

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	792
Total RAM Bits	-
Number of I/O	101
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	128-TQFP
Supplier Device Package	128-VTQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/aglp030v5-vq128i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

IGLOO PLUS Low Power Flash FPGAs

I/Os Per Package¹

IGLOO PLUS Devices	AGLP030	AGLP060	AGLP125	
Package		Single-Ended I/Os		
CS201	120	157	_	
CS281	-	-	212	
CS289	120	157	212	
VQ128	101	-	_	
VQ176	-	137	_	

Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

Table 2 • IGLOO PLUS FPGAs Package Size Dimensions

Package	CS201	CS281	CS289	VQ128	VQ176
Length × Width (mm/mm)	8 × 8	10 × 10	14 × 14	14 × 14	20 × 20
Nominal Area (mm2)	64	100	196	196	400
Pitch (mm)	0.5	0.5	0.8	0.4	0.4
Height (mm)	0.89	1.05	1.20	1.0	1.0

IGLOO PLUS Device Status

IGLOO PLUS Device	Status
AGLP030	Production
AGLP060	Production
AGLP125	Production

Temperature Grade Offerings

Package	AGLP030	AGLP060	AGLP125
CS201	C, I	C, I	-
CS281	-	-	C, I
CS289	C, I	C, I	C, I
VQ128	C, I	-	-
VQ176	-	C, I	_

Notes:

C = Commercial temperature range: 0°C to 85°C junction temperature.
 I = Industrial temperature range: -40°C to 100°C junction temperature.

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/soc/company/contact/default.aspx.

Each I/O module contains several input, output, and output enable registers.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOO PLUS devices support JEDEC-defined wide range I/O operation. IGLOO PLUS devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature ¹

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Table 2-4 • Overshoot and Undershoot Limits

vcci	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO PLUS device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

IGLOO PLUS I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V **Microsemi**

IGLOO PLUS DC and Switching Characteristics

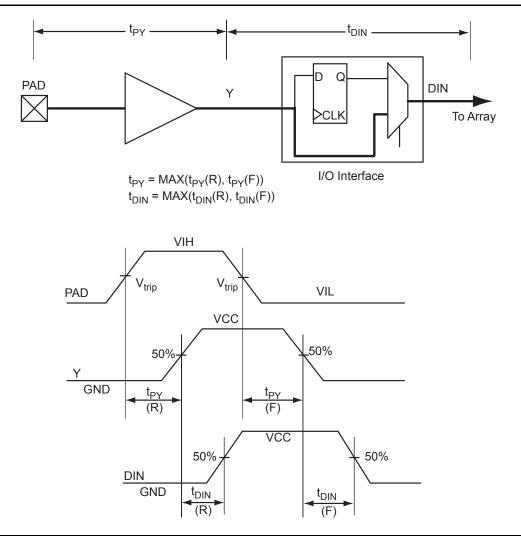


Figure 2-4 • Input Buffer Timing Model and Delays (example)

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	${\sf R}_{\sf (WEAK PULL-UP)}^1$ (Ω)		$R_{(WEAK PULL-DOWN)}^2$ (Ω)	
VCCI	Min.	Max.	Min.	Max.
3.3 V	10 K	45 K	10 K	45 K
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K
2.5 V	11 K	55 K	12 K	74 K
1.8 V	18 K	70 K	17 K	110 K
1.5 V	19 K	90 K	19 K	140 K
1.2 V	25 K	110 K	25 K	150 K
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
 R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
Γ	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
F	4 mA	33	25
1.2 V LVCMOS	2 mA	26	20
1.2 V LVCMOS Wide Range	100 µA	26	20

Note: $^{*}T_{J} = 100^{\circ}C$

IGLOO PLUS DC and Switching Characteristics

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-31 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV
1.2 V LVCMOS (Schmitt trigger mode)	40 mV

Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer			Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS disabled)	(Schmitt	trigger	No requirement	10 ns *	20 years (100°C)
LVTTL/LVCMOS enabled)	(Schmitt	trigger	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

