

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable (min 10K program/erase cycles)
Delay Time tpd(1) Max	7 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	-
Number of Macrocells	128
Number of Gates	-
Number of I/O	80
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf1508be-7au100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Enhanced Features

- Improved Connectivity (Additional Feedback Routing, Alternate Input Routing)
- Output Enable Product Terms
- Outputs Can Be Configured for High or Low Drive
- Combinatorial Output with Registered Feedback and Vice Versa within each Macrocell
- Three Global Clock Pins
- Fast Registered Input from Product Term
- Pull-up Option on TMS and TDI JTAG Pins
- OTF (On-the-Fly) Reconfiguration Mode
- DRA (Direct Reconfiguration Access)

1. Description

The ATF1508BE is a high-performance, high-density complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable memory technology. With 128 logic macrocells and up to 84 inputs, it easily integrates logic from several TTL, SSI, MSI, LSI and classic PLDs. The ATF1508BE's enhanced routing switch matrices increase usable gate count and the odds of successful pin-locked design modifications.

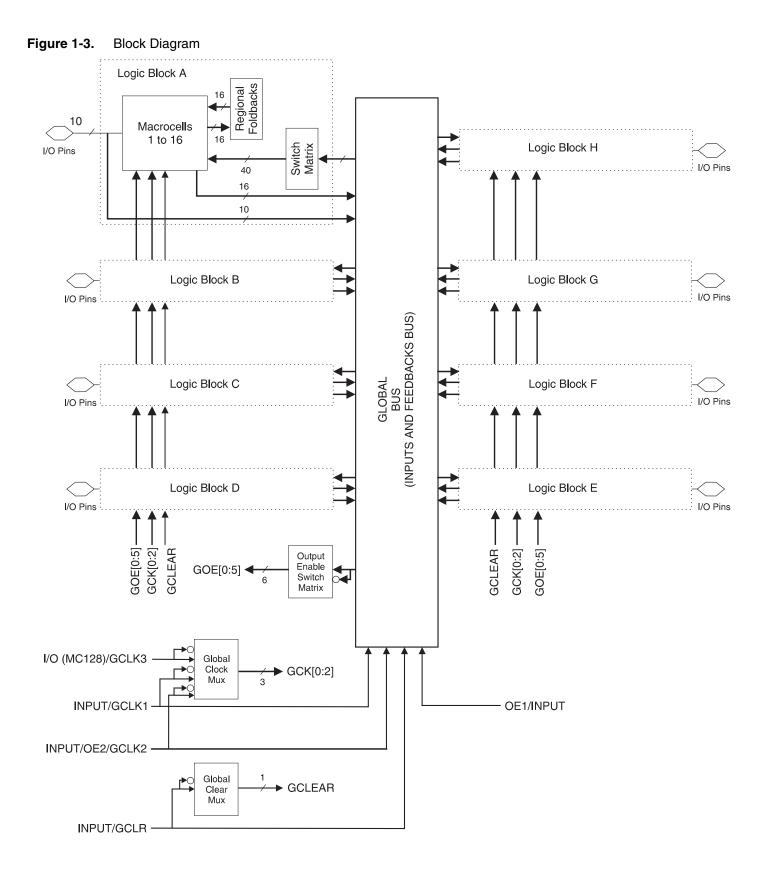

The ATF1508BE has up to 80 bi-directional I/O pins and four dedicated input pins. Each dedicated input pin can also serve as a global control signal, register clock, register reset or output enable. Each of these control signals can be selected for use individually within each macrocell. Figures 1-1 and 1-2 show the pin assignments for the 100-lead TQFP and 132-ball CBGA packages, respectively.

Figure 1-2.	132-CBGA Top View
-------------	-------------------

- J	1	2	3	4	5	6	7	8	9	10	11	12	13	14
А	() I/O	O VCCINT) I/GCLR	() I∕O	() I/O	() NC	O VCCIOB	\bigcirc NC	() GND	() ⊮0	() 1/0	() 1/0	() NC	CIOB
В	() I/O) 1/0) GND	() I/O	() I/0	() NC	() NC	() NC) I/0/TD0) NC	() ⊮0	() 1/0	⊖ NC) GND
с) I/O	() I/OE1	() I/OE2/ GCLK2	O VCCIOB	() I/0	() 1/0	() NC	⊖ NC	() I/O	() I∕O	() ⊮0	() 1/0	⊖ NC	⊖ NC
D) I/O	() I/0										() 1/0) 1/0) 1/0
Е) I/O	() ∕0	() ∕0									() ∕0	() I/O	
F) I/O/PD1	() ∕0	() ∕0									() ∕0	() I/O) 1/0
G) 1/0	() /0) 1/0									() I/O/PD2	() I/O	
н) I/O/VREFA) \ \) 1/0									() /0	() 1/0	
J) I/O	() I/0) VCCIOA									() I∕O	() I/O	⊖ GND
к) I/O) GND	() ∕0									O VCCNT	() I/O) 1/0
L) I/GCLK1										() I/O) I/O/VREFE) 3 1/0
М	◯) NC	() NC	() ∕0	()) I/O	() I/0	() 1/0	() NC	() I/0) I/O/TDI	() І/О/ТСК) 1/0		⊖ NC	⊖ NC
N) GND	() NC	() I/0	() NC	() I/0	() 1/0	() NC	() NC	() GND) I/O/TMS) 1/0	() GND	() /0) 1/0
Ρ		() I/0	() I/0	() GND	() I/0	() NC	() VCCIOA	() NC) 1/0	() I/O) 1/0	() 1/0	() VCCIOA) 1/0

