



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | AVR                                                                       |
| Core Size                  | 8/16-Bit                                                                  |
| Speed                      | 32MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART, USB                              |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                |
| Number of I/O              | 50                                                                        |
| Program Memory Size        | 192KB (96K x 16)                                                          |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 2K x 8                                                                    |
| RAM Size                   | 16K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                               |
| Data Converters            | A/D 16x12b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 64-TQFP                                                                   |
| Supplier Device Package    | 64-TQFP (14x14)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atxmega192c3-au |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Ordering code                   | Flash<br>[bytes] | EEPROM<br>[bytes] | SRAM<br>[bytes] | Speed<br>[MHz]         | Power<br>supply    | Package<br>(1)(2)(3) | Temp.         |
|---------------------------------|------------------|-------------------|-----------------|------------------------|--------------------|----------------------|---------------|
| ATxmega256C3-AN                 | 256K + 8K        | 4K                | 16K             |                        |                    |                      |               |
| ATxmega256C3-ANR <sup>(4)</sup> | 256K + 8K        | 4K                | 16K             |                        |                    |                      |               |
| ATxmega192C3-AN                 | 192K + 8K        | 2K                | 16K             |                        |                    |                      |               |
| ATxmega192C3-ANR <sup>(4)</sup> | 192K + 8K        | 2K                | 16K             |                        |                    |                      |               |
| ATxmega128C3-AN                 | 128K + 8K        | 2K                | 8K              |                        |                    | C 4 A                |               |
| ATxmega128C3-ANR <sup>(4)</sup> | 128K + 8K        | 2K                | 8K              |                        |                    | 04A                  |               |
| ATxmega64C3-AN                  | 64K + 4K         | 2K                | 4K              |                        |                    |                      |               |
| ATxmega64C3-ANR <sup>(4)</sup>  | 64K + 4K         | 2K                | 4K              |                        |                    |                      |               |
| ATxmega32C3-AN                  | 32K + 4K         | 1K                | 4K              |                        |                    |                      |               |
| ATxmega32C3-ANR <sup>(4)</sup>  | 32K + 4K         | 1K                | 4K              | 22                     | 4.0. 0.01          |                      | 4000 40500    |
| ATxmega256C3-M7                 | 256K + 8K        | 4K                | 16K             | 32                     | 1.6 - 3.6V         |                      | -40°C - 105°C |
| ATxmega256C3-M7R <sup>(4)</sup> | 256K + 8K        | 4K                | 16K             |                        |                    |                      |               |
| ATxmega192C3-M7                 | 192K + 8K        | 2K                | 16K             |                        |                    |                      |               |
| ATxmega192C3-M7R <sup>(4)</sup> | 192K + 8K        | 2K                | 16K             |                        |                    |                      |               |
| ATxmega128C3-M7                 | 128K + 8K        | 2K                | 8K              |                        |                    | CANA                 |               |
| ATxmega128C3-M7R <sup>(4)</sup> | 128K + 8K        | 2K                | 8K              |                        |                    | 04101                |               |
| ATxmega64C3-M7                  | 64K + 4K         | 2K                | 4K              |                        |                    |                      |               |
| ATxmega64C3-M7R <sup>(4)</sup>  | 64K + 4K         | 2K                | 4K              |                        |                    |                      |               |
| ATxmega32C3-M7                  | 32K + 4K         | 1K                | 4K              |                        |                    |                      |               |
| ATxmega32C3-M7R <sup>(4)</sup>  | 32K + 4K         | 1K                | 4K              | office for detailed an | doring information |                      |               |

1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For packaging information, see "Packaging Information" on page 63.

4. Tape and Reel.

| Package type |                                                                                                                     |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 64A          | 64-lead, 14 * 14mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP) |  |  |  |  |  |
| 64M          | 64-pad, 9 * 9 *1.0mm body size, lead pitch 0.50mm, 7.65mm exposed quad, flat no-lead package (QFN)                  |  |  |  |  |  |

## **Typical Applications**

| Industrial control | Climate control            | Low power battery applications |
|--------------------|----------------------------|--------------------------------|
| Factory automation | RF and ZigBee <sup>®</sup> | Power tools                    |
| Building control   | USB connectivity           | HVAC                           |
| Board control      | Sensor control             | Utility metering               |
| White goods        | Optical                    | Medical applications           |

## 2. Pinout/Block Diagram



Notes: 1. For full details on pinout and alternate pin functions refer to "Pinout and Pin Functions" on page 51.