			-									
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	3.94	0.18	0.85	1.15	0.66	4.02	3.46	1.82	1.87	ns
4 mA	STD	0.97	3.94	0.18	0.85	1.15	0.66	4.02	3.46	1.82	1.87	ns
6 mA	STD	0.97	3.20	0.18	0.85	1.15	0.66	3.27	2.94	2.04	2.27	ns
8 mA	STD	0.97	3.20	0.18	0.85	1.15	0.66	3.27	2.94	2.04	2.27	ns
12 mA	STD	0.97	2.72	0.18	0.85	1.15	0.66	2.78	2.57	2.20	2.53	ns
16 mA	STD	0.97	2.72	0.18	0.85	1.15	0.66	2.78	2.57	2.20	2.53	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.36	0.18	0.85	1.15	0.66	2.41	1.90	1.82	1.98	ns
4 mA	STD	0.97	2.36	0.18	0.85	1.15	0.66	2.41	1.90	1.82	1.98	ns
6 mA	STD	0.97	1.96	0.18	0.85	1.15	0.66	2.01	1.56	2.04	2.38	ns
8 mA	STD	0.97	1.96	0.18	0.85	1.15	0.66	2.01	1.56	2.04	2.38	ns
12 mA	STD	0.97	1.76	0.18	0.85	1.15	0.66	1.80	1.39	2.20	2.64	ns
16 mA	STD	0.97	1.76	0.18	0.85	1.15	0.66	1.80	1.39	2.20	2.64	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray.

Applies to 1.2 V DC Core Voltage

Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	4.56	0.19	0.99	1.37	0.67	4.63	3.98	2.26	2.57	ns
4 mA	STD	0.98	4.56	0.19	0.99	1.37	0.67	4.63	3.98	2.26	2.57	ns
6 mA	STD	0.98	3.80	0.19	0.99	1.37	0.67	3.96	3.45	2.49	2.98	ns
8 mA	STD	0.98	3.80	0.19	0.99	137	0.67	3.86	3.45	2.49	2.98	ns
12 mA	STD	0.98	3.31	0.19	0.99	1.37	0.67	3.36	3.07	2.65	3.25	ns
16 mA	STD	0.98	3.31	0.19	0.99	1.37	0.67	3.36	3.07	2.65	3.25	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-42 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.97	5.85	0.18	1.18	1.64	0.66	5.86	5.05	2.57	2.57	ns
100 µA	6 mA	STD	0.97	4.70	0.18	1.18	1.64	0.66	4.72	4.27	2.92	3.19	ns
100 µA	8 mA	STD	0.97	4.70	0.18	1.18	1.64	0.66	4.72	4.27	2.92	3.19	ns
100 µA	12 mA	STD	0.97	3.96	0.18	1.18	1.64	0.66	3.98	3.70	3.16	3.59	ns
100 µA	16 mA	STD	0.97	3.96	0.18	1.18	1.64	0.66	3.98	3.70	3.16	3.59	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-43 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.97	3.39	0.18	1.18	1.64	0.66	3.41	2.69	2.57	2.73	ns
100 µA	6 mA	STD	0.97	2.79	0.18	1.18	1.64	0.66	2.80	2.17	2.92	3.36	ns
100 µA	8 mA	STD	0.97	2.79	0.18	1.18	1.64	0.66	2.80	2.17	2.92	3.36	ns
100 µA	12 mA	STD	0.97	2.47	0.18	1.18	1.64	0.66	2.48	1.91	3.16	3.76	ns
100 µA	16 mA	STD	0.97	2.47	0.18	1.18	1.64	0.66	2.48	1.91	3.16	3.76	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS	VIL				VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²	
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	35	44	10	10

Table 2-52 • Minimum and Maximum	DC Input and Output Levels
----------------------------------	----------------------------

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF$ for $t_{HZ} / t_{ZH} / t_{ZLS}$

