

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I²C, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	19
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LSSOP (0.220", 5.60mm Width)
Supplier Device Package	24-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213g6dnsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS MCU

1. Overview

1.1 Features

The R8C/3GD Group of single-chip MCUs incorporates the R8C CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs are designed to maximize EMI/EMS performance.

Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

				in Number		
Din			I/O Pin Functions for Peripheral Modules			dules
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	A/D Converter, Comparator B
1		P0_2		(TRCIOA/TRCTRG)		AN5
2		P0_1		(TRCIOA/TRCTRG)		AN6
3		P4_2				VREF
4	MODE					
5	RESET					
6	XOUT(/XCOUT)	P4_7				
7	VSS/AVSS					
8	XIN(/XCIN)	P4_6				
9	VCC/AVCC					
10		P3_7		TRAO	(RXD2/SCL2/ TXD2/SDA2)	
11		P3_5		(TRCIOD)	(CLK2)	
12		P3_4		(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)	IVREF3
13		P3_3	INT3	(TRCCLK)	(CTS2/RTS2)	IVCMP3
14		P4_5	INTO		(RXD2/SCL2)	ADTRG
15		P1_7	INT1	(TRAIO)		IVCMP1
16		P1_6			(CLK0)	IVREF1
17		P1_5	(INT1)	(TRAIO)	(RXD0)	
18		P1_4		(TRCCLK)	(TXD0)	
19		P1_3	KI3	TRBO(/TRCIOC)		AN11
20		P1_2	KI2	(TRCIOB)		AN10
21		P1_1	KI1	(TRCIOA/TRCTRG)		AN9
22		P1_0	KI0	(TRCIOD)		AN8
23		P0_7		(TRCIOC)		AN0
24		P0_6		(TRCIOD)		AN1

 Table 1.4
 Pin Name Information by Pin Number

Note:

1. Can be assigned to the pin in parentheses by a program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3. Memory

3.1 R8C/3GD Group

Figure 3.1 is a Memory Map of R8C/3GD Group. The R8C/3GD Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/3GD Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers and Table 4.8 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset
0000h			1
0001h			1
0002h			
0003h			
0004h	Processor Mode Begister 0	PM0	00h
0005h	Processor Mode Progister 0	PM1	00h
0005h	Evetem Cleak Control Pagister 0	CMO	00101000b
000011	System Clock Control Register 0		001010000
0007h		UMI	d000000
0008h	Module Standby Control Register	MSTCR	UUN
0009h	System Clock Control Register 3	CM3	00h
000Ah	Protect Register	PRCR	00h
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDTC	00111111b
0010h			
0011h			
0012h			
0012h			+
0013h			+
001411	Lingh Cread On Chin Oppillator Control Bagister 7		When chinning
00150	High-Speed On-Onip Oscillator Control Register 7	FRA/	when shipping
00160			<u> </u>
0017h			<u> </u>
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h 1000000b ⁽³⁾
001Db			
001Eh			+
001Eh			
001FI			
002011			
002111			
0022h		5040	
0023h	High-Speed On-Chip Oscillator Control Register U	FRAU	00n
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When Shipping
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When Shipping
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When Shipping
002Ch			1
002Dh			1
002Eh			
002Eh	High-Speed On-Chip Oscillator Control Begister 3	FBA3	When shipping
0030h	Voltage Monitor Circuit Control Begister	CMPA	100h
0031h	Voltage Monitor Circuit Edge Select Begister	VCAC	00b
0022h		10/10	0011
003211	Voltago Dotoct Register 1	VCA1	00001000b
003311	Voltage Detect Register 2	VCAD	000010000
0034N	voltage Detect Register 2	V GAZ	UUN (4)
0.00			0010000b (5)
0035h			
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b
0037h			
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b (4)
			1100X011b (5)
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b

Table 4.1	SFR Information	n (1) (1)
		• • •	

X: Undefined Notes:

1.

The blank areas are reserved and cannot be accessed by users. The CWR bit in the RSTFR register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, software reset, or watchdog timer 2. reset does not affect this bit.

The CSPROINI bit in the OFS register is set to 0. 3.

