | Storage Recommendations           |    |



# 1 Revision History

| Revision Number | Revision Date                                                                                                                  | Changes                                                                              | Author                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|
| 1               | 5/6/2016                                                                                                                       | Initial Release                                                                      | Greg Sheridan,<br>Kevin Troy   |
| 2               | 5/15/2016                                                                                                                      | Updated Misprint on ADC Specs on first page                                          | Greg Sheridan                  |
| 3               | 5/19/2016                                                                                                                      |                                                                                      |                                |
| 4               | 6/12/16                                                                                                                        | Added reference to TI Handling<br>Recommendations to Handling<br>Section. Fixed Link | Greg Sheridan                  |
| 5               | 5 12/5/16 Updated Electrical Characteristics add Thermal information. Also changed operating temperature from junction to case |                                                                                      | Neeraj Dantu,<br>Greg Sheridan |
| 6               | 2/15/17 Updated Max Current and Voltage in Output Power and Electrical & Thermal Characterization Sections                     |                                                                                      | Neeraj Dantu                   |




## 2.1 Passives

Besides the four major components, the OSD335x also integrates over 140 capacitors, resistors, inductors, and ferrite beads (Passives). Table 2.1 lists the location, value, quantity of the input, and output of these passives to externally accessible signals on the OSD335x.

Table 2.1. OSD335x Passives

| From                 | То       | Device    | Pin                           | Type     | Value   | Qty |
|----------------------|----------|-----------|-------------------------------|----------|---------|-----|
| CAP_VBB_MPU          | VSS      | AM335x    | CAP_VBB_MPU                   | С        | 1uF     | 1   |
| CAP_VDD_RTC          | VSS      | AM335x    | CAP_VDD_RTC                   | С        | 1uF     | 1   |
| CAP_VDD_SRAM_CORE    | VSS      | AM335x    | CAP_VDD_SRAM_CORE             | С        | 1uF     | 1   |
| CAP_VDD_SRAM_MPU     | VSS      | AM335x    | CAP_VDD_SRAM_MPU              | С        | 1uF     | 1   |
| SYS RTC 1P8V         | VSS      | AM335x    | VDDS                          | С        | 10uF    | 1   |
| SYS_RTC_1P8V         | VSS      | AM335x    | VDDS                          | C        | 0.01uF  | 4   |
| SYS_RTC_1P8V         | VSS      | AM335x    | VDDS_RTC                      | С        | 0.01uF  | 1   |
| SYS_VDD_1P8V         | VSS      | AM335x    | VDDA1P8V_USB0                 | Ċ        | 0.01uF  | 1   |
| SYS VDD 1P8V         | VSS      | AM335x    | VDDA1P8V USB1                 | C        | 0.01uF  | 1   |
| SYS VDD 1P8V         | VSS      | AM335x    | VDDS SRAM CORE BG             | C        | 10uF    | 1   |
| SYS_VDD_1P8V         | VSS      | AM335x    | VDDS_SRAM_CORE_BG             | C        | 0.01uF  | 1   |
| SYS_VDD_1P8V         | VSS      | AM335x    | VDDS_SRAM_MPU_BB              | C        | 10uF    | 1   |
| SYS VDD 1P8V         | VSS      | AM335x    | VDDS_SRAM_MPU_BB              | C        | 0.01uF  | 1   |
| VDDSHV 3P3V          | VSS      | AM335x    | VDDA3P3V_USB0                 | C        | 0.01uF  | 1   |
| VDDSHV_3P3V          | VSS      | AM335x    | VDDA3P3V_USB1                 | C        | 0.01uF  | 1   |
| VDDSHV_3P3V          | VSS      | AM335x    | VDDSHV1-VDDSHV6               | C        | 10uF    | 6   |
| VDDSHV_3F3V          | VSS      | AM335x    | VDDSHV1-VDDSHV6               | C        | 0.01uF  | 16  |
| VDD CORE             | VSS      | AM335x    | VDD CORE                      | C        | 10uF    | 1   |
| VDD_CORE             | VSS      | AM335x    | VDD_CORE                      | C        | 0.01uF  | 8   |
| VDD_MPU              | VSS      | AM335x    | VDD_MPU                       | C        | 10uF    | 1   |
| VDD_MII O            | VSS      | AM335x    | VDD MPU                       | C        | 0.01uF  | 5   |
| VDDA ADC             | VSS      | AM335x    | VDDA ADC                      | C        | 0.01uF  | 1   |
| VDDS DDR             | VSS      | AM335x    | VDDS DDR                      | C        | 10uF    | 2   |
| VDDS_DDR             | VSS      | AM335x    | VDDS_DDR                      | C        | 0.047uF | 22  |
| VDDS_DDR<br>VDDS_PLL | VSS      | AM335x    | VDDS_DDR<br>VDDS_OSC          | C        | 0.047uF | +   |
| VDDS_PLL             | VSS      | AM335x    | VDDS_OSC<br>VDDS_PLL_CORE_LCD | C        | 0.01uF  | 1   |
|                      | VSS      | AM335x    | VDDS_FLL_CORE_LCD             | C        | 0.01uF  | 1   |
| VDDS_PLL<br>VDDS_PLL | VSS      | AM335x    | VDDS_PLL_MPU                  | C        | 0.01uF  | 1   |
| SYS VDD 1P8V         |          |           | VDDS_PLL_MPO                  | FB       | 1       |     |
|                      | VDDA_ADC | AM335x    |                               |          | 150 Ohm | 1   |
| SYS_VDD_1P8V         | VDDS_PLL | AM335x    | VDDS_PLL<br>VSSA ADC          | FB<br>FB | 150 Ohm | 1   |
| VSS                  | VSSA_ADC | AM335x    |                               |          | 150 Ohm | 1   |
| VDDS_DDR             | VSS      | OSD335x   | DDR3 Memory Device            | С        | 10uF    | 2   |
| VDDS_DDR             | VSS      | OSD335x   | DDR3 Memory Device            | С        | 0.1uF   | 12  |
| VDDSHV_3P3V          | VSS      | TL5209    | OUT                           | С        | 2.2uF   | 1   |
| SYS_VOUT             | VSS      | TL5209    | IN                            | С        | 2.2uF   | 1   |
| SYS_RTC_1P8V         | VSS      | TPS65217C | VLDO1                         | С        | 2.2uF   | 1   |
| SYS_VDD_1P8V         | VSS      | TPS65217C | LS1_OUT                       | С        | 10uF    | 1   |
| SYS_VDD2_3P3V        | VSS      | TPS65217C | VLDO2                         | С        | 2.2uF   | 1   |
| VDDSHV_3P3V          | VSS      | TPS65217C | LS2_OUT                       | С        | 10uF    | 1   |
| SYS_VOUT             | VSS      | TPS65217C | SYS                           | С        | 10uF    | 2   |
| SYS_VOUT             | VSS      | TPS65217C | VIN_DCDC1                     | С        | 10uF    | 1   |
| SYS_VOUT             | VSS      | TPS65217C | VIN_DCDC2                     | С        | 10uF    | 1   |
| SYS_VOUT             | VSS      | TPS65217C | VIN_DCDC3                     | С        | 10uF    | 1   |
| SYS_VOUT             | VSS      | TPS65217C | VIN_LDO                       | С        | 10uF    | 1   |
| VDD_CORE             | VSS      | TPS65217C | VDCDC3                        | С        | 10uF    | 1   |
| VDD_MPU              | VSS      | TPS65217C | VDCDC2                        | С        | 10uF    | 1   |
| VDDS_DDR             | VSS      | TPS65217C | VDCDC1                        | С        | 10uF    | 1   |
| VIN_5V               | VSS      | TPS65217C | AC                            | С        | 10uF    | 1   |
| VIN_BAT              | VSS      | TPS65217C | BAT                           | С        | 10uF    | 1   |
| VIN_USB              | VSS      | TPS65217C | USB                           | С        | 10uF    | 1   |