Figure 2-9 • AC Loading

Table 2-53 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

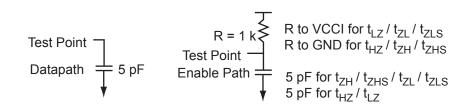
IGLOO PLUS DC and Switching Characteristics

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	L VOH		юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.7 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

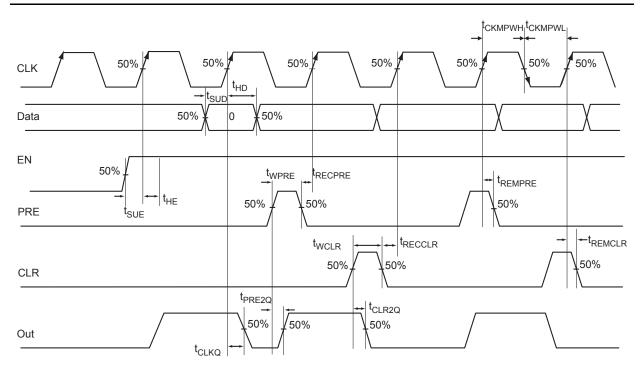
Figure 2-10 • AC Loading

Table 2-59 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Microsemi.


IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-79 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.06	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.52	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.25	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.36	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
tOEWCLR	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Timing Characteristics 1.5 V DC Core Voltage

Table 2-82 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.89	ns
t _{SUD}	Data Setup Time for the Core Register	0.81	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.73	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.60	ns
t _{PRE2Q}	2Q Asynchronous Preset-to-Q of the Core Register		ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register		ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register		ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.56	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

IGLOO PLUS DC and Switching Characteristics

Embedded SRAM and FIFO Characteristics

RAM4K9 **RAM512X18** RADDR8 **RD17** ADDRA11 DOUTA8 RADDR7 RD16 DOUTA7 ADDRA10 -٠ . . ٠ DOUTAO ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA d REN WENA O RCLK CLKA ADDRB11 DOUTB8 WADDR8 ADDRB10 DOUTB7 WADDR7 ٠ ٠ ADDRB0 DOUTBO WADDR0 WD17 WD16 DINB8 DINB7 • WD0 . DINB0 WW1 ŴŴŎ WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB -d WEN WENB d **DWCLK CLKB** RESET RESET

SRAM

Figure 2-23 • RAM Models

Pin Descriptions and Packaging

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO PLUS devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO PLUS devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

GL

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO PLUS FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure chapter of the IGLOO PLUS FPGA Fabric User's Guide for an explanation of the naming of global pins.

IGLOO PLUS Low Power Flash FPGAs

CS201		C	S201	CS201		
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	
H14	IO45RSB1	L15	IO58RSB1	P5	IO87RSB2	
H15	IO43RSB1	M1	IO93RSB3	P6	IO86RSB2	
J1	GEA0/IO107RSB3	M2	IO92RSB3	P7	IO84RSB2	
J2	IO105RSB3	M3	IO97RSB3	P8	IO80RSB2	
J3	IO104RSB3	M4	GND	P9	IO74RSB2	
J4	IO102RSB3	M5	NC	P10	IO73RSB2	
J6	VCCIB3	M6	IO79RSB2	P11	IO76RSB2	
J7	GND	M7	IO77RSB2	P12	IO67RSB2	
J8	VCC	M8	IO72RSB2	P13	IO64RSB2	
J9	GND	M9	IO70RSB2	P14	VPUMP	
J10	VCCIB1	M10	IO61RSB2	P15	TRST	
J12	NC	M11	IO59RSB2	R1	NC	
J13	NC	M12	GND	R2	NC	
J14	IO52RSB1	M13	NC	R3	IO91RSB2	
J15	IO50RSB1	M14	IO55RSB1	R4	FF/IO90RSB2	
K1	IO103RSB3	M15	IO56RSB1	R5	IO89RSB2	
K2	IO101RSB3	N1	NC	R6	IO83RSB2	
K3	IO99RSB3	N2	NC	R7	IO82RSB2	
K4	IO100RSB3	N3	GND	R8	IO85RSB2	
K6	GND	N4	NC	R9	IO78RSB2	
K7	VCCIB2	N5	IO88RSB2	R10	IO69RSB2	
K8	VCCIB2	N6	IO81RSB2	R11	IO62RSB2	
K9	VCCIB2	N7	IO75RSB2	R12	IO60RSB2	
K10	VCCIB1	N8	IO68RSB2	R13	TMS	
K12	NC	N9	IO66RSB2	R14	TDI	
K13	IO57RSB1	N10	IO65RSB2	R15	ТСК	
K14	IO49RSB1	N11	IO71RSB2			
K15	IO53RSB1	N12	IO63RSB2			
L1	IO96RSB3	N13	GND			
L2	IO98RSB3	N14	TDO			
L3	IO95RSB3	N15	VJTAG	1		
L4	IO94RSB3	P1	NC	1		
L12	NC	P2	NC	1		
L13	NC	P3	NC	1		
L14	IO51RSB1	P4	NC	1		