The LVDAS bit in the OFS register is set to 1. 4.

5. The LVDAS bit in the OFS register is set to 0. .

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RC Pin Select Register	TRBRCSR	00h
0182h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer BC Pin Select Begister 1	TRCPSR1	00h
0184h			
0185h			
0106h			
010011			
010/11		LISOP	201
0188h	UARIU PIN Select Register	UUSR	uun
0189h			
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch			
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h	,		
0101h			
0100h			
01026			
019311			
0194n			
0195h			<u> </u>
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Dh			
019EII			
019FI1			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
0149h			
0140h			
UTACh			
UTADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h	Flash Memory Status Register	FST	10000X00b
01B3h	· · · · ·		ľ
01B4h	Flash Memory Control Register 0	FMR0	00h
01B5h	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Begister 2	EMB2	00h
01075	TROM WOMONY OUTLINE TREVISION 2	1 IVII 12	
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BEh			l
01BFh			
			(

Table 4.6	SFR Informatior	۱ (6) ⁽¹⁾
-----------	-----------------	----------------------

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
0102h			0000XXXXb
01020	Address Match Interrupt Enchle Deviator		000
01030	Address Match Interrupt Enable Register		
01C4h	Address Match Interrupt Register 1	KMAD1	XXN
01C5h			XXh
01C6h			0000XXXXb
01C7h			
01C8h			
0100h			
01090			
01CAn			
01CBh			
01CCh			
01CDh			
01CEh			
010Eh			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D8h			
01D9h			
01DAh			
01DBh		İ	
01DCh			
01006			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01F2h			
01E2h			
01E311			
UIE4n			
01E5h			
01E6h			
01E7h			
01E8h			
01F9h			
01EAb			
01ECh			
01EDh			
01EEh			
01EFh			
01F0h	Port P1 Drive Capacity Control Register	P1DRR	00h
01E1b			
01506	Drive Canadity Control Register 0	DBB0	00h
01F3h	Drive Capacity Control Register 1	UKK1	uun
01F4h			
01F5h	Input Threshold Control Register 0	VLT0	00h
01F6h	Input Threshold Control Register 1	VLT1	00h
01F7h			
01F8h	Comparator B Control Begister 0	INTCMP	00b
	Comparator D Control negloter C		0011
UIF9n			0.01
01FAh	External Input Enable Register 0	INTEN	00h
01FBh			
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh		1	
	Key Input Enable Begister 0	KIEN	00b
	ney input Liable negister v		0011
UIFFN		1	

Table 4.7	SFR I	nformation	(7) (1)
-----------	-------	------------	---------

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
:			
FFFBh	ID7		(Note 2)
:			
FFFFh	Option Function Select Register	OFS	(Note 1)