| VDD_CORE     | L3                   | TPS65217C | L3              | L | 2.2uH    | 1 |
|--------------|----------------------|-----------|-----------------|---|----------|---|
| VDD_MPU      | L2                   | TPS65217C | L2              | L | 2.2uH    | 1 |
| VDDS_DDR     | L1                   | TPS65217C | L1              | L | 2.2uH    | 1 |
| SYS_RTC_1P8V | PMIC_OUT_P<br>WR_EN  | TPS65217C | PWR_EN pull-up  | R | 10K Ohm  | 1 |
| SYS_RTC_1P8V | PMIC_OUT_N<br>WAKEUP | TPS65217C | WAKEUPN pull-up | R | 10K Ohm  | 1 |
| VDDSHV_3P3V  | PMIC_OUT_N<br>INT    | TPS65217C | INTN pull-up    | R | 10K Ohm  | 1 |
| VDDSHV_3P3V  | PMIC_IN_I2C<br>_SCL  | TPS65217C | SCL pull-up     | R | 4.7K Ohm | 1 |
| VDDSHV_3P3V  | PMIC_IN_I2C<br>SDA   | TPS65217C | SDA pull-up     | R | 4.7K Ohm | 1 |

## 3 Product Number Information

Figure 3.1 shows an example of an orderable product number for the OSD335X family. This section explains the different sections of the product number. It will also list the valid entries and their meaning for each designator.