Package Pin Assignments

CS201		(CS201	(CS201		
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function		
A1	IO150RSB3	C6	IO07RSB0	F3	IO145RSB3		
A2	GAA0/IO00RSB0	C7	IO16RSB0	F4	IO147RSB3		
A3	GAC0/IO04RSB0	C8	IO21RSB0	F6	GND		
A4	IO08RSB0	C9	IO28RSB0	F7	VCC		
A5	IO11RSB0	C10	GBB1/IO33RSB0	F8	VCCIB0		
A6	IO15RSB0	C11	GBA1/IO35RSB0	F9	VCCIB0		
A7	IO17RSB0	C12	GBB2/IO38RSB1	F10	VCCIB0		
A8	IO18RSB0	C13	GND	F12	IO47RSB1		
A9	IO22RSB0	C14	IO48RSB1	F13	IO45RSB1		
A10	IO26RSB0	C15	IO39RSB1	F14	GCC1/IO52RSB1		
A11	IO29RSB0	D1	IO146RSB3	F15	GCA1/IO56RSB1		
A12	GBC1/IO31RSB0	D2	IO144RSB3	G1*	VCOMPLF		
A13	GBA2/IO36RSB1	D3	IO148RSB3	G2	GFB0/IO137RSB3		
A14	IO41RSB1	D4	GND	G3	GFC0/IO139RSB3		
A15	NC	D5	GAB0/IO02RSB0	G4	IO143RSB3		
B1	IO151RSB3	D6	GAC1/IO05RSB0	G6	VCCIB3		
B2	GAB2/IO154RSB3	D7	IO14RSB0	G7	GND		
B3	IO06RSB0	D8	IO19RSB0	G8	VCC		
B4	IO09RSB0	D9	GBC0/IO30RSB0	G9	GND		
B5	IO13RSB0	D10	GBB0/IO32RSB0	G10	GND		
B6	IO10RSB0	D11	GBA0/IO34RSB0	G12	IO50RSB1		
B7	IO12RSB0	D12	GND	G13	GCB1/IO54RSB1		
B8	IO20RSB0	D13	GBC2/IO40RSB1	G14	GCC2/IO60RSB1		
B9	IO23RSB0	D14	IO51RSB1	G15	GCA2/IO58RSB1		
B10	IO25RSB0	D15	IO44RSB1	H1*	VCCPLF		
B11	IO24RSB0	E1	IO142RSB3	H2	GFA1/IO136RSB3		
B12	IO27RSB0	E2	IO149RSB3	H3	GFB1/IO138RSB3		
B13	IO37RSB1	E3	IO153RSB3	H4	NC		
B14	IO46RSB1	E4	GAC2/IO152RSB3	H6	VCCIB3		
B15	IO42RSB1	E12	IO43RSB1	H7	GND		
C1	IO155RSB3	E13	IO49RSB1	H8	VCC		
C2	GAA2/IO156RSB3	E14	GCC0/IO53RSB1	H9	GND		
C3	GND	E15	GCB0/IO55RSB1	H10	VCCIB1		
C4	GAA1/IO01RSB0	F1	IO141RSB3	H12	GCB2/IO59RSB1		
C5	GAB1/IO03RSB0	F2	GFC1/IO140RSB3	H13	GCA0/IO57RSB1		

Note: *Pin numbers G1 and H1 must be connected to ground because a PLL is not supported for AGLP060-CS/G201.