Note: 1. The 132-ball CBGA package is 8 x 8 x 1.2 mm in size with 0.5 mm ball spacing.

1.6 Global Bus/Switch Matrix

The global bus contains all input and I/O pin signals as well as the buried feedback signal from all 128 macrocells. The switch matrix in each logic block receives as its inputs all signals from the global bus. Under software control, up to 40 of these signals can be selected as inputs to the logic block.

1.7 Foldback Bus

Each macrocell also generates a foldback product term. This signal goes to the regional bus and is available to all 16 macrocells within the logic block. The foldback is an inverse polarity of one of the macrocell's product terms. The 16 foldback terms in each logic block allow generation of high fan-in sum terms or other complex logic functions with little additional delay.

2. Input and I/O Pins

2.1 Programmable Pin-keeper Option for Inputs and I/Os

The ATF1508BE offers the option of individually programming each of its input or I/O pin so that pin-keeper circuit can be utilized. When any pin is driven high or low and then subsequently left floating, it will stay at that previous high or low level. This circuitry prevents undriven input and I/O lines from floating to intermediate voltage levels, which causes unnecessary power consumption and system noise. The keeper circuits eliminate the need for external pull-up resistors and eliminate their DC power consumption.

Figure 2-1 shows the pin-keeper circuit for an Input Pin and Figure 2-2 shows the same for an I/O pin. The pin-keeper circuit is a weak feedback latch and has an effective resistance that is approximately 50 k Ω

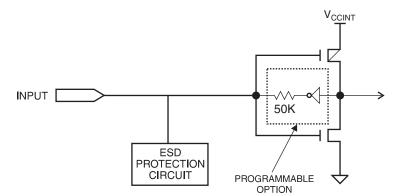
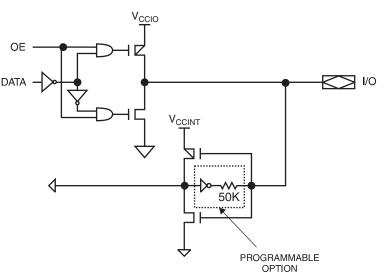



Figure 2-1. Input with Programmable Pin-keeper

2.2 Schmitt Trigger

The Input Buffer of each input and I/O pin has an optional schmitt trigger setting. The schmitt trigger option can be used to buffer inputs with slow rise times.

2.3 Output Drive Capability

Each output has a high/low drive option. The low drive option (slow slew rate) can be used to reduce system noise by slowing down outputs that do not need to operate at maximum speed or drive strength. Outputs default to high drive strength by Atmel software and can be set to low drive strength through the slew rate option.

2.4 I/O Bank

The I/O pins of the ATF1508BE are grouped into two banks, Bank A and Bank B. Bank A comprises of I/O pins for macrocells 1 to 64 (Logic Block A, B, C, and D), and it is powered by V_{CCIOA} . Bank B comprises of I/O pins for macrocells 65 to 128 (Logic Block E, F, G, and H), and it is powered by V_{CCIOB} .

2.5 I/O Standard

The ATF1508BE supports a wide range of I/O standards which include LVTTL, LVCMOS33, LVCMOS25, LVCMOS18 and LVCMOS15. The I/O pins of the ATF1508BE can also be individually configured to support SSTL-2 (Class I) and SSTL-3 (Class I) advanced I/O standards.

This and the two I/O banks, together, allow the ATF1508BE to be used for voltage level translation.

3. Power Management

Unlike conventional CPLDs with sense amplifiers, the ATF1508BE is designed using low-power full CMOS design techniques. This enables the ATF1508BE to achieve extremely low power consumption over the full operating frequency spectrum.

The ATF1508BE also has an optional power-down mode. In this mode, current drops to below 100 μ A. When the power-down option is selected, either PD1 or PD2 pins (or both) can be used to power down the part. When enabled, the device goes into power-down when either PD1 or PD2 is high. In the power-down mode, all internal logic signals are latched and held, as are any enabled outputs.

All pin transitions are ignored until the PD pin is brought low. When the power-down feature is enabled, the PD1 or PD2 pin cannot be used as a logic input or output. However, the pin's macrocell may still be used to generate buried foldback and cascade logic signals.

