

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atxmega128c3-mh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash program memory.

7.8 Memory Timing

Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from SRAM takes two cycles. EEPROM page load (write) takes one cycle, and three cycles are required for read. For burst read, new data are available every second cycle. Refer to the instruction summary for more details on instructions and instruction timing.

7.9 Device ID and Revision

Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A separate register contains the revision number of the device.

7.10 I/O Memory Protection

Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers themselves are protected by the configuration change protection mechanism.

7.11 Flash and EEPROM Page Size

The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the flash and byte accessible for the EEPROM.

Table 7-2 on page 16 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write and erase operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page number and the least significant address bits (FWORD) give the word in the page.

Devices	PC size	Flash size	Page size	FWORD	FPAGE	Application		FPAGE Application		I	Boot
	bits	bytes	words			Size	No. of pages	Size	No. of pages		
ATxmega32C3	16	32K + 4K	128	Z[7:1]	Z[16:8]	32K	128	4K	16		
ATxmega64C3	16	64K + 4K	128	Z[7:1]	Z[16:8]	64K	256	4K	16		
ATxmega128C3	17	128K + 8K	256	Z[8:1]	Z[17:9]	128K	256	8K	16		
ATxmega192C3	17	192K + 8K	256	Z[8:1]	Z[17:9]	192K	384	8K	16		
ATxmega256C3	18	256K + 8K	256	Z[8:1]	Z[18:9]	256K	512	8K	16		

Table 7-2. Number of Words and Pages in the Flash

Table 7-3 on page 17 shows EEPROM memory organization. EEEPROM write and erase operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at a time. For EEPROM access the NVM address register (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the page.

11.4.2 Brownout Detection

The on-chip brownout detection (BOD) circuit monitors the V_{CC} level during operation by comparing it to a fixed, programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip erase and when the PDI is enabled.

11.4.3 External Reset

The external reset circuit is connected to the external $\overrightarrow{\text{RESET}}$ pin. The external reset will trigger when the $\overrightarrow{\text{RESET}}$ pin is driven below the $\overrightarrow{\text{RESET}}$ pin threshold voltage, V_{RST} , for longer than the minimum pulse period, t_{EXT} . The reset will be held as long as the pin is kept low. The $\overrightarrow{\text{RESET}}$ pin includes an internal pull-up resistor.

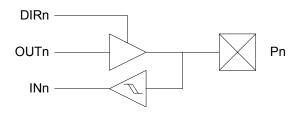
11.4.4 Watchdog Reset

The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one to two clock cycles of the 2MHz internal oscillator. For more details see "WDT – Watchdog Timer" on page 26.

11.4.5 Software Reset

The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset control register. The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any instruction from when a software reset is requested until it is issued.

11.4.6 Program and Debug Interface Reset


The program and debug interface reset contains a separate reset source that is used to reset the device during external programming and debugging. This reset source is accessible only from external debuggers and programmers.

14.3 Output Driver

All port pins (Pn) have programmable output configuration.

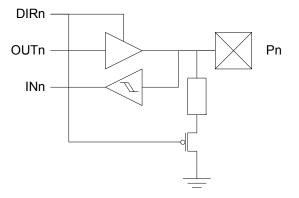

14.3.1 Push-pull

Figure 14-1. I/O Configuration - Totem-pole

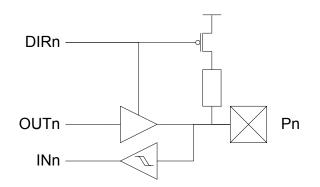

14.3.2 Pull-down

Figure 14-2. I/O Configuration - Totem-pole with Pull-down (on input)

14.3.3 Pull-up

Figure 14-3. I/O Configuration - Totem-pole with Pull-up (on input)

18. Hi-Res – High Resolution Extension

18.1 Features

- Increases waveform generator resolution up to 8x (three bits)
- Supports frequency, single-slope PWM, and dual-slope PWM generation
- Supports the AWeX when this is used for the same timer/counter

18.2 Overview

The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.