2. The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good mechanical stability.

# 6. AVR CPU

### 6.1 Features

- 8/16-bit, high-performance Atmel AVR RISC CPU
  - 142 instructions
  - Hardware multiplier
- 32x8-bit registers directly connected to the ALU
- Stack in RAM
- Stack pointer accessible in I/O memory space
- Direct addressing of up to 16MB of program memory and 16MB of data memory
- True 16/24-bit access to 16/24-bit I/O registers
- Efficient support for 8-, 16-, and 32-bit arithmetic
- Configuration change protection of system-critical features

### 6.2 Overview

All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the program in the flash memory. Interrupt handling is described in a separate section, refer to "Interrupts and Programmable Multilevel Interrupt Controller" on page 27.

### 6.3 Architectural Overview

In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.



### Figure 6-1. Block Diagram of the AVR CPU Architecture

### 6.5 Program Flow

After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory '0.' The program counter (PC) addresses the next instruction to be fetched.

Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.

During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR CPU.

### 6.6 Status Register

The status register (SREG) contains information about the result of the most recently executed arithmetic or logic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine nor restored when returning from an interrupt. This must be handled by software.

The status register is accessible in the I/O memory space.

### 6.7 Stack and Stack Pointer

The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.

During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices with more than 128KB of program memory, the return address is three bytes, and hence the SP is

decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the RETI instruction, and from subroutine calls using the RET instruction.

The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one when data is popped off the stack using the POP instruction.

To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts for up to four instructions or until the next I/O memory write.

After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-2 on page 15.

### 6.8 Register File

The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register file supports the following input/output schemes:

- One 8-bit output operand and one 8-bit result input
- Two 8-bit output operands and one 8-bit result input
- Two 8-bit output operands and one 16-bit result input
- One 16-bit output operand and one 16-bit result input

## 7. Memories

### 7.1 Features

- Flash program memory
  - One linear address space
  - In-system programmable
  - Self-programming and boot loader support
  - Application section for application code
  - Application table section for application code or data storage
  - Boot section for application code or boot loader code
  - Separate read/write protection lock bits for all sections
  - Built in fast CRC check of a selectable flash program memory section
- Data memory
  - One linear address space
  - Single-cycle access from CPU
  - SRAM
  - EEPROM
    - Byte and page accessible
    - Optional memory mapping for direct load and store
  - I/O memory
    - Configuration and status registers for all peripherals and modules
    - Four bit-accessible general purpose registers for global variables or flags
  - Separate buses for SRAM, EEPROM and I/O memory
    - Simultaneous bus access for CPU
- Production signature row memory for factory programmed data
  - ID for each microcontroller device type
  - Serial number for each device
  - Calibration bytes for factory calibrated peripherals
- User signature row
  - One flash page in size
  - Can be read and written from software
  - Content is kept after chip erase

### 7.2 Overview

The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code can reside only in the program memory, while data can be stored in the program memory and the data memory. The data memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write operations. This prevents unrestricted access to the application software.

A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can only be written by an external programmer.

The available memory size configurations are shown in "Pinout/Block Diagram" on page 4. In addition, each device has a Flash memory signature row for calibration data, device identification, serial number etc.

### 7.3 Flash Program Memory

The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The flash memory can be accessed for read and write from an external programmer through the PDI or from application software running in the device.



# 17. AWeX – Advanced Waveform Extension

### 17.1 Features

- Waveform output with complementary output from each compare channel
- Four dead-time insertion (DTI) units
  - 8-bit resolution
  - Separate high and low side dead-time setting
  - Double buffered dead time
  - Optionally halts timer during dead-time insertion
- Pattern generation unit creating synchronised bit pattern across the port pins
  - Double buffered pattern generation
  - Optional distribution of one compare channel output across the port pins
- Event controlled fault protection for instant and predictable fault triggering

### 17.2 Overview

The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG) modes. It is primarily intended for use with different types of motor control and other power control applications. It enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external drivers. It can also generate a synchronized bit pattern across the port pins.

Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS switching. The DTI output will override the normal port value according to the port override setting.

The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition, the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator unit is enabled, the DTI unit is bypassed.

The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of fault triggers.

The AWeX is available for TCC0. The notation of this is AWEXC.