All power-down AC characteristic parameters are computed from external input or I/O pins.

4. Security Feature

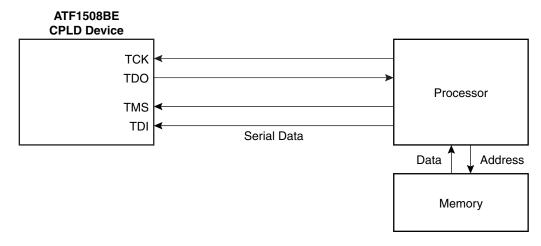
A fuse is provided to prevent unauthorized copying of the ATF1508BE fuse patterns. Once enabled, fuse reading or verification is inhibited. However, the 16-bit User Electronic Signature remains accessible. To reset this feature, the entire memory array in the device must be erased.

5. Programming Methods

The ATF1508BE devices are In-System Programmable (ISP) or In-System Configurable (ISC) devices utilizing the 4-pin JTAG protocol. This capability eliminates package handling normally required for programming and facilitates rapid design iterations and field changes.

When using the ISP hardware or software to program the ATF1508BE devices, four I/O pins must be reserved for the JTAG interface. However, the logic features that the macrocells have associated with these I/O pins are still available to the design for buried logic functions.

To facilitate ISP programming by the Automated Test Equipment (ATE) vendors, Serial Vector Format (SVF) files can be created by Atmel-provided software utilities. ATF1508BE devices can also be programmed using standard third-party programmers. With a third-party programmer, the JTAG ISP port can be disabled, thereby allowing four additional I/O pins to be used for logic.


The ATF1508BE device supports several configuration modes which gives designers several unique options for programming.

The different modes of programming are:

- ISC In-System Configuration
- OTF On-the-Fly Reconfiguration
- DRA Direct Reconfiguration Access

Figure 5-2. Configuration of ATF1508BE Device Using a Processor and Memory

5.3 Direct Reconfiguration Access – DRA

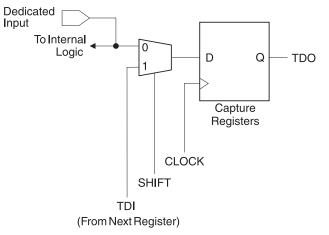
This reconfiguration mode allows the user to directly modify the internal static registers of the CPLD without affecting the configuration data stored in the embedded memory. It is more useful in cases where immediate and temporary context change in the function of the hardware is desired.

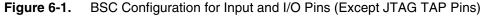
The embedded configuration memory in the ATF1508BE does not change when a new set of configuration data is passed to the ATF1508BE using the DRA mode. Instead, the internal static registers of the CPLD are directly written with the data entering the device via the JTAG port. In other words, it's a temporary change in the function performed by the CPLD since a power sequence results in the device being configured again by the data stored in the embedded memory.

5.4 ISP Programming Protection

The ATF1508BE has a special feature that locks the device and prevents the inputs and I/O from driving if the programming process is interrupted for any reason. The I/O pins default to high-Z state during such a condition.

All ATF1508BE devices are initially shipped in the erased state, thereby making them ready to use for ISP.


6. JTAG-BST/ISP Overview


The JTAG boundary-scan testing is controlled by the Test Access Port (TAP) controller in the ATF1508BE. The boundary-scan technique involves the inclusion of a shift-register stage (contained in a boundary-scan cell) adjacent to each component so that signals at component boundaries can be controlled and observed using scan testing methods. Each input pin and I/O pin has its own boundary-scan cell (BSC) to support boundary-scan testing. The TAP controller is automatically reset at power-up. The five JTAG modes supported include: SAMPLE/PRE-LOAD, EXTEST, BYPASS, IDCODE and HIGHZ. The ATF1508BE's BSC can be fully described using a BSDL file as described in IEEE 1149.1 standard. This allows ATF1508BE testing to be described and implemented using any one of the third-party development tools supporting this standard.

The ATF1508BE also has the option of using the four JTAG-standard I/O pins for ISP. The ATF1508BE is programmable through the four JTAG pins using the IEEE standard JTAG programming protocol established by IEEE 1532 standard using 1.8V/2.5V/3.3V LVCMOS level programming signals from the ISP interface for in-system programming. The JTAG feature is a programmable option. If JTAG (BST or ISP) is not needed, then the four JTAG control pins are available as I/O pins.

6.1 JTAG Boundary-scan Cell (BSC) Testing

The ATF1508BE contains 80 I/O pins and four dedicated input pins. Each input pin and I/O pin has its own boundary-scan cell (BSC) in order to support boundary-scan testing as described in detail by IEEE 1532 standard. A typical BSC consists of three capture registers or scan registers and up to two update registers. There are two types of BSCs, one for input or I/O pin, and one for the macrocells. The BSCs in the device are chained together through the capture registers. Input to the capture register chain is fed in from the TDI pin while the output is directed to the TDO pin. Capture registers are used to capture active device data signals, to shift data in and out of the device and to load data into the update registers. Control signals are generated internally by the JTAG TAP controller. The BSC configuration for the input and I/O pins and macrocells is shown below.