The hi-res extension uses the peripheral 4x clock (Clk_{PER4}). The system clock prescalers must be configured so the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension is enabled.

There is one hi-res extensions that can be enabled for timer/counters pair on PORTC. The notation of this is HIRESC.

24. IRCOM – IR Communication Module

24.1 Features

- Pulse modulation/demodulation for infrared communication
- IrDA compatible for baud rates up to 115.2Kbps
- Selectable pulse modulation scheme
 - 3/16 of the baud rate period
 - Fixed pulse period, 8-bit programmable
 - Pulse modulation disabled
- Built-in filtering
- Can be connected to and used by any USART

24.2 Overview

Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.

25. CRC – Cyclic Redundancy Check Generator

25.1 Features

- Cyclic redundancy check (CRC) generation and checking for
 - Communication data
 - Program or data in flash memory
 - Data in SRAM and I/O memory space
- Integrated with flash memory and CPU
 - Automatic CRC of the complete or a selectable range of the flash memory
 - CPU can load data to the CRC generator through the I/O interface
- CRC polynomial software selectable to
 - CRC-16 (CRC-CCITT)
 - CRC-32 (IEEE 802.3)
- Zero remainder detection

25.2 Overview

A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and it is commonly used to determine the correctness of a data transmission, and data present in the data and program memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be appended to the data and used as a checksum. When the same data are later received or read, the device or application repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error. The application will then detect this and may take a corrective action, such as requesting the data to be sent again or simply not using the incorrect data.

Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits (any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2⁻ⁿ of all longer error bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3).

• CRC-16:

Polynomial: $x^{16}+x^{12}+x^{5}+1$

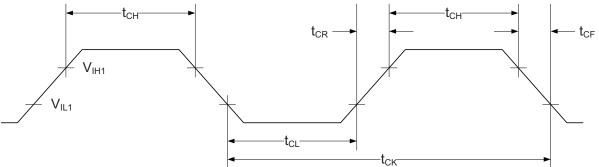
Hex value: 0x1021

• CRC-32:

Polynomial: $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$

Hex value: 0x04C11DB7

33.1.13.5 Internal Phase Locked Loop (PLL) Characteristics


Table 33-23. Internal PLL Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{IN}	Input frequency	Output frequency must be within \mathbf{f}_{OUT}	0.4		64	
f _{оит}	Output frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	20		48	MHz
		V _{CC} = 2.7 - 3.6V	20		128	
	Start-up time			25		
	Re-lock time			25		μs

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

33.1.13.6 External Clock Characteristics

Table 33-24. External Clock used as System Clock without Prescaling

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1 /ł	Clock Frequency ⁽¹⁾	V _{CC} = 1.6 - 1.8V	0		12	MHz
1/t _{CK}	Clock frequency V	V _{CC} = 2.7 - 3.6V	0		32	
+	Clock Period	V _{CC} = 1.6 - 1.8V	83.3			
t _{ск}		V _{CC} = 2.7 - 3.6V	31.5			
+	Clock High Time	V _{CC} = 1.6 - 1.8V	30.0			
t _{сн}		V _{CC} = 2.7 - 3.6V	12.5			
+	Clock Low Time	V _{CC} = 1.6 - 1.8V	30.0			ne
t _{CL}		V _{CC} = 2.7 - 3.6V	12.5			ns
+	Rise Time (for maximum frequency)	V _{CC} = 1.6 - 1.8V			10	-
t _{CR}		V _{CC} = 2.7 - 3.6V			3	_
+		V _{CC} = 1.6 - 1.8V			10	
t _{CF}	Fall Time (for maximum frequency)	V _{CC} = 2.7 - 3.6V			3	
Δt_{CK}	Change in period from one clock cycle to the next				10	%

Note: 1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.