### 33.1.3 Current Consumption

| Table 33-4. | Current Consumption for Active Mode and Sleep Modes |
|-------------|-----------------------------------------------------|
|-------------|-----------------------------------------------------|

| Symbol          | Parameter                                  | Condition                                          |                         | Min. | Тур. | Max. | Units |
|-----------------|--------------------------------------------|----------------------------------------------------|-------------------------|------|------|------|-------|
|                 |                                            |                                                    | V <sub>CC</sub> = 1.8V  |      | 50   |      |       |
|                 |                                            |                                                    | V <sub>CC</sub> = 3.0V  |      | 130  |      |       |
|                 |                                            |                                                    | V <sub>CC</sub> = 1.8V  |      | 215  |      | μA    |
|                 | Active power<br>consumption <sup>(1)</sup> |                                                    | V <sub>CC</sub> = 3.0V  |      | 475  |      |       |
|                 | •                                          |                                                    | V <sub>CC</sub> = 1.8V  |      | 445  | 600  |       |
|                 |                                            | ZIVII IZ, EXI. UIK                                 | V = 3.0V                |      | 0.95 | 1.5  | m۸    |
|                 |                                            | 32MHz, Ext. Clk                                    | v <sub>CC</sub> – 3.0v  |      | 7.8  | 12   | mA    |
|                 |                                            |                                                    | V <sub>CC</sub> = 1.8V  |      | 2.8  |      |       |
|                 |                                            | SZRIZ, EXt. OK                                     | V <sub>CC</sub> = 3.0V  |      | 3.0  |      |       |
|                 |                                            | 1MHz Ext Clk                                       | V <sub>CC</sub> = 1.8V  |      | 46   |      | ıιΔ   |
|                 | Idle power<br>consumption <sup>(2)</sup>   |                                                    | V <sub>CC</sub> = 3.0V  |      | 92   |      | μΑ    |
|                 |                                            |                                                    | V <sub>CC</sub> = 1.8V  |      | 93   | 225  |       |
|                 |                                            |                                                    | $V_{00} = 3.0V$         |      | 184  | 350  |       |
|                 |                                            | 32MHz, Ext. Clk                                    | v <sub>CC</sub> – 0.0 v |      | 2.9  | 5.0  | mA    |
| I <sub>CC</sub> | Power-down power<br>consumption            | T = 25°C                                           |                         |      | 0.07 | 1.0  |       |
|                 |                                            | T = 85°C                                           | V <sub>CC</sub> = 3.0V  |      | 1.3  | 5.0  |       |
|                 |                                            | T = 105°C                                          |                         |      | 4.0  | 8.0  |       |
|                 |                                            | WDT and sampled BOD enabled,<br>T = 25°C           | V <sub>CC</sub> = 3.0V  |      | 1.4  | 2.0  |       |
|                 |                                            | WDT and sampled BOD enabled,<br>T = $85^{\circ}$ C |                         |      | 2.6  | 6.0  |       |
|                 |                                            | WDT and sampled BOD enabled,<br>T = 105°C          |                         |      | 5.0  | 10   |       |
|                 |                                            | RTC from ULP clock, WDT and                        | V <sub>CC</sub> = 1.8V  |      | 1.7  |      | μ     |
|                 |                                            | sampled BOD enabled, $T = 25^{\circ}C$             | V <sub>CC</sub> = 3.0V  |      | 1.8  |      |       |
|                 | Power-save power                           | RTC from 1.024kHz low power                        | V <sub>CC</sub> = 1.8V  |      | 0.7  | 2.0  |       |
|                 | consumption <sup>(3)</sup>                 | 32.768kHz TOSC, T = 25°C                           | V <sub>CC</sub> = 3.0V  |      | 0.8  | 2.0  |       |
|                 |                                            | RTC from low power 32.768kHz                       | V <sub>CC</sub> = 1.8V  |      | 0.9  | 3.0  |       |
|                 |                                            | TOSC, T = 25°C                                     | V <sub>CC</sub> = 3.0V  |      | 1.2  | 3.0  |       |
|                 | Reset power consumption                    | Current through RESET pin substracted              | V <sub>CC</sub> = 3.0V  |      | 120  |      |       |

Notes: 1. All Power Reduction Registers set including FPRM and EPRM.