Note: The ATF1508BE has a pull-up option on TMS and TDI pins. This feature is selected as a design option.

8. Electrical Specifications

Table 8-1. Absolute Maximum Ratings*

Operating Temperature40° C to +85° C
Storage Temperature–65° C to +150° C
Supply Voltage (V _{CCINT})0.5V to +2.5V
Supply Voltage for Output Drivers (V _{CCIO})–0.5V to +4.5V
Junction Temperature55° C to +155° C

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 8-2.Operating Temperature Range

	Commercial	Industrial
Operating Temperature (Ambient)	0° C - 70° C	-40° C - 85° C

Table 8-3.Pin Capacitance⁽¹⁾

	Тур	Мах	Units	Conditions
C _{IN}	8	10	pF	V _{IN} = 0V; f = 1.0 MHz
C _{I/O}	8	10	pF	V _{OUT} = 0V; f = 1.0 MHz

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Table 8-4.DC Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CCINT}	Supply Voltage for internal logic and input buffers		1.7	1.8	1.9	V
V _{CCIO}	Supply Voltage for output drivers at 3.3V		3.0	3.3	3.6	V
V _{CCIO}	Supply Voltage for output drivers at 2.5V		2.3	2.5	2.7	V
V _{CCIO}	Supply Voltage for output drivers at 1.8V		1.7	1.8	1.9	V
V _{CCIO}	Supply Voltage for Output Drivers at 1.5V		1.4	1.5	1.6	V
I _{SB_IO}	Standby Current, VCCIO	$V_{CCIO} = 3.3V, V_{CCINT} = 1.8V$		1		μA
I _{SB_INT}	Standby Current, V _{CC} Core ⁽¹⁾	$V_{CCINT} = 1.9V, V_{CCIO} = 3.6V$		20		μA
$I_{CC_INT(HD)}$	Operating Current ⁽¹⁾ for V _{CCINT} (supply voltage)	$V_{CCINT} = 1.8$ V, $V_{CCIO} = 3.3$ V, f = 1 MHz		315		μΑ
I _{CC_IO(HD)}	Operating Current ⁽¹⁾ for V_{CCIO} (supply voltage for output drivers), per LAB	$V_{CCINT} = 1.8V$, $V_{CCIO} = 3.3V$, f = 1 MHz		330		μA
I _{CC_INT(LD)}	Operating Current ⁽¹⁾ for V _{CCINT} (Iow drive)	$V_{CCINT} = 1.8$ V, $V_{CCIO} = 3.3$ V, f = 1 MHz		145		μA
I _{CC_IO(LD)}	Operating Current ⁽¹⁾ for V _{CCIO} (supply voltage for output drivers), per LAB	$V_{CCINT} = 1.8V$, $V_{CCIO} = 3.3V$, f = 1 MHz		60		μA
I _{IL} , I _{IH}	Input Leakage	V_{CCINT} = 1.8V, V_{IN} = 0V or V_{CCINT}			±1	μA
I _{OZH} , I _{OH}	Output or IO Leakage	$\label{eq:V_ccint} \begin{array}{l} V_{\text{CCINT}} = 1.8 \text{V}, \ V_{\text{CCIO}} = 3.6 \text{V}, \\ V_{\text{IN}} = 0 \text{V} \text{ or } V_{\text{CCIO}} \end{array}$			±1	μΑ
LVCMOS 3.	3V & LVTTL (HD: High Drive, LD	: Low Drive)				
V _{IL}	Input Low-voltage		-0.3		0.8	V
V _{IH}	Input High-voltage		2		3.9	V
		HD: $I_{OL} = 8 \text{ mA}, V_{CCIO} = 3V$			0.4	V
V _{OL}	Output Low-voltage	LD: $I_{OL} = 1$ mA, $V_{CCIO} = 3V$			0.4	V
		HD: $I_{OH} = -8 \text{ mA}, V_{CCIO} = 3V$	V _{CCIO} - 0.4V			V
V _{OH}	Output High-voltage	LD: I _{OH} = -1 mA, V _{CCIO} = 3V	V _{CCIO} - 0.4V			V
LVCMOS 2.	5V					
V _{IL}	Input Low-voltage		-0.3		0.7	V
V _{IH}	Input High-voltage		1.7		3.9	V
	Output Law or I	HD: $I_{OL} = 8 \text{ mA}, V_{CCIO} = 2.3 \text{ V}$			0.4	V
V _{OL}	Output Low-voltage	LD: $I_{OL} = 1$ mA, $V_{CCIO} = 2.3V$			0.4	V
	Outrast High an "	HD: $I_{OH} = -8$ mA, $V_{CCIO} = 2.3V$	V _{CCIO} - 0.4V			V
V _{OH}	Output High-voltage	LD: I _{OH} = -1 mA, V _{CCIO} = 2.3V	V _{CCIO} - 0.4V			V