🌜 Microsemi.

Package Pin Assignments

CS281		CS281		CS281		
Pin Number	AGLP125 Function	Pin Number AGLP125 Function		Pin Number	AGLP125 Function	
H8	VCC	K15	IO89RSB1	N4	IO182RSB3	
H9	VCCIB0	K16	GND	N5	IO161RSB2	
H10	VCC	K18	IO88RSB1	N7	GEA2/IO164RSB2	
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2	
H12	VCC	L1	GFB2/IO187RSB3	N9	IO137RSB2	
H13	VCCIB1	L2	IO185RSB3	N10	IO135RSB2	
H15	IO77RSB1	L4	GFC2/IO186RSB3	N11	IO131RSB2	
H16	GCB0/IO82RSB1	L5	IO184RSB3	N12	VCCIB2	
H18	GCA1/IO83RSB1	L7	IO199RSB3	N13	VPUMP	
H19	GCA2/IO85RSB1	L8	VCCIB3	N15	IO117RSB2	
J1	VCOMPLF	L9	GND	N16	IO96RSB1	
J2	GFA0/IO189RSB3	L10	GND	N18	IO98RSB1	
J4	VCCPLF	L11	GND	N19	IO94RSB1	
J5	GFC0/IO193RSB3	L12	VCCIB1	P1	IO174RSB3	
J7	GFA2/IO188RSB3	L13	IO95RSB1	P2	GND	
J8	VCCIB3	L15	IO91RSB1	P3	IO176RSB3	
J9	GND	L16	NC	P4	IO177RSB3	
J10	GND	L18	IO90RSB1	P5	GEA0/IO165RSB3	
J11	GND	L19	NC	P15	IO111RSB2	
J12	VCCIB1	M1	IO180RSB3	P16	IO108RSB2	
J13	GCC1/IO79RSB1	M2	IO179RSB3	P17	GDC1/IO99RSB1	
J15	GCA0/IO84RSB1	M4	IO181RSB3	P18	GND	
J16	GCB2/IO86RSB1	M5	IO183RSB3	P19	IO97RSB1	
J18	IO76RSB1	M7	VCCIB3	R1	IO173RSB3	
J19	IO78RSB1	M8	VCC	R2	IO172RSB3	
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO170RSB3	
K2	GFA1/IO190RSB3	M10	VCC	R5	GEB1/IO168RSB3	
K4	GND	M11	VCCIB2	R6	IO154RSB2	
K5	IO19RSB0	M12	VCC	R7	IO149RSB2	
K7	IO197RSB3	M13	VCCIB1	R8	IO146RSB2	
K8	VCC	M15	IO122RSB2	R9	IO138RSB2	
K9	GND	M16	IO93RSB1	R10	IO134RSB2	
K10	GND	M18	IO92RSB1	R11	IO132RSB2	
K11	GND	M19	NC	R12	IO130RSB2	
K12	VCC	N1	IO178RSB3	R13	IO118RSB2	
K13	GCC2/IO87RSB1	N2	IO175RSB3	R14	IO112RSB2	