Table 33-92. Current Consumption for Modules and Peripherals

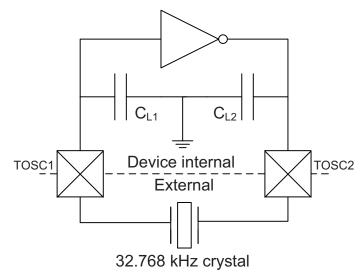
Symbol	Parameter	Condition ⁽¹⁾		Min.	Тур.	Max.	Units			
	ULP oscillator				0.9					
	32.768kHz int. oscillator				25					
	2MHz int. oscillator				78					
		DFLL enabled with	32.768kHz int. osc. as reference		110		-			
	32MHz int. oscillator				250					
		DFLL enabled with	32.768kHz int. osc. as reference		440					
	PLL	20x multiplication f 32MHz int. osc. Dl			310		μA			
	Watchdog timer				1.0					
	BOD	Continuous mode		132						
		Sampled mode, ind		1.4						
I _{CC}	Internal 1.0V reference			185						
	Temperature sensor				182					
		16ksps			1.12		mA			
			CURRLIMIT = LOW		1.01					
		V _{REF} = Ext. ref.	CURRLIMIT = MEDIUM		0.9					
	ADC		CURRLIMIT = HIGH		0.8					
		75ksps V _{REF} = Ext. ref.	CURRLIMIT = LOW		1.7					
		300ksps V _{REF} = Ext. ref.			3.1					
	USART	Rx and Tx enabled	1, 9600 BAUD		9.5		μA			
	Flash memory and EEPRO	M programming			10		mA			

Note: 1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at V_{CC} = 3.0V, Clk_{SYS} = 1MHz external clock without prescaling, T = 25°C unless other conditions are given.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
C _{XTAL1}	Parasitic capacitance XTAL1 pin			5.9		
C _{XTAL2}	Parasitic capacitance XTAL2 pin			8.3		pF
C _{LOAD}	Parasitic capacitance load			3.5		

Note: 1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.

33.4.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics


Table 33-114. External 32.768 kHz Crystal Oscillator and TOSC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
	Recommended crystal	Crystal load capacitance 6.5pF			60	
ESR/R1	equivalent series	Crystal load capacitance 9.0pF			35	kΩ
resistance (E	resistance (ESR)	Crystal load capacitance 12pF			28	-
C _{TOSC1}	Parasitic capacitance TOSC1 pin			3.5		pF
C _{TOSC2}	Parasitic capacitance TOSC2 pin			3.5		pr
	Recommended safety factor	Capacitance load matched to crystal specification	3			

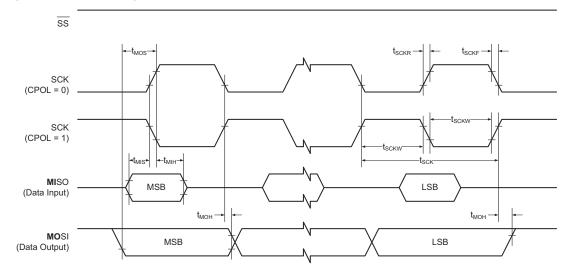
Note:

See Figure 33-25 for definition.

Figure 33-25.TOSC Input Capacitance

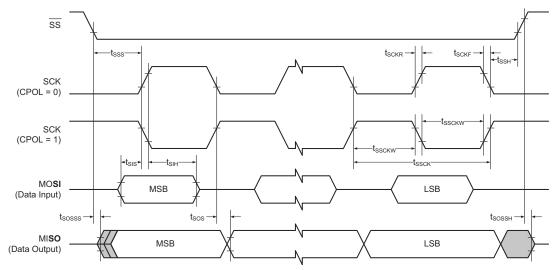
The parasitic capacitance between the TOSC pins is $C_{L1} + C_{L2}$ in series as seen from the crystal when oscillating without external capacitors.