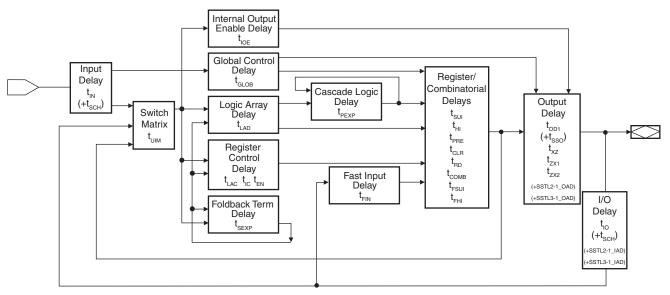

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CCIO}	Input Source Voltage		3.0	3.3	3.6	V
V _{REF} ⁽¹⁾	Input Reference Voltage		1.3	1.5	1.7	V
V _{TT} ⁽²⁾	Termination Voltage		V _{REF} - 0.05	1.5	V _{REF} + 0.05	V
V _{IH}	Input High Voltage		V _{REF} + 0.4		$V_{CCIO} + 0.3$	V
V _{IL}	Input Low Voltage		-0.3		V _{REF} - 0.6	V
V _{OH}	Output High Voltage	$I_{OH} = -8 \text{ mA}, V_{CCIO} = 3V$	V _{CCIO} - 1.1			V
V _{OL}	Output Low Voltage	$I_{OL} = 8$ mA, $V_{CCIO} = 2.3V$			0.7	V
V _{IH(DC)}	Input High Voltage		V _{REF} + 0.18		$V_{CCIO} + 0.3$	V
V _{IL(DC)}	Input Low Voltage		-0.3		V _{REF} - 0.18	V

Table 8-7. SSTL3-1 DC Voltage Specifications

Notes: 1. Peak-to-peak noise on V_{REF} may not exceed ±2% V_{REF} V_{REF} should track the variations in V_{CCIO} .

2. V_{TT} of transmitting device must track V_{REF} of receiving devices.

9. Timing Model

Table 11-1. AC Characteristics (Continued)⁽¹⁾

				5	-7		
Symbol	Parameter	-	Min	Мах	Min	Мах	Units
t _{ZX1}	Output Buffer Enable Delay (High Drive; C _L = 35 pF)	$V_{CCIO} = 1.5V$ $V_{CCIO} = 1.8V$ $V_{CCIO} = 2.5V$ $V_{CCIO} = 3.3V$		5.0 4.5 3.5 3.0		6.0 5.5 4.5 4.0	ns
t _{zx2}	$\begin{array}{c} V_{CCIO} = 1.5V\\ Output \ Buffer \ Enable \ Delay\\ (Low \ Drive; \ C_{L} = 35 \ pF) \end{array} \qquad \begin{array}{c} V_{CCIO} = 1.5V\\ V_{CCIO} = 1.8V\\ V_{CCIO} = 2.5V\\ V_{CCIO} = 3.3V \end{array}$			6.0 5.5 4.5 4.0		7.0 6.5 5.5 5.0	ns
t _{xz}	Output Buffer Disable Delay ($C_L = 5 \text{ pF}$))		4		4	ns
t _{SUI}	Register Setup Time		1.7		2.2		ns
t _{HI}	Register Hold Time		0.5		0.6		ns
t _{FSUI}	Register Setup Time of Fast Input		0.5		0.6		ns
t _{FHI}	Register Hold Time of Fast Input		0.5		0.6		ns
t _{RD}	Register Delay			0.7		1.2	ns
t _{COMB}	Combinatorial Delay			1.2		1.2	ns
t _{IC}	Array Clock Delay			1.8		1.8	ns
t _{EN}	Register Enable Time			2.5		3	ns
t _{GLOB}	Global Control Delay			1.8		2	ns
t _{PRE}	Register Preset Time			1.75		2	ns
t _{CLR}	Register Clear Time			1.75		2	ns
t _{UIM}	Switch Matrix Delay			0.5		0.8	ns
t _{SCH}	Schmitt Trigger Added Delay			1.5		2	ns
t _{SSO}	Output Added Delay for V _{CCIO} Level (LD)	$V_{CCIO} = 1.5V$ $V_{CCIO} = 1.8V$ $V_{CCIO} = 2.5V$ $V_{CCIO} = 3.3V$		6.5 5.5 5.25 5		8.5 7.5 7.25 7	ns
SSTL2-1_IAD ⁽²⁾ SSTL3-1_IAD ⁽²⁾	SSTL Input Delay Adder (HD)	$V_{CCIO} = 2.5V$ $V_{CCIO} = 3.3V$		1.5 1.5		1.5 1.5	ns
SSTL2-1_OAD ⁽²⁾ SSTL3-1_OAD ⁽²⁾	$V_{CCIO} = 2.5V$			1 1		1 1	ns

Note: 1. See ordering information for valid part numbers.