Figure 3.1. Example Product Number

Family Designator – Three letters that designate the family of device.

Processor Designator – A set of letters and numbers that designate the specific processor in the device. Table 3.1 shows the valid values for the Processor Designator.

Table 3.1. Processor Designators

| Processor Designator | Processor                |
|----------------------|--------------------------|
| 3358                 | Texas Instruments AM3358 |
| 3352                 | Texas Instruments AM3352 |

Memory Designator – A set of letters and numbers that designate the DDR3 memory size in the device. Table 3.2 shows the valid values for the Memory Designator.

Table 3.2. Memory Designator

| Memory Designator | DDR Memory Size |
|-------------------|-----------------|
| 1G                | 1GB DDR3        |
| 512M              | 512 MB DDR3     |
| 256M              | 256 MB DDR3     |

Rev. 6 2/15/2017



Trim Designator – A set of letters and numbers that designate a set additional features in the device. Table 3.3 shows the valid values for the Trim Designator.

Table 3.3. Trim Designator

| Trim Designator | Device Options                                                 |
|-----------------|----------------------------------------------------------------|
| BAS             | Base Model containing the Processer, DDR Memory, PMIC, and LDO |

Revision Designator – One or two letters that designate the revision of the device. An  $\mathbf{X}$  in the first position of the designator shows that this device is a preproduction device.



Table 5.2. OSD335X Ball Map Top View (Columns E-H)

|    | E            | F            | G           | Н             |
|----|--------------|--------------|-------------|---------------|
| 20 | VSS          | OSC1_OUT     | OSC1_GND    | OSC1_IN       |
| 19 | VSS          | VSS          | VSS         | VSS           |
| 18 | UART0_CTSN   | MMC0_DAT2    | MMC0_CMD    | RMII1_REF_CLK |
| 17 | UART0_RTSN   | MMC0_DAT3    | MMC0_CLK    | MII1_CRS      |
| 16 | UART0_TXD    | USB0_DRVVBUS | MMC0_DAT0   | MII1_COL      |
| 15 | UART0_RXD    | USB1_DRVVBUS | MMC0_DAT1   | VDDS_PLL      |
| 14 | SYS_RTC_1P8V | VDDSHV_3P3V  | VDDSHV_3P3V | VDDSHV_3P3V   |
| 13 | VDDSHV_3P3V  | VDD_MPU      | VDD_MPU     | VDD_MPU       |
| 12 | VDDSHV_3P3V  | VDD_MPU      | VSS         | VSS           |
| 11 | VDDSHV_3P3V  | VDD_MPU      | VSS         | VDD_CORE      |
| 10 | VDDSHV_3P3V  | VDD_MPU      | VDD_CORE    | VSS           |
| 9  | SYS_VDD_1P8V | SYS_RTC_1P8V | VSS         | VSS           |
| 8  | VSSA_ADC     | VSS          | VSS         | VSS           |
| 7  | VDDS_PLL     | VDD_CORE     | VDD_CORE    | VSS           |
| 6  | SYS_RTC_1P8V | VDD_CORE     | VDD_CORE    | VSS           |
| 5  | VDDS_DDR     | VDDS_DDR     | VDDS_DDR    | VDDS_DDR      |
| 4  | NC           | NC           | NC          | NC            |
| 3  | NC           | NC           | NC          | NC            |
| 2  | NC           | NC           | NC          | NC            |
| 1  | NC           | NC           | NC          | NC            |





Table 5.3. OSD335X Ball Map Top View (Columns J-M)

|    | J           | к            | L           | М         |
|----|-------------|--------------|-------------|-----------|
| 20 | VSS         | OSC0_OUT     | OSC0_GND    | OSC0_IN   |
| 19 | VSS         | VSS          | VSS         | VSS       |
| 18 | MII1_TXD3   | MII1_TX_CLK  | MII1_RX_CLK | MDC       |
| 17 | MII1_RX_DV  | MII1_TXD0    | MII1_RXD3   | MDIO      |
| 16 | MII1_TX_EN  | MII1_TXD1    | MII1_RXD2   | MII1_RXD0 |
| 15 | MII1_RX_ER  | MII1_TXD2    | MII1_RXD1   | USB0_CE   |
| 14 | VDDSHV_3P3V | VDDSHV_3P3V  | VDDSHV_3P3V | VSS       |
| 13 | VDD_MPU     | SYS_RTC_1P8V | VSS         | VDD_CORE  |
| 12 | VDD_CORE    | VDD_CORE     | VSS         | VSS       |
| 11 | VSS         | VSS          | VSS         | VDD_CORE  |
| 10 | VSS         | VSS          | VSS         | VSS       |
| 9  | VSS         | VSS          | VDD_CORE    | VSS       |
| 8  | VSS         | VDD_CORE     | VDD_CORE    | VSS       |
| 7  | VSS         | VSS          | VDD_CORE    | VSS       |
| 6  | VSS         | VDD_CORE     | VDD_CORE    | VSS       |
| 5  | VDDS_DDR    | VDDS_DDR     | VDDS_DDR    | VPP       |
| 4  | NC          | NC           | NC          | NC        |
| 3  | NC          | NC           | NC          | NC        |
| 2  | NC          | NC           | NC          | NC        |
| 1  | NC          | NC           | NC          | NC        |