2. All Power Reduction Registers set without FPRM and EPRM.

 $\label{eq:main_state} 3. \quad \mbox{Maximum limits are based on characterization, and not tested in production.}$ 



#### 33.1.5 I/O Pin Characteristics

The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low-level input and output voltage limits reflect or exceed this specification.

|  | Table 33-7. | I/O Pin | Characteristics |
|--|-------------|---------|-----------------|
|--|-------------|---------|-----------------|

| Symbol                                                             | Parameter                     | Condition                    |                        | Min.                | Тур.  | Max.                 | Units |
|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------|---------------------|-------|----------------------|-------|
| I <sub>OH</sub> <sup>(1)</sup> /<br>I <sub>OL</sub> <sup>(2)</sup> | I/O pin source/sink current   |                              |                        | -15                 |       | 15                   | mA    |
| V                                                                  | High lovel input veltage      | V <sub>CC</sub> = 2.4 - 3.6V |                        | 0.7*Vcc             |       | V <sub>CC</sub> +0.5 |       |
| VIH                                                                | nightever input voltage       | V <sub>CC</sub> = 1.6 - 2.4V |                        | 0.8*V <sub>CC</sub> |       | V <sub>CC</sub> +0.5 |       |
| V                                                                  | Low lovel input veltage       | V <sub>CC</sub> = 2.4 - 3.6V |                        | -0.5                |       | 0.3*V <sub>CC</sub>  |       |
| VIL                                                                | Low level input voltage       | V <sub>CC</sub> = 1.6 - 2.4V |                        | -0.5                |       | 0.2*V <sub>CC</sub>  |       |
| V <sub>OH</sub>                                                    | High level output voltage     | V <sub>CC</sub> = 3.3V       | I <sub>OH</sub> = -4mA | 2.6                 | 2.9   |                      | V     |
|                                                                    |                               | V <sub>CC</sub> = 3.0V       | I <sub>OH</sub> = -3mA | 2.1                 | 2.6   |                      | v     |
|                                                                    |                               | V <sub>CC</sub> = 1.8V       | I <sub>OH</sub> = -1mA | 1.4                 | 1.6   |                      |       |
|                                                                    | Low level output voltage      | V <sub>CC</sub> = 3.3V       | I <sub>OL</sub> = 8mA  |                     | 0.4   | 0.76                 |       |
| V <sub>OL</sub>                                                    |                               | V <sub>CC</sub> = 3.0V       | I <sub>OL</sub> = 5mA  |                     | 0.3   | 0.64                 |       |
|                                                                    |                               | V <sub>CC</sub> = 1.8V       | I <sub>OL</sub> = 3mA  |                     | 0.2   | 0.46                 |       |
| I <sub>IN</sub>                                                    | Input leakage current I/O pin | T = 25°C                     |                        |                     | <0.01 | 1.0                  | μA    |
| R <sub>P</sub>                                                     | Pull/Bus keeper resistor      |                              |                        |                     | 25    |                      | kΩ    |

Notes:

1. The sum of all I<sub>OH</sub> for PORTA and PORTB must not exceed 100mA. The sum of all I<sub>OH</sub> for PORTC, PORTD, and PORTE must for each port not exceed 200mA. The sum of all I<sub>OH</sub> for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all I<sub>OL</sub> for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.

The sum of all  $I_{OL}$  for PORTC, PORTD, and PORTE must not exceed 100mA. The sum of all  $I_{OL}$  for PORTC, PORTD, and PORTE must for each port not exceed 200mA. The sum of all  $I_{OL}$  for pins PF[0-5] on PORTF must not exceed 200mA. The sum of all  $I_{OL}$  for pins PF[0-5] on PORTF, PORTR, and PDI must not exceed 100mA. 2.