Table 4.8 ID Code Areas and Option Function Select Area

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	ol Parameter			Conditions	Standard			Llnit	
Symbol	i diditeter			Conditions	Min.	Тур.	Max.	Unit	
Vcc/AVcc	Supply voltage				1.8	-	5.5	V	
Vss/AVss	Supply voltage					-	0	-	V
Vih	Input "H" voltage	Other th	nan CMOS ir	nput		0.8 Vcc	-	Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0.55 Vcc	-	Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0.65 Vcc	-	Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0.65 Vcc	-	Vcc	V
				: 0.5 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0.7 Vcc	-	Vcc	V
					$1.8~V \leq V \text{CC} < 2.7~V$	0.8 Vcc	-	Vcc	V
				Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0.85 Vcc	-	Vcc	V
				: 0.7 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0.85 Vcc	-	Vcc	V
					$1.8~V \leq V \text{CC} < 2.7~V$	0.85 Vcc	-	Vcc	V
		Externa	l clock input	(XOUT)		1.2	-	Vcc	V
VIL	Input "L" voltage	Other th	nan CMOS ir	nput		0	-	0.2 Vcc	V
		CMOS	Input level	Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0	-	0.2 Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0	-	0.2 Vcc	V
			function		$1.8~V \leq V \text{CC} < 2.7~V$	0	-	0.2 Vcc	V
			(1/0 port)	Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0	-	0.4 Vcc	V
				: 0.5 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0	-	0.3 Vcc	V
					$1.8~V \leq V \text{CC} < 2.7~V$	0	-	0.2 Vcc	V
				Input level selection	$4.0~V \leq V \text{CC} \leq 5.5~V$	0	-	0.55 Vcc	V
				: 0.7 Vcc	$2.7~V \leq V \text{CC} < 4.0~V$	0	-	0.45 Vcc	V
					$1.8~V \leq V \text{CC} < 2.7~V$	0	-	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	-	0.4	V
IOH(sum)	Peak sum output "H"	current	Sum of all	pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "H	l" current	Sum of all	pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H" curre	ent	Drive capa	city Low		-	-	-10	mA
			Drive capa	city High		-	-	-40	mA
IOH(avg)	Average output "H" cu	urrent	Drive capa	city Low		-	-	-5	mA
			Drive capa	city High		-	-	-20	mA
IOL(sum)	Peak sum output "L" of	current	Sum of all	pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L	" current	Sum of all	pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L" curre	nt	Drive capa	city Low		-	-	10	mA
		Drive capacity High			-	I	40	mA	
IOL(avg)	Average output "L" cu	urrent	Drive capa	city Low		-	I	5	mA
			Drive capa	city High		-	1	20	mA
f(XIN)	XIN clock input oscillation frequency		$2.7~V \leq Vcc \leq 5.5~V$	-	1	20	MHz		
					$1.8~V \leq V \text{CC} < 2.7~V$	-	-	5	MHz
f(XCIN)	XCIN clock input oscillation frequency			$1.8~V \leq Vcc \leq 5.5~V$	-	32.768	50	kHz	
fOCO40M	When used as the co	unt sourc	e for timer F	RC ⁽³⁾	$2.7~V \le Vcc \le 5.5~V$	32	_	40	MHz
fOCO-F	fOCO-F frequency				$2.7~V \leq Vcc \leq 5.5~V$	_	_	20	MHz
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	5	MHz
-	System clock frequen	ю			$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	-	-	5	MHz
f(BCLK)	CPU clock frequency				$2.7~V \leq Vcc \leq 5.5~V$	_	-	20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	-	-	5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.

Symbol	Paramotor		Conditions		Standard			Llnit	
Symbol	Faiameter		Conditions		Min.	Тур.	Max.	Onit	
-	Resolution		Vref = AVCC		-	-	10	Bit	
-	Absolute accuracy	10-bit mode	$V_{ref} = AV_{CC} = 5.0 V$	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	_	±3	LSB	
			Vref = AVCC = 3.3 V	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	-	±5	LSB	
			Vref = AVCC = 3.0 V	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	—	±5	LSB	
			Vref = AVCC = 2.2 V	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	_	±5	LSB	
		8-bit mode	$V_{ref} = AV_{CC} = 5.0 V$	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	_	±2	LSB	
			Vref = AVCC = 3.3 V	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	-	±2	LSB	
			Vref = AVCC = 3.0 V	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	_	±2	LSB	
			Vref = AVCC = 2.2 V	AN0, AN1, AN5, AN6, AN8 to AN11 input	-	_	±2	LSB	
φAD	A/D conversion clock		$4.0 \le V_{ref} = AV_{CC} \le 5$	5.5 V ⁽²⁾	2	-	20	MHz	
			$3.2 \le V_{\text{ref}} = AV_{\text{CC}} \le 5$	5.5 V ⁽²⁾	2	-	16	MHz	
			$2.7 \leq V_{ref} = AV_{CC} \leq 5.5 \ V^{\ (2)}$		2	-	10	MHz	
			$2.2 \le V_{\text{ref}} = AV_{\text{CC}} \le 5$	5.5 V ⁽²⁾	2	-	5	MHz	
-	Tolerance level impedance	e			-	3	-	kΩ	
tCONV	Conversion time	10-bit mode	Vref = AVCC = 5.0 V, o	∮AD = 20 MHz	2.15	-	-	μS	
		8-bit mode	Vref = AVCC = 5.0 V, c	∮AD = 20 MHz	2.15	1	-	μS	
t SAMP	Sampling time		φAD = 20 MHz		0.75	-	_	μS	
IVref	Vref current		Vcc = 5 V, XIN = f1 =	=	-	45	-	μA	
Vref	Reference voltage				2.2	-	AVcc	V	
VIA	Analog input voltage (3)				0	-	Vref	V	
OCVREF	On-chip reference voltage	9	$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	lz	1.19	1.34	1.49	V	