IGLOO PLUS Low Power Flash FPGAs

CS289		С	S289	C	CS289		
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function		
A1	IO03RSB0	C4	NC	E7	IO06RSB0		
A2	NC	C5	VCCIB0	E8	IO11RSB0		
A3	NC	C6	IO09RSB0	E9	IO22RSB0		
A4	GND	C7	IO13RSB0	E10	IO26RSB0		
A5	IO10RSB0	C8	IO15RSB0	E11	VCCIB0		
A6	IO14RSB0	C9	IO21RSB0	E12	NC		
A7	IO16RSB0	C10	GND	E13	IO33RSB0		
A8	IO18RSB0	C11	IO29RSB0	E14	IO36RSB1		
A9	GND	C12	NC	E15	IO38RSB1		
A10	IO23RSB0	C13	NC	E16	VCCIB1		
A11	IO27RSB0	C14	NC	E17	NC		
A12	NC	C15	GND	F1	IO111RSB3		
A13	NC	C16	IO34RSB0	F2	NC		
A14	GND	C17	NC	F3	IO116RSB3		
A15	NC	D1	NC	F4	VCCIB3		
A16	NC	D2	IO119RSB3	F5	IO117RSB3		
A17	IO30RSB0	D3	GND	F6	NC		
B1	IO01RSB0	D4	IO02RSB0	F7	NC		
B2	GND	D5	NC	F8	IO08RSB0		
B3	NC	D6	NC	F9	IO12RSB0		
B4	NC	D7	NC	F10	NC		
B5	IO07RSB0	D8	GND	F11	NC		
B6	NC	D9	IO20RSB0	F12	NC		
B7	VCCIB0	D10	IO25RSB0	F13	NC		
B8	IO17RSB0	D11	NC	F14	GND		
B9	IO19RSB0	D12	NC	F15	NC		
B10	IO24RSB0	D13	GND	F16	IO37RSB1		
B11	IO28RSB0	D14	IO32RSB0	F17	IO41RSB1		
B12	VCCIB0	D15	IO35RSB0	G1	IO110RSB3		
B13	NC	D16	NC	G2	GND		
B14	NC	D17	NC	G3	IO113RSB3		
B15	NC	E1	VCCIB3	G4	NC		
B16	IO31RSB0	E2	IO114RSB3	G5	NC		
B17	GND	E3	IO115RSB3	G6	NC		
C1	NC	E4	IO118RSB3	G7	GND		
C2	IO00RSB0	E5	IO05RSB0	G8	GND		
C3	IO04RSB0	E6	NC	G9	VCC		

stati 👟 Microsemi.
IGLOO PLUS Low Power Flash FPGAs

CS289		CS289		
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	
P8	GND	T12	IO124RSB2	
P9	IO132RSB2	T13	IO122RSB2	
P10	IO125RSB2	T14	GND	
P11	IO126RSB2	T15	IO115RSB2	
P12	IO112RSB2	T16	TDI	
P13	VCCIB2	T17	TDO	
P14	IO108RSB2	U1	FF/GEB2/IO163RS	
P15	GDA2/IO105RSB2		B2	
P16	GDC2/IO107RSB2	U2	GND	
P17	VJTAG	U3	IO151RSB2	
R1	GND	U4	IO149RSB2	
R2	GEA2/IO164RSB2	U5	IO146RSB2	
R3	IO158RSB2	U6	IO142RSB2	
R4	IO155RSB2	U7	GND	
R5	IO150RSB2	U8	IO138RSB2	
R6	VCCIB2	U9	IO136RSB2	
R7	IO145RSB2	U10	IO133RSB2	
R8	IO141RSB2	U11	IO129RSB2	
R9	IO134RSB2	U12	GND	
R10	IO130RSB2	U13	IO123RSB2	
R11	GND	U14	IO120RSB2	
R12	IO118RSB2	U15	IO117RSB2	
R13	IO116RSB2	U16	ТСК	
R14	IO114RSB2	U17	VPUMP	
R15	IO110RSB2			
R16	TMS			
R17	TRST			
T1	GEA1/IO166RSB3			
T2	GEC2/IO162RSB2			
Т3	IO153RSB2			
T4	GND			
T5	IO147RSB2			
T6	IO143RSB2			
T7	IO140RSB2			
Т8	IO139RSB2			
T9	VCCIB2			
T10	IO131RSB2			
110				