#### Table 33-68. Accuracy Characteristics

| Symbol          | Parameter                                                                | Condition <sup>(2)</sup> |                                         | Min. | Тур. | Max. | Units |
|-----------------|--------------------------------------------------------------------------|--------------------------|-----------------------------------------|------|------|------|-------|
|                 |                                                                          |                          | Differential                            | 8    | 12   | 12   |       |
| RES             | Resolution                                                               | 12-bit resolution        | Single ended signed                     | 7    | 11   | 11   | Bits  |
|                 |                                                                          |                          | Single ended unsigned                   | 8    | 12   | 12   |       |
|                 |                                                                          |                          | 16ksps, V <sub>REF</sub> = 3V           |      | 0.5  | 1    |       |
|                 |                                                                          | Differential mode        | 16ksps, all $V_{REF}$                   |      | 0.8  | 2    |       |
| INII (1)        | Integral per linearity                                                   | Differential mode        | 300ksps, V <sub>REF</sub> = 3V          |      | 0.6  | 1    |       |
|                 | integral non-intearity                                                   |                          | 300ksps, all V <sub>REF</sub>           |      | 1.0  | 2    |       |
|                 |                                                                          | Single ended             | 16ksps, V <sub>REF</sub> = 3.0V         |      | 0.5  | 1    |       |
|                 |                                                                          | unsigned mode            | 16ksps, all V <sub>REF</sub>            |      | 1.3  | 2    | loh   |
|                 |                                                                          |                          | 16ksps, V <sub>REF</sub> = 3V           |      | 0.3  | 1    | ISD   |
|                 |                                                                          | Differential mode        | 16ksps, all V <sub>REF</sub>            |      | 0.5  | 1    |       |
| <b>DNII</b> (1) | DNL <sup>(1)</sup> Differential non-linearity Single ended unsigned mode | Differential mode        | 300ksps, V <sub>REF</sub> = 3V          |      | 0.3  | 1    |       |
| DINL            |                                                                          | y                        | 300ksps, all V <sub>REF</sub>           |      | 0.5  | 1    |       |
|                 |                                                                          | Single ended             | 16ksps, V <sub>REF</sub> = 3.0V         |      | 0.6  | 1    |       |
|                 |                                                                          | unsigned mode            | 16ksps, all V <sub>REF</sub>            |      | 0.6  | 1    |       |
|                 | Offset error                                                             | Differential mode        | 300ksps, V <sub>REF</sub> =3V           |      | -7   |      | mV    |
|                 |                                                                          |                          | Temperature drift, V <sub>REF</sub> =3V |      | 0.01 |      | mV/K  |
|                 |                                                                          |                          | Operating voltage drift                 |      | 0.16 |      | mV/V  |
|                 |                                                                          |                          | External reference                      |      | -5   |      |       |
|                 |                                                                          |                          | AV <sub>CC</sub> /1.6                   |      | -5   |      |       |
|                 |                                                                          | Differential mode        | AV <sub>CC</sub> /2.0                   |      | -6   |      | rnv   |
|                 | Gain error                                                               | Differential mode        | Bandgap                                 |      | ±10  |      |       |
|                 |                                                                          |                          | Temperature drift                       |      | 0.02 |      | mV/K  |
|                 |                                                                          |                          | Operating voltage drift                 |      | 2    |      | mV/V  |
|                 |                                                                          |                          | External reference                      |      | -8   |      |       |
|                 |                                                                          |                          | AV <sub>CC</sub> /1.6                   |      | -8   |      | m\ (  |
|                 | Coin orror                                                               | Single ended             | AV <sub>CC</sub> /2.0                   |      | -8   |      | IIIV  |
|                 | Galli ellor                                                              | unsigned mode            | Bandgap                                 |      | ±10  |      |       |
|                 |                                                                          |                          | Temperature drift                       |      | 0.03 |      | mV/K  |
|                 |                                                                          |                          | Operating voltage drift                 |      | 2    |      | mV/V  |

Notes: 1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.

2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external V<sub>REF</sub> is used.