Table 33-127. Gain Stage Characteristics


Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
R _{in}	Input resistance	Switched in normal mode		4.0		kΩ
C _{sample}	Input capacitance	Switched in normal mode		4.4		pF
	Signal range	Gain stage output	0		AV _{CC} - 0.6	V
	Propagation delay	ADC conversion rate	1/2	1	3	Clk _{ADC} cycles
	Clock frequency	Same as ADC	100		1800	kHz
		0.5x gain, normal mode		-1		
		1x gain, normal mode		-1		%
	Gain error	8x gain, normal mode		-1		/0
		64x gain, normal mode		5		
	Offset error, input referred	0.5x gain, normal mode		10		
		1x gain, normal mode		5		m) (
		8x gain, normal mode		-20		mV
		64x gain, normal mode		-126		

33.5.7 Analog Comparator Characteristics

Table 33-128. Analog Comparator Characteristics


Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{off}	Input offset voltage			10		mV
I _{lk}	Input leakage current			<10	50	nA
	Input voltage range		-0.1		AV _{CC}	V
	AC startup time			50		μs
V _{hys1}	Hysteresis, none	V _{CC} = 1.6V - 3.6V		0		
V _{hys2}	Hysteresis, small	V _{CC} = 1.6V - 3.6V		15		mV
V _{hys3}	Hysteresis, large	V _{CC} = 1.6V - 3.6V		30		-
+	Propagation delay	V _{CC} = 3.0V, T= 85°C		20	40	20
t _{delay}		V _{CC} = 3.0V		17		ns
	64-level voltage scaler	Integral non-linearity (INL)		0.3	0.5	lsb
	Current source accuracy after calibration			5		%
	Current source calibration range	Single mode	4		6	μA

33.5.14 SPI Characteristics

34.1.8.5 32MHz Internal Oscillator Calibrated to 48MHz

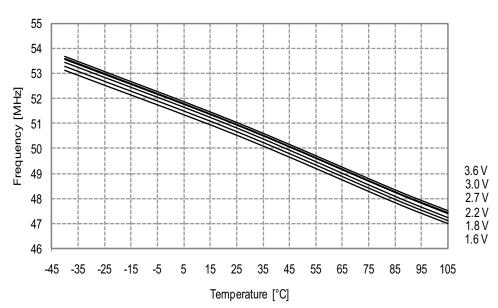
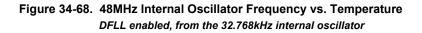
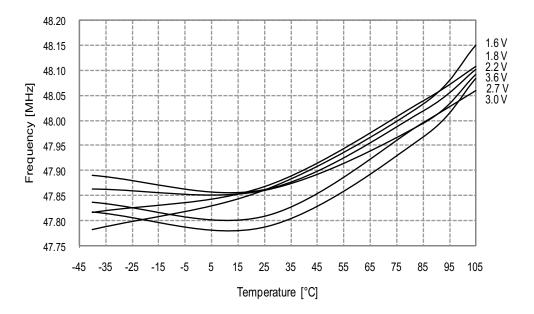




Figure 34-67. 48MHz Internal Oscillator Frequency vs. Temperature DFLL disabled

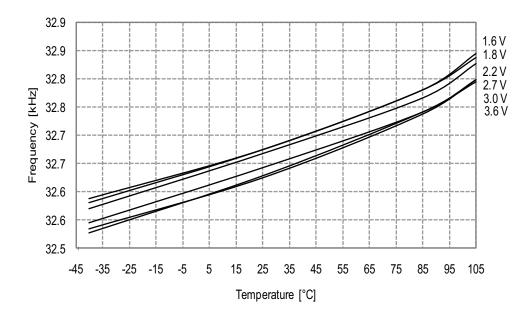
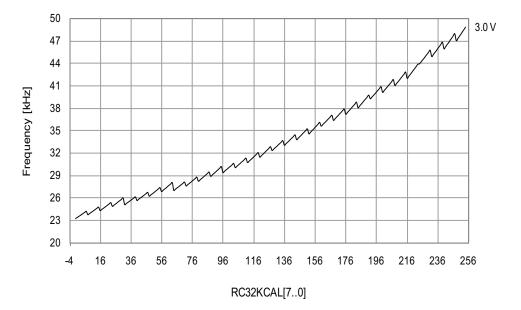