Table 5.3	A/D Converter	Characteristics
-----------	---------------	-----------------

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.4 Comparator B Electrical Characteristics

Symbol	Boromotor	Condition		Llpit			
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit	
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V	
VI	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V	
—	Offset		-	5	100	mV	
td	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μs	
Ісмр	Comparator operating current	Vcc = 5.0 V	-	17.5	-	μÂ	

Notes:

1. Vcc = 2.7 to 5.5 V, T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Cumbol	Deremeter		Condition		Standard			Lloit
Symbol		Parameter	Condition	Condition		Тур.	Max.	Unit
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5V	Iон = -20 mA	Vcc - 2.0	-	Vcc	V
	voltage		Drive capacity Low Vcc = 5V	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Vcc = 5V	Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5V	IoL = 20 mA	-	-	2.0	V
	voltage		Drive capacity Low Vcc = 5V	IoL = 5 mA	-	-	2.0	V
		XOUT	Vcc = 5V	IOL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTRG</u> , TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2 RESET			0.1	1.2	_	V
Ін	Input "H" cu	irrent	VI = 5 V, Vcc = 5.0V		-	-	5.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 5.0V		-	_	-5.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 5.0V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	8	-	MΩ
VRAM	RAM hold v	oltage	During stop mode		1.8	-	-	V

Table 5.13	Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]
------------	--

Note:

1. 4.2 V \leq Vcc \leq 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Doromotor	Condition		Standard			Unit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.3	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	85	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	-	47	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	100	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	3.5	-	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5.0	_	μA

Table 5.14Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Table 5.17 Seria	al Interface
------------------	--------------

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLKi input cycle time	200	-	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

Figure 5.6 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.18 External Interrupt INTi (i = 0, 1, 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	250 (2)	_	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.7 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.20Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition			Standard		Unit
Symbol	i arameter		Condition	Min.	Тур.	Max.	Offic
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	ļ	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTTRC = 1	-	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.5	-	μA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, $Topr = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5.0	-	μA

Symbol	Parameter		Condition		Standard			Llnit
Symbol	Fai	ameter	Conditi	Min.	Тур.	Max.	Unit	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -2 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT		Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	Iol = 2 mA	-	-	0.5	V
			Drive capacity Low	Iol = 1 mA	-	-	0.5	V
		XOUT		IOL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTRG</u> , TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2			0.05	0.2	_	V
Ін	Input "H" current	NLOL I	VI = 2.2 V. Vcc = 2.2	V	_	_	4.0	цΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 V	1	_	_	-4.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 2.2 V	/	70	140	300	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ
Rfxcin	Feedback resistance	XCIN			_	8	-	MΩ
VRAM	RAM hold voltage		During stop mode		1.8	_	_	V

Table 5.25	Electrical Characteristics (5) [1.8 V \leq Vcc $<$ 2.7 V]
------------	---

Note:

1. $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Timing Requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.27 External clock input (XOUT, XCIN)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XOUT)	XOUT input cycle time	200	-	ns	
twh(xout)	XOUT input "H" width	90	-	ns	
twl(xout)	XOUT input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.12 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.28 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	500	-	ns	
twh(traio)	TRAIO input "H" width	200	-	ns	
twl(traio)	TRAIO input "L" width	200	-	ns	

Figure 5.13 TRAIO Input Timing Diagram when Vcc = 2.2 V

REVISION HISTORY

R8C/3GD Group Datasheet

Rev.	Date	Description	
		Page	Summary
0.01	Sep. 10, 2009	_	First Edition issued
1.00	Feb. 26, 2010	All pages	"Preliminary", "Under development" deleted
		4	Table 1.3 revised
		21 to 40	"5. Electrical Characteristics" added

All trademarks and registered trademarks are the property of their respective owners.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: State

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com