| Symbol | Parameter                         | Condition                |                               | Min. | Тур. | Max.                        | Units |
|--------|-----------------------------------|--------------------------|-------------------------------|------|------|-----------------------------|-------|
|        |                                   |                          | 0.4MHz resonator,<br>CL=100pF |      | 44k  |                             |       |
|        |                                   | FRQRANGE=0               | 1MHz crystal, CL=20pF         |      | 67k  |                             |       |
|        |                                   |                          | 2MHz crystal, CL=20pF         |      | 67k  |                             |       |
|        |                                   |                          | 2MHz crystal                  |      | 82k  |                             |       |
|        |                                   | FRQRANGE=1,              | 8MHz crystal                  |      | 1500 |                             |       |
|        |                                   | CL=20pF                  | 9MHz crystal                  |      | 1500 |                             |       |
|        |                                   | XOSCPWR=0                | 8MHz crystal                  |      | 2700 |                             |       |
|        |                                   | FRQRANGE=2,              | 9MHz crystal                  |      | 2700 |                             |       |
|        |                                   | CL=20pF                  | 12MHz crystal                 |      | 1000 |                             |       |
|        |                                   | XOSCPWR=0                | 9MHz crystal                  |      | 3600 |                             |       |
| Ro     | Negative impedance <sup>(1)</sup> | FRQRANGE=3,              | 12MHz crystal                 |      | 1300 |                             | Ω     |
| , Q    | riegalite impedance               | CL=20pF                  | 16MHz crystal                 |      | 590  |                             |       |
|        |                                   | XOSCPWR=1                | 9MHz crystal                  |      | 390  |                             |       |
|        |                                   | FRQRANGE=0,              | 12MHz crystal                 |      | 50   |                             |       |
|        |                                   | CL=20pF                  | 16MHz crystal                 |      | 10   |                             |       |
|        |                                   | XOSCPWR=1                | 9MHz crystal                  |      | 1500 |                             |       |
|        |                                   | FRQRANGE=1,<br>CL=20pF   | 12MHz crystal                 |      | 650  |                             |       |
|        |                                   |                          | 16MHz crystal                 |      | 270  |                             |       |
|        |                                   | XOSCPWR=1,               | 12MHz crystal                 |      | 1000 |                             |       |
|        |                                   | CL=20pF                  | 16MHz crystal                 |      | 440  |                             |       |
|        |                                   | XOSCPWR=1,               | 12MHz crystal                 |      | 1300 |                             |       |
|        |                                   | FRQRANGE=3,<br>CL=20pF   | 16MHz crystal                 |      | 590  |                             |       |
|        | ESR                               | SF = safety<br>factor    |                               |      |      | min<br>(R <sub>Q</sub> )/SF | kΩ    |
|        |                                   | XOSCPWR=0,<br>FRQRANGE=0 | 0.4MHz resonator,<br>CL=100pF |      | 1.0  |                             |       |
|        |                                   | XOSCPWR=0,<br>FRQRANGE=1 | 2MHz crystal, CL=20pF         |      | 2.6  |                             |       |
|        | Start-up time                     | XOSCPWR=0,<br>FRQRANGE=2 | 8MHz crystal, CL=20pF         |      | 0.8  |                             | ms    |
|        |                                   | XOSCPWR=0,<br>FRQRANGE=3 | 12MHz crystal, CL=20pF        |      | 1.0  |                             |       |
|        |                                   | XOSCPWR=1,<br>FRQRANGE=3 | 16MHz crystal, CL=20pF        |      | 1.4  |                             |       |

| Symbol             | Parameter                          | Condition | Min. | Тур. | Max. | Units |
|--------------------|------------------------------------|-----------|------|------|------|-------|
| C <sub>XTAL1</sub> | Parasitic capacitance<br>XTAL1 pin |           |      | 5.9  |      |       |
| C <sub>XTAL2</sub> | Parasitic capacitance<br>XTAL2 pin |           |      | 8.3  |      | pF    |
| C <sub>LOAD</sub>  | Parasitic capacitance load         |           |      | 3.5  |      |       |

Note: 1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.

#### 33.4.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics

### Table 33-114. External 32.768 kHz Crystal Oscillator and TOSC Characteristics

| Symbol             | Parameter                             | Condition                                         | Min. | Тур. | Max. | Units |
|--------------------|---------------------------------------|---------------------------------------------------|------|------|------|-------|
| ESR/R1             | Recommended crystal                   | Crystal load capacitance 6.5pF                    |      |      | 60   |       |
|                    | equivalent series<br>resistance (ESR) | Crystal load capacitance 9.0pF                    | 35   |      | 35   | kΩ    |
|                    |                                       | Crystal load capacitance 12pF                     |      |      | 28   | -     |
| C <sub>TOSC1</sub> | Parasitic capacitance<br>TOSC1 pin    |                                                   |      | 3.5  |      | nE    |
| C <sub>TOSC2</sub> | Parasitic capacitance<br>TOSC2 pin    |                                                   |      | 3.5  |      | ρr    |
|                    | Recommended safety factor             | Capacitance load matched to crystal specification | 3    |      |      |       |

Note:

See Figure 33-25 for definition.

### Figure 33-25.TOSC Input Capacitance



The parasitic capacitance between the TOSC pins is  $C_{L1} + C_{L2}$  in series as seen from the crystal when oscillating without external capacitors.