Figure 34-126. 32.768kHz Internal Oscillator Frequency vs. Temperature

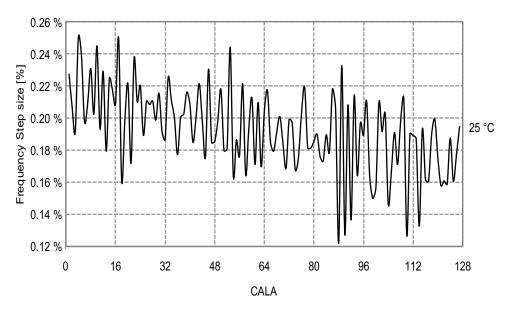


Figure 34-135. 32MHz Internal Oscillator CALA Calibration Step Size $T = 85^{\circ}C$, $V_{cc}=3.0V$

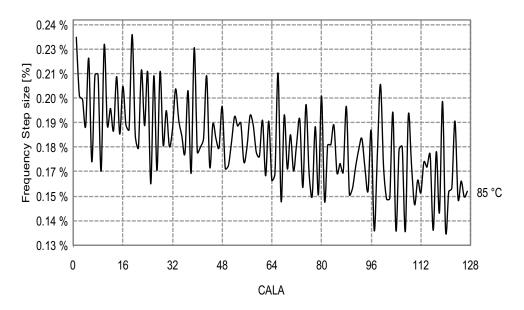
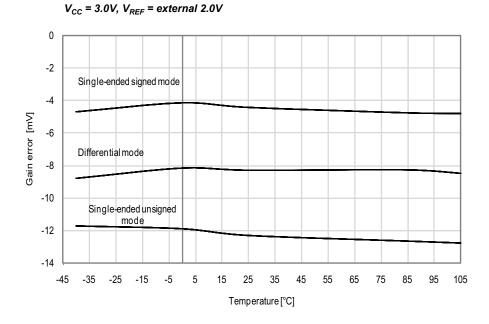
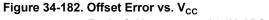
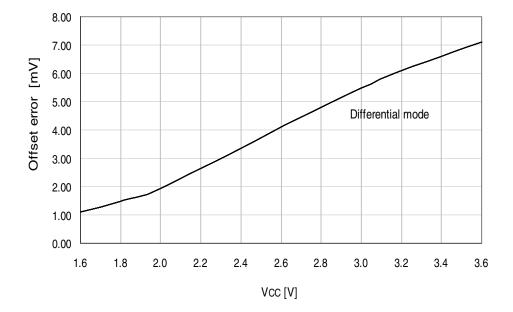





Figure 34-181. Gain Error vs. Temperature

 $T = 25 \,$ °C, $V_{REF} = external 1.0V$, ADC sample rate = 300ksps

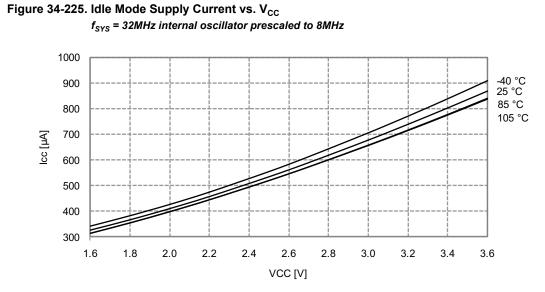
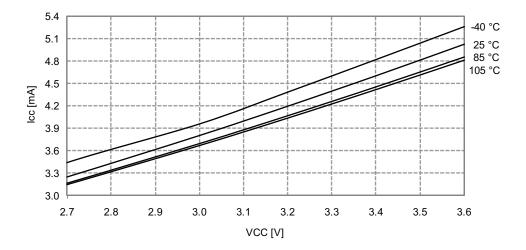