2. SSTL is not supported for low drive output (LD).

12. Power-down Mode

The ATF1508BE includes an optional pin-controlled power-down feature. When this mode is enabled, the PD pin acts as the power-down pin. When the PD pin is high, the device supply current is reduced to less than 100 μ A. During power-down, all output data and internal logic states are latched and held. Therefore, all registered and combinatorial output data remain valid. Any outputs that were in a high-Z state at the onset will remain at high-Z. During power-down, all input signals except the power-down pin are blocked. Input and I/O hold latches remain active to ensure that pins do not float to indeterminate levels, further reducing system power. The power-down pin feature is enabled in the logic design file or through Atmel software. Designs using the power-down pin may not use the PD pin logic array input. However, all other PD pin macrocell resources may still be used, including the buried feedback and foldback product term array inputs.

		-5	-5/-7		
Symbol	Parameter	Min	Max	Units	
t _{IVDH}	Valid I, I/O before PD High	10		ns	
t _{GVDH}	Valid OE ⁽²⁾ before PD High	10		ns	
t _{CVDH}	Valid Clock ⁽²⁾ before PD High	10		ns	
t _{DHIX}	I, I/O Don't Care after PD High		5	ns	
t _{DHGX}	OE ⁽²⁾ Don't Care after PD High		5	ns	
t _{DHCX}	Clock ⁽²⁾ Don't Care after PD High		5	ns	
t _{DLIV}	PD Low to Valid I, I/O		2	μs	
t _{DLGV}	PD Low to Valid OE (Pin or Term)		2	μs	
t _{DLCV}	PD Low to Valid Clock (Pin or Term)		2	μs	
t _{DLOV}	PD Low to Valid Output		2	μs	

 Table 12-1.
 Power-down AC Characteristics⁽¹⁾⁽²⁾

Notes: 1. For low-drive outputs, add t_{SSO}.

2. Pin or product term.

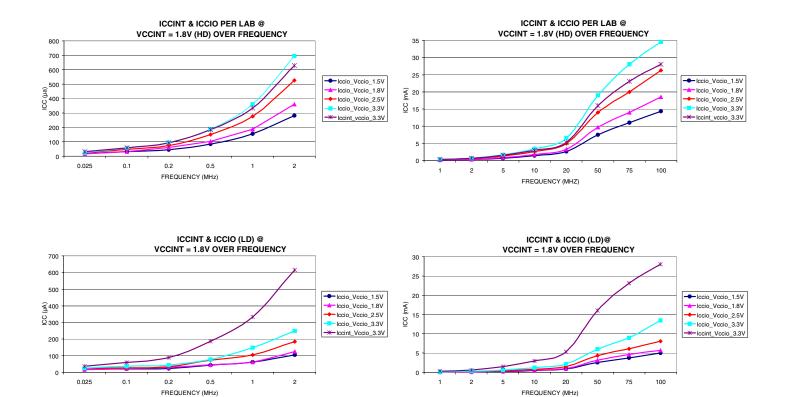
13. ATF1508BE Dedicated Pinouts

 Table 13-1.
 ATF1508BE Dedicated Pinouts

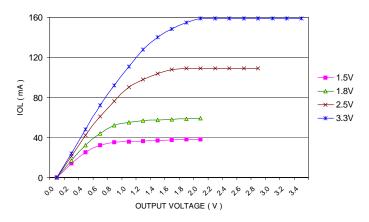
Dedicated Pin	132-ball CBGA	100-lead TQFP					
INPUT / OE2 / GCLK2	Сз	90					
INPUT / GCLR	A3	89					
INPUT / OE1	C2	88					
INPUT / GCLK1	L2	87					
I/O / GCLK3	M8	85					
I/O / PD (1,2)	F1, G12	1, 41					
I/O / V _{REFA}	H1	12					
I/O / V _{REFB}	L13	60					
I/O / TDI (JTAG)	M9	4					
I/O / TMS (JTAG)	N10	15					
I/O / TCK (JTAG)	M10	62					
I/O / TDO (JTAG)	В9	73					
GND	A9, B14, B3, E14, H14, J14, K2, N1, N9, N12, P4	11, 26, 38, 43, 59, 74, 86, 95					
V _{CCINT}	A2, K12, P1	39, 91					
V _{CCIOA}	J3, P7, P13, G14	3, 18, 34					
V _{CCIOB}	A7, A14, C4	51, 66, 82					
N/C	L1, L3, M1, N4, C13, B10, D3, P6, P8, N2, N7, N8, M7, M2, M12, M13, M14, C7, C8, C14, B6, B7, B8, B13, A6, A8, A13						
# of Signal Pins	84	84					
# User I/O Pins	80	80					
OE (1, 2)	Global OE pins						
GCLR	Global Clear pin						
GCLK (1, 2, 3)	Global Clock pins						
PD (1, 2)	Power-down pins						
TDI, TMS, TCK, TDO	JTAG pins used for boundary programming	-scan testing or in-system					
GND	Ground pins						
V _{CCINT}	V_{CC} pins for the device (+1.8V)						
V _{CCIOA}	LAB A and B – V_{CC} supply pins 3.3V)	LAB A and B – V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or					
V _{CCIOB}	LAB C and D – V_{CC} supply pins 3.3V)	LAB C and D - V_{CC} supply pins for I/Os (1.5V, 1.8V, 2.5V, or					
V _{REFA}	Reference voltage pin for SSTL inp	outs in bank A					
V _{REFB}	Reference voltage pin for SSTL inp	uto in bonk D					