Table 5.4. OSD335X Ball Map Top View (Columns N-T)

|    | N            | Р            | R              | Т             |
|----|--------------|--------------|----------------|---------------|
| 20 | VSS          | VSS          | VSS            | VSS           |
| 19 | VSS          | VSS          | VSS            | vss           |
| 18 | USB0_DM      | USB1_CE      | USB1_DM        | USB1_VBUS     |
| 17 | USB0_DP      | USB1_ID      | USB1_DP        | GPMC_WAIT0    |
| 16 | SYS_VDD_1P8V | USB0_ID      | SYS_VDD_1P8V   | GPMC_A10      |
| 15 | VDDSHV_3P3V  | USB0_VBUS    | VDDSHV_3P3V    | GPMC_A07      |
| 14 | VSS          | SYS_RTC_1P8V | GPMC_A04       | GPMC_A03      |
| 13 | VDD_CORE     | VDDSHV_3P3V  | GPMC_A00       | GPMC_CSN3     |
| 12 | VDD_CORE     | VDDSHV_3P3V  | GPMC_AD13      | GPMC_AD12     |
| 11 | VSS          | VDDSHV_3P3V  | VDDS_PLL       | GPMC_AD10     |
| 10 | VSS          | VDDSHV_3P3V  | VDDS_PLL       | GPMC_AD09     |
| 9  | VDD_CORE     | SYS_RTC_1P8V | GPMC_AD06      | GPMC_AD07     |
| 8  | VDD_CORE     | VDDSHV_3P3V  | GPMC_AD02      | GPMC_AD03     |
| 7  | VSS          | VDDSHV_3P3V  | GPMC_ADVN_ALE  | GPMC_OEN_REN  |
| 6  | SYS_RTC_1P8V | VDDSHV_3P3V  | LCD_AC_BIAS_EN | GPMC_BEN0_CLE |
| 5  | VDDSHV_3P3V  | VDDSHV_3P3V  | LCD_HSYNC      | LCD_DATA15    |
| 4  | NC           | NC           | LCD_DATA03     | LCD_DATA07    |
| 3  | NC           | NC           | LCD_DATA02     | LCD_DATA06    |
| 2  | NC           | NC           | LCD_DATA01     | LCD_DATA05    |
| 1  | NC           | NC           | LCD_DATA00     | LCD_DATA04    |





Table 5.5. OSD335X Ball Map Top View (Columns U-Y)

|    | U             | V             | W        | Υ             |
|----|---------------|---------------|----------|---------------|
| 20 | SYS_VDD1_3P3V | SYS_VDD1_3P3V | VSS      | EXTL3B        |
| 19 | VSS           | VSS           | VSS      | EXTL3A        |
| 18 | GPMC_BEN1     | VSS           | VSS      | VSS           |
| 17 | GPMC_WPN      | GPMC_A11      | VSS      | EXTL2B        |
| 16 | GPMC_A09      | GPMC_A08      | VSS      | EXTL2A        |
| 15 | GPMC_A06      | GPMC_A05      | VSS      | VSS           |
| 14 | GPMC_A02      | GPMC_A01      | VSS      | EXTL1B        |
| 13 | GPMC_AD15     | GPMC_AD14     | VSS      | EXTL1A        |
| 12 | GPMC_AD11     | GPMC_CLK      | VSS      | VSS           |
| 11 | NC            | NC            | VSS      | SYS_VDD2_3P3V |
| 10 | GPMC_AD08     | NC            | VSS      | VSS           |
| 9  | GPMC_CSN1     | GPMC_CSN2     | VSS      | VIN_USB       |
| 8  | GPMC_AD04     | GPMC_AD05     | VSS      | VIN_USB       |
| 7  | GPMC_AD00     | GPMC_AD01     | VSS      | VSS           |
| 6  | GPMC_WEN      | GPMC_CSN0     | VSS      | VIN_AC        |
| 5  | LCD_VSYNC     | LCD_PCLK      | VSS      | VIN_AC        |
| 4  | LCD_DATA11    | LCD_DATA14    | SYS_VOUT | SYS_VOUT      |
| 3  | LCD_DATA10    | LCD_DATA13    | VSS      | VIN_BAT       |
| 2  | LCD_DATA09    | LCD_DATA12    | VSS      | VIN_BAT       |
| 1  | LCD_DATA08    | VSS           | BAT_TEMP | BAT_VOLT      |