### 33.5.13.5 Internal Phase Locked Loop (PLL) Characteristics

#### Table 33-139.Internal PLL Characteristics

| Symbol           | Parameter                       | Condition                                        | Min. | Тур. | Max. | Units |
|------------------|---------------------------------|--------------------------------------------------|------|------|------|-------|
| f <sub>IN</sub>  | Input frequency                 | Output frequency must be within f <sub>OUT</sub> | 0.4  |      | 64   |       |
| f <sub>оит</sub> | Output frequency <sup>(1)</sup> | V <sub>CC</sub> = 1.6 - 1.8V                     | 20   |      | 48   | MHz   |
|                  |                                 | V <sub>CC</sub> = 2.7 - 3.6V                     | 20   |      | 128  |       |
|                  | Start-up time                   |                                                  |      | 25   |      |       |
|                  | Re-lock time                    |                                                  |      | 25   |      | μs    |

Note: 1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.

#### 33.5.13.6 External Clock Characteristics





#### Table 33-140.External Clock used as System Clock without Prescaling

| Symbol            | Parameter                                         | Condition                    | Min. | Тур. | Max. | Units |
|-------------------|---------------------------------------------------|------------------------------|------|------|------|-------|
| 1/t <sub>СК</sub> | Clock Frequency <sup>(1)</sup>                    | V <sub>CC</sub> = 1.6 - 1.8V | 0    |      | 12   | MHz   |
|                   |                                                   | V <sub>CC</sub> = 2.7 - 3.6V | 0    |      | 32   |       |
| t <sub>ск</sub>   | Clock Period                                      | V <sub>CC</sub> = 1.6 - 1.8V | 83.3 |      |      | ns    |
|                   |                                                   | V <sub>CC</sub> = 2.7 - 3.6V | 31.5 |      |      |       |
| t <sub>CH</sub>   | Clock High Time                                   | V <sub>CC</sub> = 1.6 - 1.8V | 30.0 |      |      |       |
|                   |                                                   | V <sub>CC</sub> = 2.7 - 3.6V | 12.5 |      |      |       |
| t <sub>CL</sub>   | Clock Low Time                                    | V <sub>CC</sub> = 1.6 - 1.8V | 30.0 |      |      |       |
|                   |                                                   | V <sub>CC</sub> = 2.7 - 3.6V | 12.5 |      |      |       |
| t <sub>CR</sub>   | Rise Time (for maximum frequency)                 | V <sub>CC</sub> = 1.6 - 1.8V |      |      | 10   |       |
|                   |                                                   | V <sub>CC</sub> = 2.7 - 3.6V |      |      | 3    |       |
| t <sub>CF</sub>   | Fall Time (for maximum frequency)                 | V <sub>CC</sub> = 1.6 - 1.8V |      |      | 10   |       |
|                   |                                                   | V <sub>CC</sub> = 2.7 - 3.6V |      |      | 3    |       |
| $\Delta t_{CK}$   | Change in period from one clock cycle to the next |                              |      |      | 10   | %     |

Note:

1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.



Figure 34-14. Idle Mode Current vs.  $V_{CC}$  $f_{SYS}$  = 32MHz internal oscillator

Figure 34-13. Idle Mode Supply Current vs.  $\rm V_{\rm CC}$ 



Figure 34-191. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  $V_{CC} = 1.8V$ 



Figure 34-192. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  $V_{CC} = 3.0V$ 





#### 34.4.2 I/O Pin Characteristics

#### 34.4.2.1 Pull-up





275

#### 34.4.2.3 Thresholds and Hysteresis



Figure 34-239. I/O Pin Input Threshold Voltage vs.  $V_{CC}$  $V_{IH}$  I/O pin read as "1"

Figure 34-240. I/O Pin Input Threshold Voltage vs.  $V_{CC}$  $V_{IL}$  I/O pin read as "0"



Figure 34-263. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  $V_{CC} = 3.3V$ 



Figure 34-264. Reset Pin Input Threshold Voltage vs.  $V_{CC}$  $V_{IH}$  - Reset pin read as "1"





### 34.5.2 I/O Pin Characteristics

#### 34.5.2.1 Pull-up





310

### 34.5.4 Analog Comparator Characteristics

Figure 34-323. Analog Comparator Hysteresis vs. V<sub>CC</sub> Small hysteresis



Figure 34-324. Analog Comparator Hysteresis vs. V<sub>CC</sub> Large hysteresis