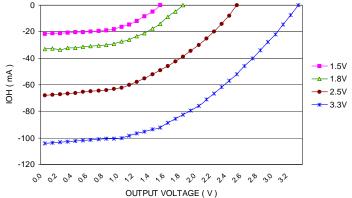
Table 13-2. ATF1508BE I/O Pinouts

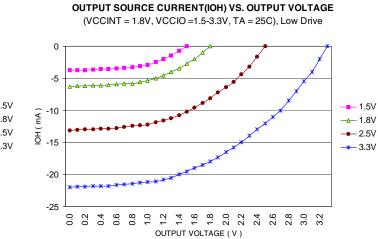
МС	Logic Block	100-lead TQFP	132-ball CBGA	МС	Logic Block	100-lead TQFP	132-ball CBGA
1	А	2	G1	33	С	25	B1
2	А	-	-	34	С	-	-
3	A/ PD1	1	F1	35	с	24	B2
4	Α	-	-	36	С	-	-
5	Α	100	F2	37	С	23	A1
6	А	99	F3	38	С	22	B4
7	А	-	-	39	С	-	-
8	А	98	E1	40	С	21	A4
9	А	97	E2	41	С	20	C5
10	A	-	-	42	С	-	-
11	А	96	E3	43	С	19	B5
12	А	-	-	44	С	-	-
13	А	94	D1	45	С	17	A5
14	А	93	D2	46	С	16	C6
15	А	-	-	47	С	-	-
16	А	92	C1	48	C/ TMS	15	N10
17	В	14	C2	49	D	37	P2
18	В	-	-	50	D	-	-
19	В	13	G3	51	D	36	M3
20	В	-	-	52	D	-	-
21	B/VREFA	12	H1	53	D	35	N3
22	В	10	H2	54	D	33	P3
23	В	-	-	55	D	-	-
24	В	9	H3	56	D	32	M4
25	В	8	J1	57	D	31	M5
26	В	-	-	58	D	-	-
27	В	7	J2	59	D	30	N5
28	В	-	-	60	D	-	-
29	В	6	K1	61	D	29	P5
30	В	5	K3	62	D	28	M6
31	В	-	-	63	D	-	-
32	В/ ТDI	4	М9	64	D	27	N6


 Table 13-2.
 ATF1508BE I/O Pinouts (Continued)

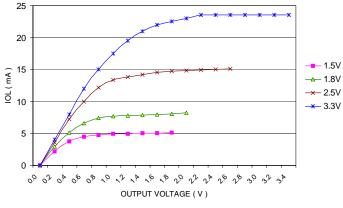
МС	Logic Block E	100-lead TQFP 40	132-ball CBGA G13	МС 97	Logic Block G	100-lead TQFP 63	132-ball CBGA C12
65							
66	E	-	-	98	G	-	-
67	E/ PD2	41	G12	99	G	64	B12
68	E	-	-	100	G	-	-
69	E	42	F14	101	G	65	A12
70	E	44	F13	102	G	67	C11
71	E	-	-	103	G	-	-
72	E	45	F12	104	G	68	B11
73	E	46	E13	105	G	69	A11
74	E	-	-	106	G	-	-
75	E	47	E12	107	G	70	C10
76	E	-	-	108	G	-	-
77	E	48	D14	109	G	71	A10
78	E	49	D13	110	G	72	C9
79	E	-	-	111	G	-	-
80	E	50	D12	112	G/ TDO	73	B9
81	F	52	H12	113	н	75	N14
82	F	-	-	114	н	-	-
83	F	53	H13	115	Н	76	N13
84	F	-	-	116	н	-	-
85	F	54	J13	117	н	77	P14
86	F	55	J12	118	н	78	P12
87	F	-	-	119	н	-	-
88	F	56	K14	120	н	79	M11
89	F	57	K13	121	н	80	N11
90	F	-	-	122	Н	-	-
91	F	58	L14	123	н	81	P11
92	F	-	-	124	Н	-	-
93	F/VREFB	60	L13	125	Н	83	P10
94	F	61	L12	126	Н	84	P9
95	F	-	-	127	Н	-	-
96	F/ TCK	62	M10	128	H/ GCLK3	85	M8