Rev. 6 2/15/2017



| VDDS_DDR         | Internal Power Supply Test Point               |
|------------------|------------------------------------------------|
| VDDS_PLL         | Internal Power Supply Test Point               |
| VDDSHV_3P3V      | Internal Power Supply Test Point               |
| VIN_AC           | TPS65217C AC Input                             |
| VIN_BAT          | TPS65217C BAT Input / Output                   |
| VIN_USB          | TPS65217C USB Input                            |
| VPP              | RESERVED                                       |
| VREFP            | Analog Positive Reference Input                |
| VSS              | Digital Ground                                 |
| VSSA_ADC         | Analog Ground, Analog Negative Reference Input |
| WARMRSTN         | Warm Reset (Active Low)                        |
| XDMA_EVENT_INTR0 | External DMA Event or Interrupt 0              |
| XDMA_EVENT_INTR1 | External DMA Event or Interrupt 1              |

## 5.2 AM335x Relocated Signals

A small number of signals from the AM335x have been moved to a different location on the OSD335x. For more information on these signals please refer to AN1002. A link to it is provided in the Reference Documents section of this document.

#### 5.3 Not Connected Balls

The OSD335x ball map contains a number of balls which are marked NC (No Connect). These balls must be left unconnected on the system PCB since they may be used for other purposes in future versions of the OSD335x.

Most of these balls are from the AM335x pins associated with the DDR3 interface. They are not brought out because they are exclusively used internally to connect the AM335x with the DDR Memory. Several other balls in the ball map are also NC due to other functions handled internal to the OSD335x.



## 5.4 Reserved Signals



There is a subset of signals that are available on the OSD335x ball map but **should not be** used externally to the device. These signals are used internally to the OSD335x and using them could significantly affect the performance of the device. They are provided for test purposes only. The list of signals that should not be used can be found in Table 5.7.

Table 5.7. Reserved Signals

| Reserved Signals  |
|-------------------|
| TESTOUT           |
| CAP_VBB_MPU       |
| CAP_VDD_SRAM_CORE |
| CAP_VDD_SRAM_MPU  |
| VPP               |
| EXTL1A            |
| EXTL1B            |
| EXTL2A            |
| EXTL2B            |
| EXTL3A            |
| EXTL3B            |
|                   |

Rev. 6 2/15/2017



## 6 AM335x Processor

The heart of the OSD335x is the Texas Instruments ARM® Cortex®-A8 Sitara™ AM335x processor. The processor in the OSD335x is configured to perform identically to a standalone device. Please refer to the data sheet in the Reference Documents section for details on using the AM335x processor.

### 6.1 DDR3 Memory

The OSD335x integrates a DDR3 memory into the device and handles all of the connections needed between the AM335x and the DDR3. You will still have to set the proper registers to configure the AM335x DDR PHY to work correctly with the memory included in the OSD335x. Typically, this would require you to run through the procedure outlined in the AM335x DDR PHY register configuration for DDR3 using Software Leveling referred to in the Reference Documents section of this document. We have already run this procedure for the OSD335x and have provided a list of the recommended values for the registers in Table 6.1. It is recommended that you use this set of values for optimal performance.

Table 6.1 AM335x DDR PHY Register Settings

| Registers                    | Recommended Values |  |  |
|------------------------------|--------------------|--|--|
| DDR3_SDRAM_TIMING1           | 0x0AAAD4DB         |  |  |
| DDR3_SDRAM_TIMING2           | 0x266B7FDA         |  |  |
| DDR3_SDRAM_TIMING3           | 0x501F867F         |  |  |
| DDR3_SDRAM_CONFIG            | 0x61C05332         |  |  |
| CMD_PHY_INVERT_CLKOUT        | 0x00               |  |  |
| DATA_PHY_RD_DQS_SLAVE_RATIO  | 0x3A               |  |  |
| DATA_PHY_FIFO_WE_SLAVE_RATIO | 0x95               |  |  |
| DATA_PHY_WR_DQS_SLAVE_RATIO  | 0x45               |  |  |
| DATA_PHY_WR_DATA_SLAVE_RATIO | 0x7F               |  |  |
| DDR_IOCTL_VALUE              | 0x18B              |  |  |

If you want to rerun the calibration yourself the seed values provided in Table 6.2 should be used.