Figure 34-226. Idle Mode Current vs. V_{CC} f_{SYS} = 32MHz internal oscillator

34.4.4 Analog Comparator Characteristics

Figure 34-253. Analog Comparator Hysteresis vs. V_{CC} Small hysteresis

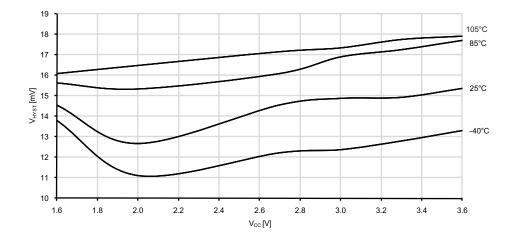
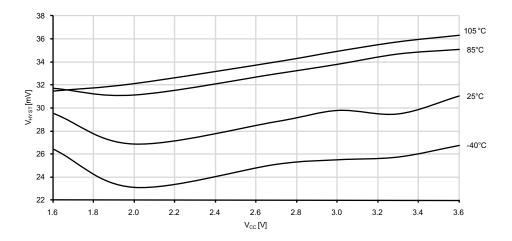



Figure 34-254. Analog Comparator Hysteresis vs. V_{CC} Large hysteresis

34.5.2.2 Output Voltage vs. Sink/Source Current

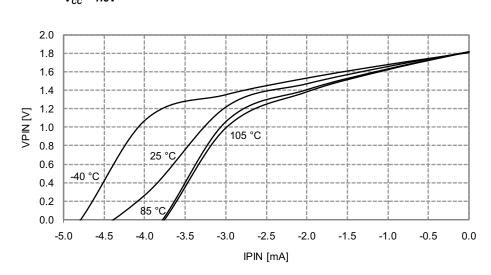
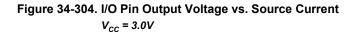



Figure 34-303. I/O Pin Output Voltage vs. Source Current $V_{CC} = 1.8V$

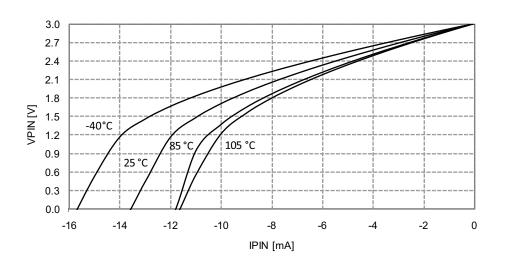


Figure 34-333. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage $V_{CC} = 3.3V$

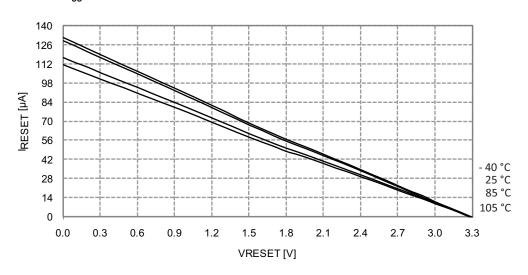
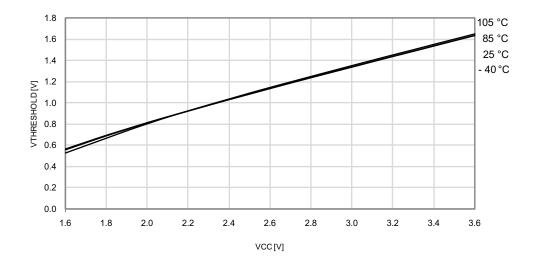



Figure 34-334. Reset Pin Input Threshold Voltage vs. V_{CC} V_{IH} - Reset pin read as "1"