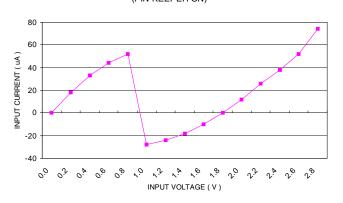

14. Typical DC and AC Characteristic Graphs



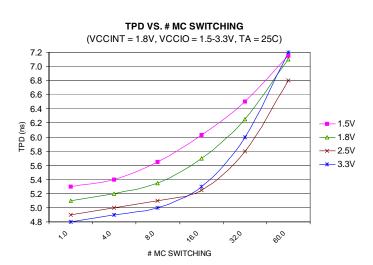
OUTPUT SINK CURRENT(IOL) VS. OUTPUT VOLTAGE (VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C), High Drive



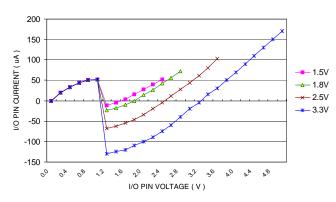
OUTPUT SOURCE CURRENT(IOH) VS. OUTPUT VOLTAGE (VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C), High Drive




OUTPUT SINK CURRENT(IOL) VS. OUTPUT VOLTAGE (VCCINT = 1.8V, VCCIO = 1.5-3.3V, TA = 25C), Low Drive



INPUT CURRENT VS. INPUT VOLTAGE INPUT PIN (VCCINT = 1.8V, TA = 25C) (PIN-KEEPER ON)

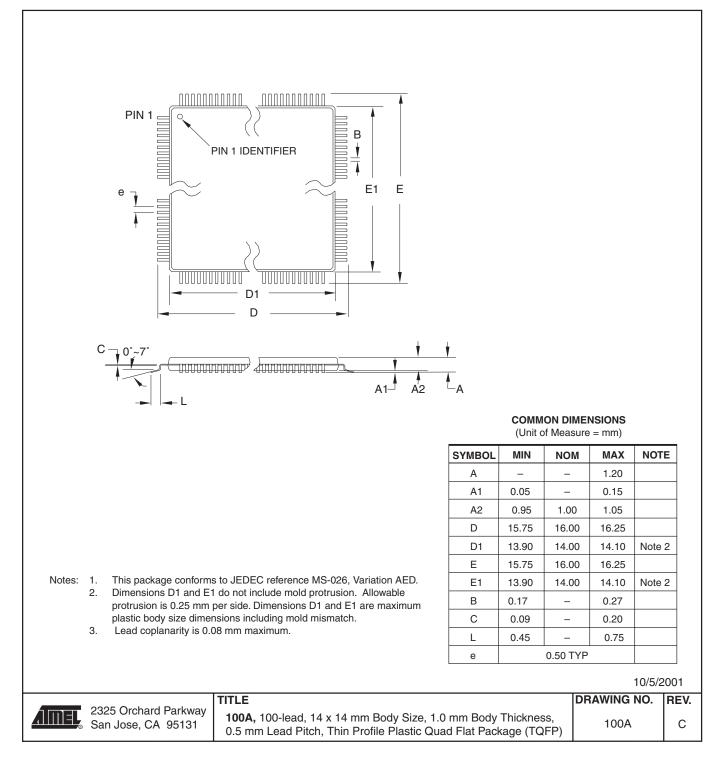


 $\begin{array}{l} \text{INPUT \& I/O CURRENT VS. INPUT VOLTAGE} \\ V_{\text{CCINT}} = 1.8V, V_{\text{CCIO}} = 1.8V \left(T_{\text{A}} = 25^{\circ}\text{C}\right) \\ (\text{Pull-Up On}) \end{array}$

VO PIN CURRENT VS. VO PIN VOLTAGE I/O PIN (VCCINT = 1.8V, VCCIO = 1.5V-3.3V, TA = 25C) (PIN KEEPER ON)

15. Ordering Information

15.1 Lead-free Package Options (RoHS Compliant)


t _{PD} (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
5	6	ATF1508BE-5AX100	100A	Commercial (0° C to +70° C)
7	6.5	ATF1508BE-7AU100	100A	Industrial (-40° C to +85° C)
5	6	ATF1508BE-5CX132	132C1	Commercial (0° C to +70° C)
7	6.5	ATF1508BE-7CU132	132C1	Industrial (-40° C to +85° C)

Note: For shaded devices, contact marketing for availability.

Package Type			
100A	100-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)		
132C1	132-ball, Plastic Chip-Size Ball Grid Array Package (CBGA)		

16. Packaging Information