Table 6.2 AM335x DDR PHY Calibration Seed Values

| DATAx_PHY_RD_DQS_SLAVE_RATIO  | 40 |
|-------------------------------|----|
| DATAx_PHY_FIFO_WE_SLAVE_RATIO | 64 |
| DATAX PHY WR DQS SLAVE RATIO  | 0  |



## 7 Power Management

The power management portion of the OSD335x consists of two devices, the TPS65217C (PMIC) and the TL5209 (LDO). These devices are used to provide the necessary power rails to the AM335x and the DDR3. They also provide power supply outputs that may be used to power circuitry external to the OSD335x. This section describes how to power the OSD335x in a system and the outputs that can be used. The OSD335x has a complicated power distribution network and care must be taken to read and understand the proper use of the external connections to the power supplies.

### 7.1 Input Power

The OSD335x may be powered by any combination of the following input power supplies. Please refer to the TPS65217C datasheet for details.

#### 7.1.1 VIN AC

The OSD335x may be powered by an external AC Adaptor at 5.0 VDC.

#### 7.1.2 VIN USB

The OSD335x may be powered by a USB port at 5.0 VDC.

#### 7.1.3 VIN\_BAT

The OSD335x may be powered by a Li-Ion or Li-Polymer Battery.

#### 7.2 Output Power

The OSD335x produces the following output power supplies.

#### 7.2.1 SYS VOUT: Switched VIN AC, VIN USB, or VIN BAT

The OSD335x contains a shared supply to power the AM335x, DDR3, and TL5209 which is also used to power external circuitry. This is supplied by the TPS65217C SYS output. The SYS output is a switched connection to one of the input power supplies selected by the TPS65217C as described in the datasheet for that device.

#### 7.2.2 SYS\_VDD1\_3P3V

The OSD335x contains a dedicated 3.3 VDC supply<sup>1</sup> to power external circuitry. This is supplied by the TL5209, powered by the TPS65217C SYS output, and enabled by the TPS65217C LDO4.

#### 7.2.3 SYS VDD2 3P3V

The OSD335x contains a dedicated 3.3 VDC supply to power external circuitry. This is supplied by the TPS65217C LDO2.

<sup>&</sup>lt;sup>1</sup> The nominal output voltage of the LDO has been set to 3.33V using 1% tolerance resistors. This implies a nominal voltage range of 3.29V – 3.37V. The LDO has an accuracy of 1 – 2% depending on the ambient temperature which will also affect the nominal voltage. See the TL5209 datasheet for more information.



## 7.4 Total Current Consideration



The total current consumption of all power rails must not exceed the recommended input currents described in Table 8.2. This includes power consumption within the SiP from the AM335x and the DDR3, as well as all external loads on the output power rails from Section 7.2.

The power consumed by the AM335x can be estimated using the AM335x Power Estimation Tool found in the Reference Documents section of this document. When estimating power consumption, the efficiencies and types of the OSD335x internal power supplies must be considered. Refer to the "Connections Diagram for TPS65217C and AM335x" section of Powering the AM335x with the TPS65217x found in the Reference Documents section of this document for more information on the power supplies providing power to the AM335x.

Rev. 6 2/15/2017



#### 7.5 Control and Status

Table 7.1 lists the signals required to coordinate the operation of the AM335x and TPS65217C. Figure 7.1 illustrates the required connections between the required signals. This is the minimum requirement. The accessibility of these signals enables other uses of the reset, power control, power status, interrupt, wakeup, and serial communication signals.

Table 7.1. AM335x and TPS65217C Signal Descriptions

| Signal                    | Description                    | Notes |
|---------------------------|--------------------------------|-------|
| PMIC_POWER_EN             | PMIC Power Enable from AM335x  |       |
| PMIC_IN_PWR_EN            | PMIC Power Enable to TPS65217C | 1     |
| I2C0_SCL                  | I2C0 SCL from AM335x           |       |
| PMIC_IN_I2C_SCL           | I2C SCL to TPS65217C           | 1     |
| I2C0_SDA                  | I2C0 SDA from AM335x           |       |
| PMIC_IN_I2C_SDA           | I2C SDA to TPS65217C           | 1     |
| PMIC_OUT_PGOOD            | PGOOD from TPS65217C           |       |
| PWRONRSTN                 | PWRONRSTN to AM335x            |       |
| PMIC_OUT_LDO_PGOOD        | LDO_PGOOD from TPS65217C       |       |
| RTC_PWRONRSTN             | RTC_PWRONRSTN to AM335x        |       |
| PMIC_OUT_NINT             | NINT from TPS65217C            |       |
| EXTINTN EXTINTN to AM335x |                                | 1     |
| PMIC_OUT_NWAKEUP          | NWAKEUP from TPS65217C         |       |
| EXT_WAKEUP                | EXT_WAKEUP to AM335x           | 1     |

1. See Table 2.1 for pull up on this signal

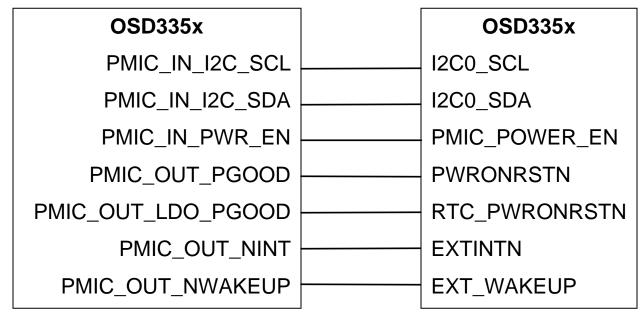



Figure 7.1. OSD335x Minimum Signal Connections



## 8 Electrical & Thermal Characteristics

Table 8.1 lists electrical and thermal characteristic parameters of OSD3358.

Table 8.1. OSD335x Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)

|                                                  |                                      | Value       | Unit |  |
|--------------------------------------------------|--------------------------------------|-------------|------|--|
| Supply voltage range (with respect to VCS)       | VIN_BAT                              | -0.3 to 7   | V    |  |
| Supply voltage range (with respect to VSS)       | VIN_USB, VIN_AC                      | -0.3 to 7   | v    |  |
| Input/Output voltage range (with respect to VSS) | All pins unless specified separately | -0.3 to 3.6 | V    |  |
| Terminal current                                 | SYS_VOUT, VIN_USB, VIN_BAT           | 3000        | mA   |  |
| T <sub>C</sub> Operating case temperature        |                                      | 0 to 85     | °C   |  |
| T <sub>Stg</sub> Storage temperature             |                                      | -40 to 125  | °C   |  |
| ESD rating                                       | (HBM) Human body model ±2000         |             | V    |  |
| Lob failing                                      | (CDM) Charged device model           | ±500        | V    |  |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) Thermal characteristic values were measured using the OSD3358 SBC Reference Design.

Table 8.2. Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)

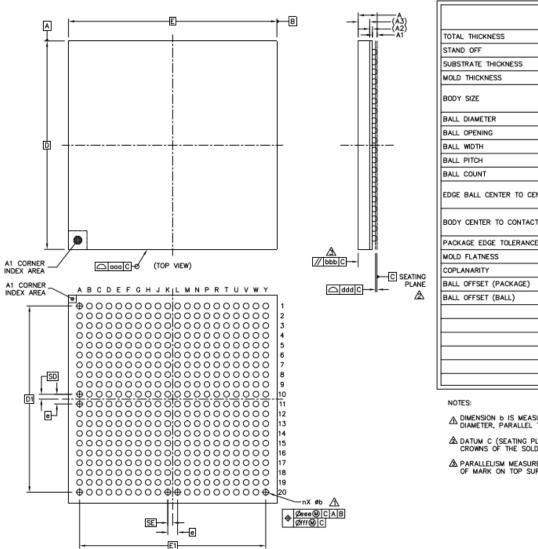
|                                                | Min  | Nom  | Max | Unit |
|------------------------------------------------|------|------|-----|------|
| Supply voltage, VIN_USB, VIN_AC                | 4.3  |      | 5.8 | V    |
| Supply voltage, VIN_BAT                        | 2.75 |      | 5.5 | V    |
| Input current from VIN_AC                      |      |      | 2.0 | Α    |
| Input current from VIN_USB                     |      |      | 1.3 | Α    |
| VIN_BAT current                                |      |      | 2.0 | Α    |
| Output voltage range for SYS_VDD1_3P3V         |      | 3.33 |     | V    |
| Output voltage range for SYS_VDD2_3P3V         |      | 3.3  |     | V    |
| Output voltage range for SYS_RTC_1P8V          |      | 1.8  |     | V    |
| Output voltage range for SYS_VDD_1P8V          |      | 1.8  |     | V    |
| Output voltage range for SYS_ADC_1P8V          |      | 1.8  |     | V    |
| Output voltage range for VDDS_DDR1             |      | 1.5  |     | V    |
| Output voltage range for VDD_MPU <sup>1</sup>  |      | 1.1  |     | V    |
| Output voltage range for VDD_CORE <sup>1</sup> |      | 1.1  |     | V    |
| Output voltage range for VDDS_PLL <sup>1</sup> |      | 1.8  |     | V    |
| Output voltage range for VDDSHV_3P3V1          |      | 3.3  |     | V    |
| Output current for SYS_VOUT <sup>2</sup>       | 0    |      | 500 | mA   |
| Output current for SYS_VDD1_3P3V <sup>2</sup>  | 0    |      | 500 | mA   |
| Output current for SYS_VDD2_3P3V <sup>2</sup>  | 0    |      | 150 | mA   |
| Output current for SYS_RTC_1P8V <sup>2</sup>   | 0    |      | 100 | mA   |
| Output current for SYS_VDD_1P8V <sup>2</sup>   | 0    |      | 250 | mA   |
| Output current for SYS_ADC_1P8V <sup>2</sup>   | 0    |      | 25  | mA   |

<sup>(1)</sup> These voltage rails are for reference only and should not be used to power anything on the PCB.

<sup>(2)</sup> Please note that the total input current on VIN\_AC, VIN\_USB or VIN\_BAT must not exceed the recommended maximum value even if individual currents drawn from these power supply outputs are less than or equal to the maximum recommended operating output currents. See section 7.4 for more details.

Rev. 6 2/15/2017




## 9 Packaging Information

The OSD335x is packaged in a 400 ball, Ball Grid Array (BGA). The package size is 27 X 27 millimeters with a ball pitch of 1.27mm. This section will give you the specifics on the package.

#### 9.1 Mechanical Dimensions

(BOTTOM VIEW)

The mechanical drawings of the OSD335x show pin A1 in the lower left hand corner when looking at the top view of the device. Pin A1 is in the upper left hand corner if looking at the balls from the bottom view of the package. The PCB layout should have pin A1 in the lower left hand corner when looking at the top side of the PCB where the OSD335x will be attached.



|                             | SYMBOL | COMMON DIMENSIONS |       |      |
|-----------------------------|--------|-------------------|-------|------|
|                             |        | MIN.              | NOR.  | MAX. |
| TOTAL THICKNESS             | A      |                   |       | 2.6  |
| STAND OFF                   | A1     | 0.5               |       | 0.7  |
| SUBSTRATE THICKNESS         | A2     |                   | 0.35  | REF  |
| MOLD THICKNESS              | A3     |                   | 1.5   | REF  |
| BODY SIZE                   | D      |                   | 27    | BSC  |
| BODT SIZE                   | E      |                   | 27    | BSC  |
| BALL DIAMETER               |        |                   | 0.75  |      |
| BALL OPENING                |        |                   | 0.6   |      |
| BALL WIDTH                  | ь      | 0.6               |       | 0.9  |
| BALL PITCH                  | е      |                   | 1.27  | BSC  |
| BALL COUNT                  | n      |                   | 400   |      |
| EDGE BALL CENTER TO CENTER  | D1     |                   | 24.13 | BSC  |
| EDGE BALL CENTER TO CENTER  | E1     |                   | 24.13 | BSC  |
| BODY CENTER TO CONTACT BALL | SD     |                   | 0.635 | BSC  |
| BODY CENTER TO CONTACT BALL | SE     |                   | 0.635 | BSC  |
| PACKAGE EDGE TOLERANCE      | aaa    |                   | 0.2   |      |
| MOLD FLATNESS               | bbb    |                   | 0.35  |      |
| COPLANARITY                 | ddd    |                   | 0.2   |      |
| BALL OFFSET (PACKAGE)       | eee    |                   | 0.3   |      |
| BALL OFFSET (BALL)          | fff    |                   | 0.15  |      |
|                             |        |                   |       |      |
|                             |        |                   |       |      |
|                             |        |                   |       |      |
|                             |        |                   |       |      |
|                             |        |                   |       |      |
|                             |        |                   |       |      |
|                             |        |                   |       |      |

- $\Delta$  DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE C.
- △ DATUM C (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- ⚠ PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.



### 9.2 Reflow Instructions

The reflow profile for this package should be in accordance with the Lead-free process for BGA. A peak reflow temperature is recommended to be 245°C.

Texas Instruments provides a good overview of Handling & Process Recommendations in AN-2029 for this type of device. A link to the document can be found in the Reference Documents section of this document.

## 9.3 Storage Recommendations

The OSD335x Family of devices are sensitive to moisture and need to be handled in specific ways to make sure they function properly during and after the manufacturing process. The OSD335x Family of devices are rated with a Moisture Sensitivity Level (MSL) of 4. This means that they are typically stored in a sealed Dry Pack.



Once the sealed Dry Pack is opened the OSD335x needs to be used within 72 hours to avoid further processing. If the OSD335x has been exposed for more than 72 hours, then it is required that you bake the device for 24 hours at 125°C before using.

Alternatively, the devices could be stored in a dry cabinet with humidity <10% to avoid the baking requirement.

For more information, please refer to the Texas Instruments AN-2029 which can be found in the Reference Documents section of this document.